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Abstract

Motivation

Intratumor heterogeneity (ITH) represents the diversity of cell populations that make up can-

cer tissue. The level of ITH in a tumor is usually measured by a genomic variation profile,

such as copy number variation and somatic mutation. However, a recent study has identified

ITH at the transcriptome level and suggested that ITH at gene expression levels is useful for

predicting prognosis. Measuring ITH levels at the spliceome level is a natural extension.

There are serious technical challenges in measuring spliceomic ITH (sITH) from bulk tumor

RNA sequencing (RNA-seq) due to the complex splicing patterns.

Results

We propose an information-theoretic method to measure the sITH of bulk tumors to over-

come the above challenges. This method has been extensively tested in experiments using

synthetic data, xenograft tumor data, and TCGA pan-cancer data. As a result, we showed

that sITH is closely related to cancer progression and clonal heterogeneity, along with clini-

cally significant features such as cancer stage, survival outcome and PAM50 subtype. As

far as we know, it is the first study to define ITH at the spliceome level. This method can

greatly improve the understanding of cancer spliceome and has great potential as a diag-

nostic and prognostic tool.

Introduction

Intratumor heterogeneity (ITH) represents the diversity of cell populations that make up can-

cer tissue [1]. This results from a subclone diversification process during cancer progression,

which is considered a form of Darwinian evolutionary process [2]. The level of ITH reflects the
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genetic diversity of bulk tumors, which generally has a negative impact on prognosis. An

explanation for this trend is that the genetic diversity provided by ITH can be an accelerator of

somatic cell evolution that helps cancer cells acquire a malignant phenotype [3, 4, 5, 6]. Studies

have been published that measure the level of ITH in bulk tumors in the whole genome level

[7, 8, 9].

In a recent study by Morris et al. [10], The ITH of each cancer sample was calculated using

genomic features such as copy number variation (CNV) and somatic mutation. Then, the rela-

tionship between the ITH of each cancer sample and various clinical characteristics was tested.

They concluded that the level of ITH in each cancer sample was significantly associated with

the molecular, pathological, and clinical characteristics including prognosis. Other studies are

supporting the results of Morris et al. [11, 12].

Related works

ITH can be deduced using molecular profiles extracted from genomic, epigenomic and tran-

scriptomic data such as whole-genome sequencing (WGS), CNVs, bisulfite-seq, and RNA-seq

data. Approaches using each domain have been used to assess the level of ITH in cancer tissues

and to identify molecular features associated with tumor evolution (Table 1). For example, two

ITH studies using genomic variation have revealed somatic mutations that are closely related

to tumor evolution in various types of cancer [13, 14]. Methylomic and transcriptomic (gene-

expression) methods for measuring ITH in bulk tumors were developed and identified impor-

tant molecular features [15, 16].

Genome-level ITH has been extensively studied using bulk tumor sequencing data. ABSO-

LUTE [13] is a genomic ITH (gITH) model that uses somatic mutations and CNV profiles of

bulk tumors to infer ITH. ABSOLUTE estimated the optimal values of cancer purity and

ploidy using a linear programming technique and then estimated the subclonal genome frac-

tions (ie, ITH). A slightly different approach was used in PyClone [14]. PyClone used the

Bayesian model to define the generative relationship between the number of subclones and the

observed genomic variation and then used the Bayesian clustering algorithm to select the opti-

mal number of subclones that best fit the observed data.

Recently, an ITH model using a methylation profile was developed. This model, proposed

by Mazor et al. [16], used a mathematical modeling approach similar to the genomic data

based model. DNA methylation does not alter the DNA sequence but is linked to genomic

DNA. Thus, the DNA methylation pattern has similar characteristics to the genomic variants.

Table 1. Description of each approach using various molecular domains.

Domain1 Variation2 Method3 Findings4

Genomic CNVs Somatic

mutations

Mathematical

modeling

Suggesting CDK12 as a candidate TSG in ovarian carcinoma [13]

Methylomic Methylation Mathematical

modeling

Association between mutations in chromatin modifiers like SMARCA4, BAP and methylomic ITH [16]

Transcriptomic Gene expression Information theory Suggesting that cell cycle related pathways have significant contribution to increasing heterogeneity on

the network during clonal evolution [15]

Spliceomic Alternative splicing None None

1 The Domains column represents the domain data used in each approach.
2 The Variation column represents the genetic variation that each approach uses to construct the model.
3 The Method column indicates the type of algorithm each approach uses to build the model.
4 The Findings column explains the results revealed using each approach.

https://doi.org/10.1371/journal.pone.0223520.t001
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For example, when bisulfite-seq is used, methylation base detection is similar to somatic muta-

tion detection.

A transcriptome-level ITH model was recently developed [15]. They used information the-

ory to estimate ITH in bulk tumors. They proposed an interesting idea to consider ITH as the

difference in gene expression distribution between normal tissue and bulk tumors. They first

used a curated database of molecular pathways, such as the KEGG database [17], to construct a

template network and construct a probability distribution for each pathway. The divergence

between normal tissue and bulk tumor samples is then calculated by the average Jensen-Shan-

non Divergence (JSD) of each probability distribution for each pathway. This divergence was

considered to be transcriptomic ITH (tITH) for each sample and was found to be related to

clonal evolution and prognostic features.

Motivation

Splicing variations have been regarded as important cancer drivers in various types of cancer

[18, 19, 20, 21]. In 2018, Kahles et al. performed a pan-cancer level study that investigates the

impacts of splicing variations on cancer progression [22]. They performed a systematic analy-

sis of alternative splicing landscape across 8,705 cancer patients and found that many tumors

contain numerous novel splicing junctions, which is not typically found in normal samples.

And these novel junctions were identified as a class of potential neo-antigens. This means that

the splicing variant of cancer cells can be an important factor in the evolution of the tumor.

Other studies support the idea [20, 23].

