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From a regulatory perspective, genetic medi-
cine covers a broad area, comprising the 
manipulation of both genetic code and 

gene expression via the exogenous introduction 
of nucleic acids into a biological system. The first 
gene therapy clinical trial occurred in 1989, and 
it took 14 years for one to be approved. However, 
in the time since, several cell and gene therapies 
have been approved for clinical use, and at a much 
faster pace.1–3 The first gene therapy approved in 
the United States entailed the ex vivo manipula-
tion of patient cells, but recent improvements to 
delivery methods have enabled the use of genetic 
therapies that are administered in vivo, directly to 
patients. Notable examples are the latest genetic 
vaccines designed to immunize against COVID-
19. These have set new benchmarks for speed and 
efficacy with respect to the design and deployment 
of commercial genetic medicines. These recent 

successes have ushered in a new era of treatments 
that can sense and modify genetic pathways with 
a precision never before possible using small mol-
ecules and biologics, which rely on chemistry for 
their targeting and mechanism of action. The 
question has now become how to best utilize these 
new tools, especially for something as complex 
and multifactorial as healthspan.

Healthspan is commonly defined as the period 
of time in which an organism is relatively healthy 
and free from disease. Although this is not a strictly 
defined phenotype, maximizing healthspan 
remains a general goal to achieve for the longevity 
field.4 From practical and regulatory standpoints, 
single age-related disease indications and quanti-
fiable metrics are the most practical ways to assess 
the efficacy of interventions, with potential con-
sequences for healthspan. An effective therapy 
targets the core aspects of aging that contribute 
to age-related disease to varying degrees.5 For 
example, senolytics, a class of therapies that selec-
tively eliminate senescent cells, has the potential 
to be beneficial in multiple age-related diseases.6–8 
In this mini-review, we will expand upon this class 
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of therapies, provide an overview of the genetic 
medicine payloads that are being developed for 
healthspan extension, and discuss a major chal-
lenge of genetic medicines: payload delivery.

SENOLYTICS
Senescence is a cell fate characterized by stable 

cell cycle arrest and secretion of proinflammatory 
cytokines and molecules known as the senescence-
associated secretory phenotype (SASP). The SASP 
is comprised of cytokines, chemokines, proteases, 
and growth factors, which impact surrounding 
healthy cells and alter their function.9 Senescent 
cells accumulate over time and contribute to a 
decline in organ function, implicating them in 
most age-related diseases. The seminal proof-of-
concept that showed the removal of senescent 
cells in vivo can rejuvenate an organism was first 
shown in 2011. Since then, a rapid expansion of 
research in senolytic therapies have led to a num-
ber of clinical trials.7,10,11 Many small molecule and 
biologic approaches have been used academically 
and clinically with varying degrees of success. 
Despite their broad effect, senescent cells only 
constitute a small percentage of cells in the body. 
Senescent cells themselves are also heterogeneous 
with features that closely resemble surrounding 
cells.12–14 These challenges limit the utility of small 
molecule drugs due to their indiscriminate nature 
and resultant systemic toxicity, since many are 
based on drug repurposing. This is especially true 
in sensitive tissues like skin, where senescent cells 
contribute to health and resultant appearance.15–20 
Attempts have been made to target localized com-
partments to circumvent this, but so far this strat-
egy has failed to achieve its purpose, illustrated by 
the failed trial for osteoarthritis using intra-knee 
injections of UBX0101.21,22

In contrast, genetic approaches provide a 
method to selectively target senescence-associated 
features, improving efficacy and limiting toxicity. 
Indeed, the first proof-of-concept for the benefi-
cial effect of senolysis was demonstrated in trans-
genic mice where an inducible suicide gene was 
selectively activated in p16+ senescent cells.10,23 
The selectivity and control of a genetic medicine 
approach enables the precise elimination of senes-
cent cells and is a primary focus of the authors.24 
This novel senolytic approach utilizes a plasmid 
DNA construct encoding a late-stage apoptotic 
protein under the control of a senescence-associ-
ated promoter. Apoptosis induction is further con-
trolled by activation via addition of a dimerizing 
agent (Fig.  1). Senescent cells contribute to the 

onset and progression of age-related diseases, and 
a senolytic that can be safely used by healthy aged 
individuals for age-related disease prevention will 
have a broad impact. The ability of gene therapy 
to target-specific subtypes of cells makes it an ideal 
type of therapeutic to treat chronic and complex 
age-related diseases. For example, while senescent 
cells are important for wound healing, persistence 
of senescent cells leads to chronic wounds, which 
necessitates nonpersistent sporadic senescent 
clearance. Due to the complexity of wound heal-
ing, chronic wounds can be challenging for clini-
cians, especially in elderly patients, and senolytics 
offer another arrow in the quiver of therapeutic 
options.16,25–28