The presence of intercellular spliceomic differences has also been proposed by numerous

studies [24, 25]. A recent single-cell study showed that there is a clear difference in the use of

isoforms in bone marrow-derived dendritic cells [26]. The clinical effect of spliceomic ITH (ie,

sITH) has not been thoroughly studied because a systematic sITH model has not yet been

developed.

Since Park et al. [15] proposed a pioneering model of ITH at the RNA level, the spliceomic

ITH (ie, sITH) is naturally defined by adopting their method [15]. However, there are serious

technical difficulties in applying their methods to sITH. First, the tITH model by Park et al.

[15] requires a template network to generate probability distributions that are not available in

our case. Also, a recent study has reported the widespread intron retention of cancer cells [27],

suggesting that the isoform of cancer cells is very complex and not yet characterized. This

means that a significant amount of unexpected splice junctions can be found in the cancer

sample [28]. To handle these unexpected splice junctions, a transcriptome assembly is required

to account for previously unknown isoforms. However, prevalent splice-site mutations [29]

and short sequence reads in RNA-seq make it difficult to perform transcriptome assembly.

Therefore, a new model is needed to avoid this difficulty and to measure sITH in bulk tumors.

The flow of subsequent manuscripts is as follows: 1) definition of the proposed model, 2)

basic verification of the validity of the model, 3) performance verification of the model using

synthetic data, 4) performance verification using xenograft tumor data, and 5) performance

verification using TCGA pan-cancer data.

Materials and methods

In this study, we used bulk-tumor RNA-seq data to measure sITH. It is a technique that com-

bines bulk sampling with short-read sequencing. A possible alternative for each part is single-

cell analysis and single-molecule real-time sequencing (SMRT-seq). Single-cell analysis has

been improved in terms of stability and efficiency and has been used in many biological stud-

ies. This technique is very useful for studying ITH because it provides a molecular profile of
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every single cell in bulk tumors [30]. However, due to patient-to-patient heterogeneity, exten-

sive analysis of a large group of patients is required to produce a reproducible cancer model.

Thus, a single cell approach is not feasible in this case. Another technology, SMRT-seq, has

received much attention because of its long read length and the advantage of being free from

bias induced by cDNA amplification. However, sequencing errors in SMRT-seq are still a

problem [31] and production costs are still very high. Currently, major cancer consortia such

as TCGA produce only bulk tumor RNA-seq data. It is therefore difficult to obtain data with

adequate clinical information using the SMRT-seq platform or single-cell platform. Thus, this

study focused primarily on bulk-tumor RNA-seq.

Definition of the proposed model

As discussed in the previous section, transcript assembly in cancer is very difficult due to com-

plex splicing patterns, noncanonical splice sites, and short-length sequence reads. So we

decided to use a local analysis approach to avoid transcriptome assembly. Here, each RNA-seq

read that supports each splicing event is collected and grouped by each intron region. (Fig 1).

Spliced aligners such as RNA-STAR [32] align RNA reads with reference genome sequences

and output mapped positions on chromosomes. Because RNA-seq reads are originated from

mature mRNA transcripts, the spliced region remains a gap in the final alignment. The aligner

Fig 1. Illustration of an intronic splicing unit. An intronic splicing unit is defined as a set of splicing events that share

a common splicing site (i.e., donor or receiver) in the intronic domain. Each intronic splicing unit consists of an

isoform usage distribution of each sample in each locus. Here, the splice-site usage distribution is calculated by the

number of RNA-seq reads that support each alternative splice-site (shown in red, purple, and green in the figure).

https://doi.org/10.1371/journal.pone.0223520.g001
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collects the spliced gaps and organizes them into splice sites (i.e., the ends of the intron). As a

result, the aligner lists the position of each splice site on the chromosome observed in a given

RNA-seq and the number of supporting reads. The list of splice junctions extracted from the

RNA-seq of each bulk tumor is the input data to construct our model (Fig 1).

Then we defined a local unit called an intronic splicing unit or splicing unit, which is defined

as a collection of splicing events for each intron (Fig 1). In this scheme, splice junctions sharing

a common splice site are grouped into a single unit. As in Fig 1, if three splice junctions are

sharing a common splice site upstream and three alternate sites downstream, a splicing unit S

consisting of A, B, and C can be defined. Where the input variable is defined by the junction

count of A, B and C (i.e. CNTS = (5, 3, 2), Eq 1). By dividing the sum of the total observations

we can get the probability distribution for S (i.e. PS = (0.5, 0.3, 0.2), Eq 1).

PkðiÞ ¼
CNTkðiÞ
XNk

j¼1

CNTkðjÞ
ð1Þ

Where CNTk(i) represents the number of RNA-seq reads that support i-th alternative splice

site in k-th splicing unit. Pk(i) is the fraction of RNA-seq reads that support the i-th splice site

of the k-th splicing unit. Nk is the total number of alternative sites in k-th splicing unit.

Normal tissues are also known to have heterogeneity in the use of isoforms between cells

[26]. To deal with this, we defined the spliceome ITH (i.e., sITH) as the distance from the nor-

mal tissue sample to the bulk tumor sample. By doing so, the model is expected to eliminate

the innate heterogeneity that exists in normal tissues, leaving only the perturbations that occur

during cancer progression. We used the Jensen-Shannon Divergence (JSD), which is defined

by averaging bidirectional Kullback-Leibler Divergences (KLDs) from the introduced interme-

diate data points (Eq 2) [33, 34]. Then JSD gets the symmetric property and the metric value is

limited from 0 to 1 (if you are using a base 2 log). JSD has been used in bioinformatics studies

for its symmetric property [35, 36]. We defined input variables representing the distribution of

isoform usage for each sample of each locus as a JSD-computable form (Eq 1).

JSD can be calculated for each intronic region (Eq 2). Because each input variable is

intended to reflect the use of the splice site at each intronic region, the JSD between the two

samples indicates how much the two samples differ in their use of the splice site in that intro-

nic region. This distance is scaled from 0 to 1. Where 0 means that the splice site usage pattern

is the same and 1 is completely different. After calculating the JSD for each splicing unit, a sin-

gle indicator representing the ITH of entire spliceome is calculated by averaging the JSD of all

units (Eq 5). We named this indicator as spliceomic intratumor heterogeneity (or sITH). The

detailed calculation procedure is as follows.