DURABLE GENE REPLACEMENT 
THERAPIES FOR IMPROVING 

HEALTHSPAN
Age-related diseases are typically chronic, and 

it is reasonable to assume that their treatment will 
require prolonged or repeat dosing. Although the 
half-lives of small molecules and many biologics 
are relatively short, gene therapies are unique in 
that they can be engineered to persist indefinitely. 
The first approved gene therapy in the United 
States, Kymriah, introduced a gene for a chime-
ric antigen receptor on a patients T cells (CAR-
T) ex vivo before reinfusing them to treat their 
acute lymphoblastic leukemia. Since then, CAR-T 
research has expanded to multiple hematologi-
cal malignancies, solid tumors, and more recently 
to target senescent cells based on a surface cell 
marker.29–31 CAR-T cells are designed to persist 
indefinitely within the patient to exert their pro-
tective effects, so great caution must be taken 
with a persistent senescent cell clearance ther-
apy.23 Treatment of monogenic diseases via gene 
replacement therapies is an excellent example of 
the durable effect afforded by genetic medicines.32 
In addition to the approved gene replacement 
therapies, efforts are being made to understand 
the genes that decrease with either age or age-
related diseases, and several have been identified 
that demonstrate protective antiaging effects and 
healthspan benefits. For example, a gene therapy 
is being developed to increase the expression 
of the DNA-repair enzyme, SIRT6.33 There are 
multiple groups developing therapies to extend 
telomeres via the expression of telomerase.34–37 A 
triple gene therapy approach to treat mitral valve 
disease is being developed for canines, with an 
aim to eventually progress to humans.38 A ther-
apy based on work from the University of South 
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Alabama is introducing a gene in macrophages 
ex vivo that can metabolize oxidized cholesterol.39 
Efforts to treat epidermolysis bullosa have had 
dramatic results from two groups using either 
transgenic ex vivo keratinocytes or intradermal 
injection of collagen VII.40,41 Using their genetic 
medicine platform, the authors are developing 
multiple gene replacement therapies to treat sar-
copenia, mitochondrial diseases, collagen defects, 
and skin disease. Attempting to recapitulate the 
effects of gene replacement therapies via recom-
binant protein therapy is prohibitively expensive 
and often precluded by delivery challenges and 
complicated manufacturing.

The discovery of the CRISPR/Cas9 gene edit-
ing system to fix single genetic mutations rather 
than replace the gene outright has dramatically 
broadened the potential applications of genetic 

medicines.42–44 There are numerous age-related 
diseases driven by point mutations that could be 
treated via CRISPR/Cas9-based gene therapies, 
such as ALS, Alzheimer disease, Parkinson disease, 
and rheumatoid arthritis, and more as CRISPR-
based research progresses.45 However, although 
these tools hold great promise to correct genetic 
diseases, in vivo delivery of these tools to the cells 
of interest remains a significant challenge.

GENETIC APPROACHES CAN BE TUNED 
FOR SPATIOTEMPORAL SPECIFICITY

Given the highly regulated spatial and tempo-
ral nature of gene expression, genetic medicines 
must be designed to express exogenous genes 
in the right cell population at the right time. 
Engineering highly selective DNA promoters and 

Fig. 1. Specific elimination of target cells using senolytic gene therapy. Time-lapse microscopy of target cells 
expressing the senescence-associated gene p16 (green) in a field of normal cells stained with MitoTracker 
(red). Cells were treated with PLVs encoding an inducible caspase 9 tagged with GFP under the control of 
the p16 promoter. Addition of a dimerizing agent to activate caspase 9 resulted in all target cells being 
eliminated within 8 hours.



52S

Plastic and Reconstructive Surgery • October Supplement 2022

enhancer/repressor combinations allows for a 
gene therapy to deliver throughout the body and 
still achieve precise cell and tissue.