JSDðPk;QkÞ ¼
1

2
ðKLDðPkjjMkÞ þ KLDðQkjjMkÞÞ ð2Þ

KLDðPkjjMkÞ ¼ �
XNk

i¼1

PkðiÞlog
PkðiÞ
MkðiÞ

ð3Þ

MkðiÞ ¼
1

2
ðPkðiÞ þ QkðiÞÞ ð4Þ

JSD(Pk, Qk) represents the Jensen-Shannon divergence between the two distributions Pk and

Qk, where Pk and Qk denote the splice-site usage distribution of the k-th splicing unit in sam-

ples P and Q, respectively. Note that Pk and Qk are defined in Eq 1. Mk represents the
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intermediate distribution introduced between two distributions Pk and Qk designed to calcu-

late bi-directional KLD (Eq 4). KLD(PkkMk) represents the Kullback-Leibler divergence of the

distribution Pk from Mk. Ther might be a case that two samples have different sets of splice

sites. In that case, the pseudo-count is added to the splice site, which is not found in one sam-

ple, where the pseudo-count is calculated to be 1/100 of the total number of reads in the corre-

sponding splicing unit.

sITHðP;QÞ ¼
1

L

XL

k¼1

JSDðPk;QkÞ ð5Þ

sITH(P, Q) represents the increased sITH of a sample P from the origin sample Q to be com-

pared. In the actual case, the target sample P corresponds to a bulk tumor sample, and the ori-

gin sample Q corresponds to a normal sample. In this case, sITH(P, Q) may be called sITH of

sample P for convenience (Fig 2). L represents the total number of splicing units (usually

20*30 thousands units found in human cancer tissue). Here, the two samples to be compared

are pre-processed using the pseudo-counting described above to have the same number of

splicing units for the compatibility issue. Therefore, the i-th splicing unit of samples P and Q
represents the same intronic region.

Basic verification of the validity of the model

Before the full-scale analysis, we validated the local analysis approach described above. The key

question is whether ITH measured in intron units can replace ITH measured in whole-tran-

script units. To do this, we prepared a simple experiment using synthetic data. First, 10 genes

are randomly selected based on the NCBI RefSeq gene annotation [37]. RNA-seq samples with

arbitrary isoform blending ratios were synthesized for these 10 selected genes. To simplify the

problem, we simulated heterogeneity by selecting the longest isoform for each gene as the rep-

resentative transcript and mixing the remaining isoforms at an arbitrary rate. Simulation of

RNA-seq data was performed using WgSim, a well known NGS data synthesis tool (CMD:

wgsim -e0 -r0 -R0 -X0 -S0 -A1 -d 500 -s 5) [38].

The whole-transcript ITH (ie ITHtranscript) of these RNA-seq samples was defined using

Shannon’s entropy as Eq 6, which was proposed by Graf et al. [39]. For the same samples, we

Fig 2. An illustration of how cancer progression affects splice-site usage distribution and spliceomic ITH. Clonal

heterogeneity increases as a result of cancer progression, which changes the distribution of splice site use in bulk

tumors. The sITH is also designed to increase accordingly.

https://doi.org/10.1371/journal.pone.0223520.g002
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define the intronic ITH (ie, ITHintron) as Eq 7. We randomly selected 10 genes 10 times and

randomly assigned 100 heterogeneity levels to each gene pool to synthesize a total of 1000

RNA-seq data. The correlation between ITHtranscript and ITHintron calculated for the 1,000 sam-

ples was analyzed. The results are discussed in the “Results” section.

ITHtranscript ¼ �
1

10

X10

g¼1

XNg

i¼1

PgilogPgi ð6Þ

Pgi indicates the ratio of the i-th isoform of the g-th gene and implies the sequencing coverage

ratio in the context of this analysis. Ng indicates the number of isoforms of the g-th gene.

ITHintron ¼ �
1

L

XL

k¼1

XNk

i¼1

PkilogPki ð7Þ

Pki is the selection ratio for the i-th splice site of the k-th intron unit, which means the read

count ratio between splicing junctions. Nk is the number of splice sites of the k-th intron unit.

L indicates the total number of intron units found in the sample.

Performance verification of the model using synthetic data

The above analysis was to demonstrate the validity of the local analysis approach and this anal-

ysis was to verify that the defined sITH model can indeed measure the ITH of bulk-tumors.

We experimented with synthetic data by mixing normal breast tissue data with single-cell

breast cancer data. The purpose of this experiment was to test how the sITH of the mixed

sample changes as the mixing ratio increases. The evaluation process and its results are as

follows.

• First, we collected 112 normal breast tissue RNA-seq data from TCGA-BRCA [40]. Then 39

single cell breast cancer data were collected from another study (SRA accession: SRP159204)

[41], where the 39 cells were derived from different clones of a single breast tumor.

• Each RNA-seq data was processed to obtain the splicing junctions, and the samples were

combined in various combinations. Our goal at this stage was to specify a predefined level of

ITH in each of the synthetic mixture samples.

• We randomly selected normal tissue data from 112 normal tissue pools. Single cells were

then selected for mixing. Here, the number of cells represents the ITH level (ie, 1 * 39).

Selected single cells were mixed in normal tissue at a rate of 1% per cell. The detailed defini-

tion of each mixture sample is in Eq 8.

MIXði; jÞ ¼ NTðjÞ � ð1 � i=100Þ þ
Xi

l¼1

ðSCðl; jÞ=100Þ ð8Þ

The i represents the ITH level we want to specify, and j represents the j-th junction of the

mixture sample. MIX(i, j) represents the count of the j-th junction of the resulted mixture

sample with i ITH level. NT(j) represents the count of j-th junction in the selected normal

tissue sample. SC(l, j) represents the number of j-th junction in the l-th selected single-cell

cancer sample. To avoid sampling bias we randomly extracted 10 times at each of 39 ITH

levels. Thus, a total of 390 mixture samples were synthesized (10 iterations per 39 ITH lev-

els). In conclusion, samples mixed with more single cells are expected to have a larger ITH

by design.
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We conducted a correlation analysis between the number of single cells mixed and the

sITH value measured in the sample, and the results are discussed in detail in the “Results”

section.