Temporal specificity is also important for gene 
therapies affecting healthspan. The type of pay-
load can also affect temporal specificity, such as 
mRNA, which provides rapid and robust yet tran-
sient cargo expression. However, in some indica-
tions, this approach is desirable. For example, 
there are multiple efforts to utilize Yamanaka fac-
tors to partially reprogram cells into a more youth-
ful state.46–50 With their senolytic approach, the 
authors are eliminating senescent cells in a simi-
lar “hit-and-run” approach that can be delivered 
body-wide repeatedly at regular intervals, further 
reducing toxicity and effectively re-creating what 
has been shown by other studies involving trans-
genic animals (Fig. 2).10

THE CHALLENGE OF NUCLEIC ACID 
DELIVERY

There are some significant hurdles that 
genetic medicines must overcome to gain more 
broad applicability. The plasma membrane is a 
highly effective physical barrier that actively repels 
or sequesters exogenous macromolecules such as 
negatively charged nucleic acids. This necessi-
tates the use of a carrier vehicle to facilitate entry 

into the cytosol to exert the intended therapeutic 
effect (Fig. 3). Viral vectors have dominated gene 
therapy efforts due to their high efficiency of gene 
expression, with adenoviral, retroviral/lentiviral, 
and adeno-associated viral (AAV) vectors lead-
ing the field.1,51 The two subtypes of retroviruses, 
γ-retroviruses, and lentiviruses contain an RNA 
genome that undergoes reverse transcription into 
DNA upon entry into a transduced cell. The new 
DNA genome is then integrated into the host cell 
therefore enabling durable gene expression.52 
Retroviruses have demonstrated their clinical suc-
cess via ex vivo gene transfer into hematopoietic 
stem cells (HSCs)53,54 and T cells.55,56 Genetically 
altered cells can be reintroduced into patients 
and reverse deficiencies in HSCs, or target cancer 
cells. The risk of insertional mutagenesis has hin-
dered the systemic use of retroviruses52 and fur-
ther testing and validation will be required before 
this platform can be adopted to improve health 
span.

Adenoviral and AAV vectors have predomi-
nately been the chosen viral vectors for systemic 
gene therapy. These vectors have a DNA genome 
and possesses an ability to transduce quiescent 
cells, making them an ideal candidate for the 
treatment of monogenic diseases and potentially 
aging.57 However, initial studies examining the 
use of adenoviruses as gene therapy vectors were 

Fig. 2. Oisín Biotechnologies clinical approach. Schematic detailing the mechanism of action of a senolytic PLV infusion.
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met with resistance after it was reported that seri-
ous and life-threatening side effects could occur,58 
causing a shift to the use of safer AAV vectors.59,60 
Sustained gene expression from a single dose is 
often required for therapeutic effect, as adap-
tive immune responses prevent AAV vectors from 
being administered repeatedly.60,61 Additionally, 
preexisting neutralizing AAV antibodies can exist 
even without prior vector exposure further hin-
dering gene expression.61–64 Although immune 
stimulation be advantageous in the field of vac-
cines, where robust T-cell responses induced by 
the gene delivery vector can help facilitate long-
lasting immunity to the antigen, this immunoge-
nicity hinders repeat dosing.65

To overcome limitations surrounding viral 
vectors, the focus in recent years has largely 
shifted to the development and optimization of 
the safer nonviral delivery vectors.51 Nonviral 
delivery vectors are easier and cheaper to manu-
facture than viral vectors, allowing for rational 
design and large-scale testing of novel materials 
and formulations with nucleic acid delivery poten-
tial.66,67 Of the various nonviral delivery vectors, 
lipid nanoparticles (LNPs) have demonstrated 

their success with the FDA approval of patisiran 
(Onpattro), an LNP-based RNA interference 
agent that treats amyloidosis caused by abnormal 
transthyretin production.68,69 LNPs are formulated 
with cationic or ionizable lipids that by neutral-
izing the anionic charge of nucleic acids enable 
transport of nucleic acids across the charge-
restrictive plasma membrane via endocytosis.70 
Despite the immunogenicity benefits LNP vectors 
have over viral vectors, LNPs containing cationic 
or ionizable lipids can stimulate toxic and inflam-
matory responses, limiting their usefulness clini-
cally. At a cellular level, LNPs facilitate apoptotic 
cell death that translates to liver toxicity following 
systemic delivery.71,72 Interactions between LNPs 
and the immune system can have systemic effects 
and lead to secretion of proinflammatory cyto-
kines like tumor necrosis factor alpha (TNF-α), 
interferon-gamma (IFN-γ), and interleukin-6 (IL-
6).73,74 Furthermore, LNPs can stimulate comple-
ment activation-related pseudoallergy (CARPA), 
a hypersensitivity reaction resulting in death in 
severe circumstances.75–77

The authors have taken an approach that com-
bines the strengths and mitigates the weaknesses 

Fig. 3. Gene delivery technologies. Illustration of gene therapy delivery modalities. Viral-based delivery methods have efficient 
transduction but are immunogenic. Nonviral-based LNPs are relatively nonimmunogenic but have inefficient transduction due to 
endocytosis and utilize lipids that are toxic. PLVs utilize nontoxic lipids and a nonimmunogenic fusogen (green) that directly fuses 
the PLV with the cell membrane, enabling nonimmunogenic, nontoxic, and efficient transduction.
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of viral and nonviral delivery vectors by develop-
ing proteo-lipid vehicles (PLVs), a platform that 
incorporates a fusion-associated small transmem-
brane (FAST) protein into a lipid-based formu-
lation.78–101 FAST proteins are the smallest viral 
fusogens that have been described (≈100–200 resi-
dues), with a single transmembrane domain fixing 
the FAST protein in a Nexoplasmic/Ccytoplasmic 
type I membrane topology that exposes an even 
smaller ectodomain (≈20–40 residues).86 FAST 
proteins function as fusion machines, where 
incorporation into a lipid-based nanoparticle is 
sufficient to facilitate nanoparticle-cell fusion and 
delivery of encapsulated cargo directly into the 
cytosol of target cells.87

This enables FAST protein-containing PLVs to 
be formulated with reduced ionizable and cationic 
lipids, substantially improving safety while retain-
ing efficacy, which allows for genetic medicines 
that require high systemic doses. Furthermore, 
FAST proteins are nonimmunogneic enabling 
repeat dosing. Notably unlike other LNP plat-
forms, FAST-PLVs have demonstrated the ability 
to successfully deliver plasmid DNA systemically 
after intravenous administration, similar to viral 
vectors.85

DISCUSSION
Genetic medicines are rapidly becoming a dis-

tinct and revolutionary class of therapeutics. The 
durability, specificity, and ease of manufacturing 
allows for a plethora of creative and effective strat-
egies. The COVID-19 pandemic has shown the 
world that a gene therapy can be rapidly developed 
and deployed globally. This has already begun to 
catalyze the interest and capital that will be lever-
aged toward gene therapies going forward. Much 
like LNPs, PLVs are relatively inexpensive to man-
ufacture at scale compared to viral-based delivery 
methods, which enables the development of cost-
effective therapeutics that can be more broadly 
applied.

Although there are still considerable efforts 
involved in designing genetic medicines, the abil-
ity to progress from target to preclinical testing 
in a matter of months is typically shorter than 
the development that many small molecules go 
through before preclinical in vivo testing. As a 
result, researchers developing genetic medicines 
can take a more iterative approach and de-risk 
their clinical efforts.

Next-generation gene delivery platforms 
such as PLVs enables the development of more 
sophisticated genetic medicine approaches 

utilizing DNA or self-amplifying RNA. This 
allows for innovative gene therapies that can be 
exquisitely regulated. For example, a genetic 
program that expresses a gene of interest X 
exclusively in keratinocytes but is repressed 
when that keratinocyte expresses another gene 
Y is a kind of logic gate that is possible utilizing 
DNA. There is enormous potential in the gene 
therapy space, which can synergize with and sup-
plement surgical efforts. Platform technologies 
like PLV are also likely essential for the treat-
ment of chronic diseases of aging as individuals 
will require systemic treatments over the course 
of many years. We are focusing our initial efforts 
on the development of a first-in-class senolytic 
gene therapy while engineering innovative solu-
tions to ameliorate age-related diseases and 
promote healthspan extension using multiple 
complementary approaches. The future of gene 
therapy in the context of healthspan could be 
seen as an accumulation of genetic programs 
that prevent or correct the normal trajectory of 
age-related disease and could be taken acutely 
and/or repeatedly as the demand arises.
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