Performance verification using xenograft tumor data

The main limitation of the previous synthetic data experiment is the lack of an appropriate

evolutionary model in the mixture generation. In this experiment, we used xenograft tumor

data (SRA accession: SRP050242) generated by actual clonal evolution [42]. The xenograft

mouse model we used is derived from the human breast cancer cell line (MCF10A). Cell lines

were treated with HRAS transduction before transplantation to enhance malignancy. After

the single-cell origin derived from MCF10A-HRAS was transplanted into immunocompro-

mised mice, the xenograft tissues were cultured until the tumor completely progressed and

metastasized. DNA and RNA samples were collected at various points during the process.

Therefore, we can compare the ITH from two different molecular domains (genome and spli-

ceome) as the tumor grows. A total of 10 samples were collected while culturing xenograft tis-

sue. They collected two samples for metastatic tissue and one sample for each of the eight-

time points.

First, we calculated the sITH for each xenograft tumor sample, using normal breast tissue

samples from TCGA as the origin [40]. At this time, 10 normal tissues are randomly selected

to avoid selection bias. This comparative analysis is carried out in the following two perspec-

tives. The first is a comparison of the correlation of sITH with the progression of cancer,

which indicates time-point provided by the data producers. The second is a comparison of the

number of subclones estimated using genomic data, ie, gITH and sITH. These were also mea-

sured by data producers using PyClone. PyClone estimates the subclonal structure of each

bulk-tumor based on SNV and somatic mutation data. The gITH used in this experiment was

the number of estimated subclones. The comparison results are covered in the “Results”

section.

Performance verification using TCGA pan-cancer data

Unlike xenograft samples from one common ancestral cell, samples from cancer patients were

from a diverse population. This patient-to-patient variation in the genetic background can be

a confounding factor that can mask actual ITH. It is also unclear whether the origins of the tis-

sue can affect the results of the analysis because only breast cancer tissues were used in previ-

ous experiments. To test whether sITH could overcome potential problems and demonstrate

its clinical significance, we performed a comprehensive pan-cancer level experiment using the

TCGA pan-cancer dataset [43]. Weinstein et al. aggregated the TCGA pan-cancer data used

for the analysis and published them through a web page (https://gdc.cancer.gov/about-data/

publications/pancanatlas).

We first collected all the RNA-seq data provided by TCGA pan-cancer. Table 2 summarizes

the results of the collection. We then measured sITHs for each RNA-seq sample. There are

9,274 RNA-seq samples of primary tumors. Of the 977 samples, sITH can not be calculated

because there is no normal tissue sample matched. Therefore, 8,297 samples are available for

sITH. The sITH of each bulk tumor was calculated using corresponding normal tissues. For

example, BRCA has 1,093 primary tumors and 112 normal tissues (Table 2). In this case, the

sITHs of each tumor sample were calculated by averaging sITH for each of the 112 normal

tissues.

The TCGA pan-cancer data validation consists of four steps: 1) comparison of genomic

ITH with sITH, 2) comparison of cancer stage with sITH, 3) comparison of survival outcome
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with sITH, and 4) comparison of PAM50 subtype and sITH. The comparison results are cov-

ered in the “Results” section.

Results

Basic verification of the validity of the model

The Pearson correlation analysis between ITHtranscript and ITHintron for 1,000 samples generated

with arbitrary heterogeneity levels shows that the two measures have a significant positive cor-

relation (r = 0.58, p = 1.88e-91) (Fig 3). This means that the local analysis approach, which mea-

sures ITH in intron units, can effectively reproduce the values measured in whole-transcripts.

Table 2. A table to summarize the number of samples for each type of cancer used in each comparison.

DISEASE NT1 PT2 sITH3 gITH4 STAGE5 SURVIVAL6 PAM507

BRCA 112 1,093 1,093 1,020 1,002 325 473

KIPAN 129 889 889 659 632 287 0

GBMLGG 5 669 669 643 0 274 0

STES 46 599 599 558 142 71 0

HNSC 44 520 520 485 422 238 0

LUAD 59 515 515 489 487 211 0

LUSC 51 501 501 465 464 245 0

THCA 59 501 501 446 0 0 0

PRAD 52 497 497 469 0 0 0

BLCA 19 408 408 397 395 210 0

COADREAD 51 379 379 351 257 91 0

LIHC 50 371 371 354 333 155 0

CESC 3 304 304 291 0 99 0

SARC 2 259 259 242 0 0 0

PCPG 3 179 179 160 0 0 0

PAAD 4 178 178 158 66 43 0

UCEC 24 176 176 170 0 0 0

THYM 2 120 120 103 0 0 0

SKCM 1 103 103 103 0 0 0

CHOL 9 36 36 36 36 19 0

OV 0 303 0 0 0 0 0

LAML 0 173 0 0 0 0 0

TGCT 0 150 0 0 0 0 0

MESO 0 87 0 0 0 0 0

UVM 0 80 0 0 0 0 0

ACC 0 79 0 0 0 0 0

UCS 0 57 0 0 0 0 0

DLBC 0 48 0 0 0 0 0

SUM 725(20) 9,274(28) 8,297(20) 7,599(20) 4,236(11) 2,268(13) 473(1)

1 The NT column represents the number of normal tissue samples for each type of cancer.
2 The PT column represents the number of primary tumor RNA-seq samples per cancer type.
3 The sITH column represents the number of samples for which sITH can be calculated.
4 The gITH column represents the number of samples for which both sITH and gITH can be calculated.
5 The STAGE column shows the number of samples with cancer stage information among the samples for which sITH and gITH can be calculated.
6 The SURVIVAL column represents the number of samples with survival outcome information among the samples for which sITH and gITH can be calculated.
7 The PAM50 column shows the number of breast cancer samples with PAM50 label information among the samples for which sITH and gITH can be calculated.

https://doi.org/10.1371/journal.pone.0223520.t002
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Performance verification of the model using synthetic data

sITH values were measured for samples made by mixing actual single-cell data with actual

breast cancer tissues at a defined ratio and compared to the single-cell blending ratio of each

sample. Spearman correlation test showed that the ratio of single cells mixed with sITH was

positively correlated (r = 0.95, p = 4.38e-198) (Fig 4). This means that the more the single cells

are mixed, the higher the sITH is.

One of the problems with this experiment using synthetic data is that an appropriate evolu-

tionary model is not taken into account, which is problematic in the following two points. 1)

In this scheme, the ITH level is defined in such a way that different single cells are keep being

added to the normal tissue. There is no way to know whether this reflects the actual cancer

evolution model. 2) In this scheme, combine single cells is done by simply dividing the junc-

tion count, which may be different from the actual experimental results, because there is a

limit to the number of reads that can be captured by the RNA-seq technology. These factors

may be the cause of the linear and gradual increase of the pattern without the saturation

shown in Fig 4 and show the limitations of the experiment using synthetic data.

Performance verification using xenograft tumor data

Spearman correlation showed a positive correlation between sITH and time-point of each

sample (r = 0.88, p = 1.39e-33). This is plausible because tumor ITH levels are known to

increase with cancer progression [42]. Spearman correlation test results of gITH and sITH

Fig 3. A scatter plot showing the correlation between ITHtranscript and ITHintron. The X axis represents ITHtranscript
for each sample and the Y axis represents ITHintron.

https://doi.org/10.1371/journal.pone.0223520.g003
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measured by genomic data (SNV, somatic mutation) were also correlated for each sample

(r = 0.86, p = 6.09e-30). This indicates that sITH has a positive correlation with ITH measured

at the genome level. The above results are summarized in Fig 5(a) and 5(b).

Performance verification using TCGA pan-cancer data

Comparison of genomic ITH with sITH. A study by Weinstein et al. [43] used ABSO-

LUTE [13] to calculate the gITH of each TCGA pan-cancer sample. Subclonal genome

Fig 4. A boxplot to show the association between the number of synthesized single cells and the sITH of

synthesized data. The X-axis represents the number of mixed single cells (1*39). The Y-axis represents the sITH of

the sample mixed with the number of single cells specified on the X-axis.

https://doi.org/10.1371/journal.pone.0223520.g004

Fig 5. Two boxplots of how the xenograft time-point and estimated subclone numbers are associated with sITH.

a) The X-axis represents when each xenograft tumor sample was collected. The Y-axis represents the sITH for each

sample (including repeated measurements for 10 normal tissues randomly selected for each tumor sample). b) Same as

a) except that the X-axis represents the number of subclones estimated by PyClone.

https://doi.org/10.1371/journal.pone.0223520.g005
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fractions were the gITH we use. Of the 8,297 samples, 698 samples did not have a gITH value,

so 7,599 samples were used in this analysis (Table 2). The result shows that sITH and gITH are

positively correlated (Spearman: r = 0.24, p = 1.18e-99). The scatter plot between sITH and

gITH is shown in Fig 6. gITH is the current gold standard for ITH levels in bulk tumors.

Therefore, it was used as a reference standard for sITH in all of the following tests.

Significant but not very large correlations between sITH and gITH suggest that ITH defini-

tion at the genome level and ITH definition at the spliceome level may be different. This is a

phenomenon also mentioned in other transcriptomic ITH (ie tITH) studies [15], suggesting

that heterogeneity levels of the same sample can be estimated differently depending on the

type of molecule used in the measurement.

Comparison of cancer stage with sITH. The cancer stage is a well-known indicator of

cancer progression, which is determined based on pathological observations of cancer tissues

such as size, location, the extent of invasion, and extent of spread. The level of ITH is generally

related to the progression of cancer. Since 3,363 samples out of 7,599 samples did not have

cancer stage information, 4,236 samples were used in this analysis (Table 2). Spearman correla-

tion test results showed that sITH of each sample was positively correlated with cancer stage

and sITH showed a better correlation with cancer stage than gITH (gITH: r = 0.08, p = 4.79e-

07, sITH: r = 0.27, p = 1.75e-69) (Fig 7).

Comparison of survival outcome with sITH. Overall survival represents survival time

after treatment, which in this case implies surgical resection of the tumor. The ITH level is

associated with the degree of malignancy of cancer and affects the survival rate of cancer

patients [10]. So we tested the association between sITH, gITH and the survival outcome of

each sample.

Fig 6. A scatter plot representing the relationship between gITH and sITH.

https://doi.org/10.1371/journal.pone.0223520.g006
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To test the clinical significance of sITH, we performed a survival outcome association test

on 5,265 patient RNA-seq samples. First, the patients were divided into two clusters (scikit-

learn python 2.7) with K-means clustering using the sITH value of each sample and log-rank

test was performed to test the correlation (p = 3.79e-32) (Fig 8a)). The same analysis was per-

formed using gITH (log-rank p = 9.44e-08) (Fig 8b)). The results of the two experiments show

that sITH is a much better indicator of survival outcome than gITH. This difference appears to

be due to the different types of molecules on which the two indicators are based, suggesting

that it is more effective in predicting prognosis using spliceome than genome data.

We tried to create synergy by modeling the two indicators at once. For each sample, a vec-

tor with two variables was used as an input and the same analysis was performed. The log-rank

test result was p-value 6.28e-08, which showed better performance than the model using the

only gITH, but rather a decrease in performance compared to the model using the only sITH.

This means that simply combining the two indicators can not create synergy.

Additional analysis has been prepared to help visual understanding. Initially, 7,599 samples

were classified into six groups with different survival outcomes. The first five groups were clas-

sified by the time of death. For example, the first group contains samples that died in the first

year after treatment, and the second group contains samples that died in the second year. The

sixth group includes samples reported to be alive for more than 5 years, where the 5-year

threshold is based on criteria commonly used to determine cancer remission. As a result, 2,268

samples were classified into six survival groups and the remainder were excluded because they

could not be classified into six groups because of the short follow-up period (Table 2).

Fig 9 summarizes the association between sITH, gITH and the survival group of each sam-

ple. Both gITH and sITH were significantly correlated with survival groups, whereas sITH

showed better association (gITH: r = -0.14, p = 3.10e-11, sITH: r = -0.31, p = 4.72e-53). The

result indicates that sample groups having higher lethality have a tendency to have greater

sITH. The sample information for each sample group is summarized in Table 2.

Comparison of PAM50 subtype and sITH. The molecular subtype is derived from

molecular information in cancer. One of the most studied cancer type in terms of the molecu-

lar level is breast cancer, where the well-known molecular subtype system, PAM50, has been

broadly used [44]. PAM50 classifies breast tumors into four types such as Luminal A, Luminal

B, Her2-enriched, and Basal-like, where the malignancy of tumor increases as the specified

Fig 7. A boxplot showing the association of sITH, gITH and cancer stages in each sample. a) The X-axis represents

the cancer stage of each sample (1 to 4 stages). The Y-axis represents the sITH value of each sample. b) Same as a), but

in this case, the Y-axis represents the gITH value of each sample. The results show that both sITH and gITH have a

significant correlation with the cancer stage, and the significance is greater in sITH. The sITH and gITH values were

standardized by dividing the maximum value between samples so that the distribution of the data is easily understood.

https://doi.org/10.1371/journal.pone.0223520.g007
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order. First, we performed a Kruskal-Wallis test to determine whether the sITH values among

the four subtype groups showed significant distributional differences, which showed a signifi-

cant difference (p = 5.44e-40). The same analysis was performed with gITH (p = 5.09e-14).

Also, we arranged the samples in the order of Luminal A, Luminal B, Her2-enriched, and

Basal-like using the relative malignancy of each subtype. The correlation of the sITH values to

the subtype order was then calculated through Spearman correlation. Both ITHs had signifi-

cant correlation with PAM50 subtype (Fig 10), while sITH showed better association (gITH:

r = 0.36, p = 2.48e-16; sITH: r = 0.61, p = 5.30e-49). The result indicates that sample groups

expected to have greater malignancy by molecular subtypes tend to have greater sITH. The

sample information for each sample group is summarized in Table 2.

Fig 8. Kaplan-Meier plots of the survival model using sITH and gITH: a) shows the model using sITH, and b)

shows the model using gITH.

https://doi.org/10.1371/journal.pone.0223520.g008

Fig 9. Boxplot for representing the association of sITH and gITH with survival outcome of each sample. a) X-axis

indicates the sample group classified by the overall survival outcome (1Y_DEAD 5Y_DEAD, and 5Y_SURVIVAL) of

each sample. For example, 1Y_DEAD group indicates the samples dying in 1-year after surgery. Accordingly,

2Y_DEAD corresponds to the samples dying in 2-year (i.e. more than one year, less than two years) after treatment,

and so on. Lastly, the 5Y_SURVIVAL group indicates the samples confirmed to survive after 5-year. Y-axis indicates

the sITH value of each sample. b) Same as a), except that the Y-axis indicates the gITH value of each sample at this

time. Both sITH and gITH had a significant correlation with survival outcome, while sITH showed better association

than gITH. Note that sITH and gITH values are standardized by dividing maximum values among samples for easy

understanding of the data distribution.

https://doi.org/10.1371/journal.pone.0223520.g009

SpliceHetero: An information theoretic approach for measuring spliceomic intratumor heterogeneity

PLOS ONE | https://doi.org/10.1371/journal.pone.0223520 October 23, 2019 14 / 19

https://doi.org/10.1371/journal.pone.0223520.g008
https://doi.org/10.1371/journal.pone.0223520.g009
https://doi.org/10.1371/journal.pone.0223520


Discussion

The previous tests answered two important questions. The first is whether sITH can measure

the ITH of a bulk tumor, and the second is what is the biological and clinical significance of it.

The last important question left would be why sITH works, and how does it work. This can be

answered using two concepts. One is genetic diversity, and the other is regression toward the

mean.

There is no debate that cancer progression and malignization is the product of somatic evo-

lution, whose most important driver is genetic diversity. Genetic diversity is a critical factor in

helping tumors survive in various environments, and the ITH is the very indicator of such

diversity. As genomic DNA can be used to estimate genetic diversity, so does spliceome. sITH

was designed to capture the increase of spliceomic diversity in each intron. The other impor-

tant factor is the regression toward the mean. Considering the huge differences between cancer

patients, We thought that it might not be easy to pinpoint which intronic loci are important in

each patient. So we just averaged the entire intronic loci with expecting to capture the average

level of genetic diversity for each bulk-tumor. And the results supported our expectation.

Our study suggests that any type of genetic diversities can be used to predict malignancies

of bulk-tumors and it also suggests that integrating various sources of genetic diversities might

lead to a more comprehensive model of ITH and a better understanding of malignization.

Conclusion

Despite studies that show intercellular differences at the spliceome level [25, 26], the clinical

effect of sITH has not been studied sufficiently because there was no sITH model. SpliceHetero

is a sITH model based on local analysis approach that avoids transcriptome assembly which is

not easy in cancer RNA-seq. The proposed model has been extensively tested for its perfor-

mance using synthetic data, xenograft tumor data, and TCGA pan-cancer data. As a result,

sITH has shown a strong association with cancer progression and clonal heterogeneity as well

as clinically relevant features such as cancer progression, survival outcome, and PAM50 sub-

type. Also, the distribution of sITH values within each sample group appears more strict than

gITH (Figs 7, 9 and 10). That means sITH is a more consistent indicator than gITH.

Fig 10. Boxplot for representing the association of sITH and gITH with PAM50 subtype of each breast cancer

sample. a) X-axis indicates the PAM50 subtype of each sample, ordered by known malignancy of each subtype. Y-axis

indicates the sITH value of each sample. b) Same as a), except that the Y-axis indicates the gITH value of each sample

at this time. The result indicates both sITH and gITH have a significant correlation with PAM50 subtype, while sITH

shows better association than gITH. Note that sITH and gITH values are standardized by dividing maximum values

among samples for easy understanding of the data distribution.

https://doi.org/10.1371/journal.pone.0223520.g010
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The proposed model can help to develop diagnostic and prognostic tools by providing a

tool to understand the inherent heterogeneity of cancerous spliceome. The whole process is

implemented as a software package and is available free at http://biohealth.snu.ac.kr/software/

SpliceHetero. It was implemented in Python 2.7 and tested on CentOS Linux release 7 and

Ubuntu 16.04, and 18.04. Lastly, note that all the abbreviations used in this article are listed in

Table 3.

Supporting information

S1 Table. The processed sITH values for TCGA pan-cancer dataset.

(XLSX)

Author Contributions

Conceptualization: Minsu Kim.

Data curation: Minsu Kim.

Formal analysis: Minsu Kim.

Funding acquisition: Sun Kim.

Investigation: Minsu Kim.

Methodology: Minsu Kim.

Table 3. List of abbreviations.

ITH Intratumor Heterogeneity tITH Transcriptomic Intratumor Heterogeneity

sITH Spliceomic Intratumor Heterogeneity SMRT-seq Single Molecule Real Time Sequencing

RNA-seq RNA sequencing cDNA Complementary DNA

TCGA The Cancer Genome Atlas KLD Kullback-Leibler Divergence

CNV Copy Number Variation NCBI National Center for Biotechnology Information

WGS Whole-genome Sequencing RefSeq NCBI Reference Sequence Database

gITH Genomic Intratumor Heterogeneity KEGG Kyoto Encyclopedia of Genes and Genomes

SRA NCBI Sequence Read Archive JSD Jensen-Shannon Divergence

NT Normal Tissue PT Primary Tumor Tissue

STAGE Cancer Stage SURVIVAL Survival Outcome

PAM50 PAM50 Breast Cancer Subtyping System BRCA Breast Invasive Carcinoma

KIPAN Pan-kidney Cohort GBMLGG Glioma

STES Esophagus-Stomach Cancers HNSC Head and Neck Squamous Cell Carcinoma

LUAD Lung Adenocarcinoma LUSC Lung Squamous Cell Carcinoma

THCA Thyroid Carcinoma PRAD Prostate Adenocarcinoma

BLCA Bladder Urothelial Carcinoma COADREAD Colorectal Adenocarcinoma

LIHC Liver Hepatocellular Carcinoma CESC Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma

SARC Sarcoma PCPG Pheochromocytoma and Paraganglioma

PAAD Pancreatic Adenocarcinoma UCEC Uterine Corpus Endometrial Carcinoma

THYM Thymoma SKCM Skin Cutaneous Melanoma

CHOL Cholangiocarcinoma OV Ovarian Serous Cystadenocarcinoma

LAML Acute Myeloid Leukemia TGCT Testicular Germ Cell Tumors

MESO Mesothelioma UVM Uveal Melanoma

ACC Adrenocortical Carcinoma UCS Uterine Carcinosarcoma

DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymphoma

https://doi.org/10.1371/journal.pone.0223520.t003

SpliceHetero: An information theoretic approach for measuring spliceomic intratumor heterogeneity

PLOS ONE | https://doi.org/10.1371/journal.pone.0223520 October 23, 2019 16 / 19

http://biohealth.snu.ac.kr/software/SpliceHetero
http://biohealth.snu.ac.kr/software/SpliceHetero
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0223520.s001
https://doi.org/10.1371/journal.pone.0223520.t003
https://doi.org/10.1371/journal.pone.0223520


Project administration: Sun Kim.

Software: Minsu Kim.

Supervision: Sun Kim.

Validation: Minsu Kim, Sangseon Lee, Sangsoo Lim.

Visualization: Minsu Kim.

Writing – original draft: Minsu Kim.

Writing – review & editing: Minsu Kim, Sangseon Lee, Sangsoo Lim, Sun Kim.

References
1. Boland CR, Goel A. Somatic evolution of cancer cells. In: Seminars in cancer biology. vol. 15. Elsevier;

2005. p. 436–450.

2. Nowell PC. The clonal evolution of tumor cell populations. Science. 1976; 194(4260):23–28.

3. Marusyk A, Polyak K. Tumor heterogeneity: causes and consequences. Biochimica et Biophysica Acta

(BBA)-Reviews on Cancer. 2010; 1805(1):105–117. https://doi.org/10.1016/j.bbcan.2009.11.002

4. Greaves M, Maley CC. Clonal evolution in cancer. Nature. 2012; 481(7381):306. https://doi.org/10.

1038/nature10762 PMID: 22258609

5. Sun Xx, Yu Q. Intra-tumor heterogeneity of cancer cells and its implications for cancer treatment. Acta

Pharmacologica Sinica. 2015; 36(10):1219. https://doi.org/10.1038/aps.2015.92 PMID: 26388155

6. McGranahan N, Swanton C. Clonal heterogeneity and tumor evolution: past, present, and the future.

Cell. 2017; 168(4):613–628. https://doi.org/10.1016/j.cell.2017.01.018 PMID: 28187284

7. Venet D, Pecasse F, Maenhaut C, Bersini H. Separation of samples into their constituents using gene

expression data. Bioinformatics. 2001; 17(suppl_1):S279–S287. https://doi.org/10.1093/bioinformatics/

17.suppl_1.s279 PMID: 11473019

8. Park SY, Gönen M, Kim HJ, Michor F, Polyak K. Cellular and genetic diversity in the progression of in

situ human breast carcinomas to an invasive phenotype. The Journal of clinical investigation. 2010;

120(2):636–644. https://doi.org/10.1172/JCI40724 PMID: 20101094

9. Hansen KD, Timp W, Bravo HC, Sabunciyan S, Langmead B, McDonald OG, et al. Increased methyla-

tion variation in epigenetic domains across cancer types. Nature genetics. 2011; 43(8):768. https://doi.

org/10.1038/ng.865 PMID: 21706001

10. Morris LG, Riaz N, Desrichard A, Şenbabaoğlu Y, Hakimi AA, Makarov V, et al. Pan-cancer analysis of

intratumor heterogeneity as a prognostic determinant of survival. Oncotarget. 2016; 7(9):10051. https://

doi.org/10.18632/oncotarget.7067 PMID: 26840267

11. Yang F, Wang Y, Li Q, Cao L, Sun Z, Jin J, et al. Intratumor heterogeneity predicts metastasis of triple-

negative breast cancer. Carcinogenesis. 2017; 38(9):900–909. https://doi.org/10.1093/carcin/bgx071

PMID: 28911002

12. Oh BY, Shin HT, Yun JW, Kim KT, Kim J, Bae JS, et al. Intratumor heterogeneity inferred from targeted

deep sequencing as a prognostic indicator. Scientific reports. 2019; 9(1):4542. https://doi.org/10.1038/

s41598-019-41098-0 PMID: 30872730

13. Carter SL, Cibulskis K, Helman E, McKenna A, Shen H, Zack T, et al. Absolute quantification of somatic

DNA alterations in human cancer. Nature biotechnology. 2012; 30(5):413. https://doi.org/10.1038/nbt.

2203 PMID: 22544022

14. Roth A, Khattra J, Yap D, Wan A, Laks E, Biele J, et al. PyClone: statistical inference of clonal popula-

tion structure in cancer. Nature methods. 2014; 11(4):396. https://doi.org/10.1038/nmeth.2883 PMID:

24633410

15. Park Y, Lim S, Nam JW, Kim S. Measuring intratumor heterogeneity by network entropy using RNA-seq

data. Scientific reports. 2016; 6:37767. https://doi.org/10.1038/srep37767 PMID: 27883053

16. Mazor T, Pankov A, Song JS, Costello JF. Intratumoral heterogeneity of the epigenome. Cancer cell.

2016; 29(4):440–451. https://doi.org/10.1016/j.ccell.2016.03.009 PMID: 27070699

17. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes,

pathways, diseases and drugs. Nucleic acids research. 2016; 45(D1):D353–D361. https://doi.org/10.

1093/nar/gkw1092 PMID: 27899662

18. David CJ, Manley JL. Alternative pre-mRNA splicing regulation in cancer: pathways and programs

unhinged. Genes & development. 2010; 24(21):2343–2364. https://doi.org/10.1101/gad.1973010

SpliceHetero: An information theoretic approach for measuring spliceomic intratumor heterogeneity

PLOS ONE | https://doi.org/10.1371/journal.pone.0223520 October 23, 2019 17 / 19

https://doi.org/10.1016/j.bbcan.2009.11.002
https://doi.org/10.1038/nature10762
https://doi.org/10.1038/nature10762
http://www.ncbi.nlm.nih.gov/pubmed/22258609
https://doi.org/10.1038/aps.2015.92
http://www.ncbi.nlm.nih.gov/pubmed/26388155
https://doi.org/10.1016/j.cell.2017.01.018
http://www.ncbi.nlm.nih.gov/pubmed/28187284
https://doi.org/10.1093/bioinformatics/17.suppl_1.s279
https://doi.org/10.1093/bioinformatics/17.suppl_1.s279
http://www.ncbi.nlm.nih.gov/pubmed/11473019
https://doi.org/10.1172/JCI40724
http://www.ncbi.nlm.nih.gov/pubmed/20101094
https://doi.org/10.1038/ng.865
https://doi.org/10.1038/ng.865
http://www.ncbi.nlm.nih.gov/pubmed/21706001
https://doi.org/10.18632/oncotarget.7067
https://doi.org/10.18632/oncotarget.7067
http://www.ncbi.nlm.nih.gov/pubmed/26840267
https://doi.org/10.1093/carcin/bgx071
http://www.ncbi.nlm.nih.gov/pubmed/28911002
https://doi.org/10.1038/s41598-019-41098-0
https://doi.org/10.1038/s41598-019-41098-0
http://www.ncbi.nlm.nih.gov/pubmed/30872730
https://doi.org/10.1038/nbt.2203
https://doi.org/10.1038/nbt.2203
http://www.ncbi.nlm.nih.gov/pubmed/22544022
https://doi.org/10.1038/nmeth.2883
http://www.ncbi.nlm.nih.gov/pubmed/24633410
https://doi.org/10.1038/srep37767
http://www.ncbi.nlm.nih.gov/pubmed/27883053
https://doi.org/10.1016/j.ccell.2016.03.009
http://www.ncbi.nlm.nih.gov/pubmed/27070699
https://doi.org/10.1093/nar/gkw1092
https://doi.org/10.1093/nar/gkw1092
http://www.ncbi.nlm.nih.gov/pubmed/27899662
https://doi.org/10.1101/gad.1973010
https://doi.org/10.1371/journal.pone.0223520


19. Surget S, Khoury MP, Bourdon JC. Uncovering the role of p53 splice variants in human malignancy: a

clinical perspective. OncoTargets and therapy. 2014; 7:57.

20. Paronetto MP, Passacantilli I, Sette C. Alternative splicing and cell survival: from tissue homeostasis to

disease. Cell death and differentiation. 2016; 23(12):1919. https://doi.org/10.1038/cdd.2016.91 PMID:

27689872

21. Read A, Natrajan R. Splicing dysregulation as a driver of breast cancer. Endocrine-related cancer.

2018; 25(9):R467–R478. https://doi.org/10.1530/ERC-18-0068 PMID: 29848666
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