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ABSTRACT

Background. Besides the classic logistic regression analysis, non-parametric methods based on machine learning techniques
such as random forest are presently used to generate predictive models. The aim of this study was to evaluate random
forest mortality prediction models in haemodialysis patients.

Methods. Data were acquired from incident haemodialysis patients between 1995 and 2015. Prediction of mortality at
6 months, 1 year and 2 years of haemodialysis was calculated using random forest and the accuracy was compared with
logistic regression. Baseline data were constructed with the information obtained during the initial period of regular
haemodialysis. Aiming to increase accuracy concerning baseline information of each patient, the period of time used to
collect data was set at 30, 60 and 90 days after the first haemodialysis session.

Results. There were 1571 incident haemodialysis patients included. The mean age was 62.3 years and the average Charlson
comorbidity index was 5.99. The mortality prediction models obtained by random forest appear to be adequate in terms of
accuracy [area under the curve (AUC) 0.68–0.73] and superior to logistic regression models (DAUC 0.007–0.046). Results
indicate that both random forest and logistic regression develop mortality prediction models using different variables.

Conclusions. Random forest is an adequate method, and superior to logistic regression, to generate mortality prediction
models in haemodialysis patients.
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INTRODUCTION

The number of haemodialysis (HD) patients increases progres-
sively in those >75 years of age [1]. It is a health challenge with
high economic cost and mortality. Risks factors of mortality in
HD patients are very different from other populations. It is im-
portant to stratify HD patients according to risk and develop, as
early as possible, appropriate strategies aimed at optimizing
survival.

Classic statistical analysis has identified variables that pre-
dict mortality in HD patients and the results have been rather
uniform among the different publications [2–11]. Risk prediction
models (or ‘risk scores’) are designed to predict the probability
of an adverse outcome, such as death, from different types of
variables—demographic, clinical and others. Classic methods of
survival analysis, such as Cox proportional hazards regression
and logistic regression, rely on the assumption that the rela-
tionship between variables and outcomes is linear. This as-
sumption is very useful to generate simple and intelligible
models in which the numerical value of a coefficient represents
the contribution of that variable to the overall risk [12]. More re-
cently, machine learning methods [13], such as random forest,
have been proposed as more advanced valid procedures to pre-
dict outcome if there is enough data available to perform the
analysis. These new methods of analysis may identify variables,
not previously recognized, that can improve prediction of mor-
tality. Studies in patients have proven the usefulness of random
forest regression models in identifying variables with high pre-
dictive power [14–16], to estimating individualized treatment
effects, by investigating the performance of random forest of in-
teraction trees via extensive numerical experiments [17].
Analyses based on random forest have been used to quantify
the association between parameters of chronic kidney disease–
mineral and bone disorder (CKD-MBD) in HD patients [18].
Similar methods have been used to estimate the individual ef-
fect of a treatment, based on observational data [19]. It has been
reported that Cox regression was inferior to random forest in
developing prognostic models of lung adenocarcinoma [20].

The objective of the present study was to compare mortality
prediction models in HD patients obtained by conventional lo-
gistic regression analysis and by random forest. The accuracy of
the models was obtained by comparing the prediction obtained
with each method with the actual mortality.

MATERIALS AND METHODS
Patients

This study analyses data collected by the Nephrology
Department Database (Reina Sofia University Hospital) from
1995 to 2015. There were 2219 patients from seven HD facilities
and 1571 patients fulfilled the criteria to be included in the
study. Since 1995, all patients starting maintenance HD have
been informed that their identity will not be revealed to third
parties. All patients included in this study were >18 years of age
and signed an informed consent form allowing the use of clini-
cal records and laboratory data for analysis aimed at improving
clinical practice, providing that their identity will not be dis-
closed. The study was performed in accordance with relevant
guidelines and regulations and was submitted and subse-
quently approved by the Institutional Ethics Committee of the
Reina Sofia University Hospital.

Variables collected at the initiation of regular HD included
age and comorbidities that generate the Charlson comorbidity

index, including myocardial infarction, coronary heart disease,
heart failure, stroke, peripheral vascular disease, dementia,
chronic obstructive pulmonary disease (COPD), autoimmune
disease, peptic ulcer, non-cirrhotic liver disease, liver cirrhosis,
severe kidney disease, non-metastatic tumour disease, solid
metastatic tumour, malignant haematological disease (leukae-
mia or lymphoma), acquired immune deficiency syndrome and
diabetes mellitus. The analytical variables available during
follow-up were haemoglobin, ferritin, transferrin saturation in-
dex (TSI), creatinine, albumin, C-reactive protein, phosphorus,
calcium, potassium, alkaline phosphatase, magnesium, para-
thyroid hormone (PTH) and b2-microglobulin. Additional
parameters evaluated were body mass index (BMI), residual di-
uresis, type of vascular access for HD and dose of dialysis
expressed as Kt/Vurea.

Baseline data were constructed with the information
obtained during the initial period of regular HD. It is important to
know if the length of time collecting the data influences the
results. Therefore, to be more accurate, the initial period of time
used to collect data was set at 30, 60 and 90 days after the first
HD session. Patients that did not survive the first 30 days on reg-
ular HD were not included. Likewise, patients with no data col-
lected during the first 90 days after the first regular HD session
were not included in the analysis. Values of variables were the
mean of measurements obtained within the first 30, 60 or 90 days
after the initiation of regular HD (this will be indicated as data at
30, 60 and 90 days). The missing values were handled with a sin-
gle imputation approach considering the mean for continuous
variables and the mode for categorical variables.

A flow chart of the patients analysed in this study is shown
in Figure 1. Prediction of mortality was analysed at 6 months, 1
year and 2 years after the initiation of regular HD. Analysis was
performed separately according to the time period available for
the collection of baseline data (30, 60 and 90 days).

Prediction of mortality was calculated using two different re-
gression models: logistic regression and random forest.
Receiver operating characteristics (ROC) curves specify the sen-
sitivity and specificity of these predictive models. The values of
the area under the curve (AUC) are used to compare the predic-
tive value obtained by logistic regression and random forest
[21]. A t-test was performed to determine if the differences be-
tween the mean AUCs obtained by logistic regression and ran-
dom forest were statistically significant.

Since the data set is relatively small, each AUC is computed
considering a set of models configured on 30 different random-
izations of the original data set. In each randomization, 70% of
the patients were used to train the model (training set) and 30%
of the patients were used to evaluate the accuracy (test set). The
final accuracy was computed as the AUC, considering all the
predictions on the test sets of the 30 randomizations.

Logistic regression analysis identifies independent variables
that significantly influence the risk of death. The analysis pro-
vides a coefficient for each variable [the odds ratio (OR)] that
represents the probability of an increase or decrease of death if
the variable is modified by one unit (e.g. if the OR of age is 1.1,
there is a 10% increase in the expected risk relative to a 1-year
increase in age). In random forest analysis [15], the probability
of death is computed as the average of the probabilities of a set
of submodels (decision tree). Each submodel is a composition of
if-then-else decision rules, which are derived considering a ran-
dom subset of the data. In contrast to logistic regression, in ran-
dom forest, there is not a linear coefficient for each variable; it
is assumed that the effect of the variable could be much more
complex. In random forest, the predictive value of a variable on
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mortality is given not only by the influence of that specific vari-
able, but also by the effect of other dependent variables (covari-
ates) that in a non-linear manner may also affect mortality.
This peculiarity gives to the model a higher degree of freedom
to capture complex relationships between input variables and
outcome. For example, age >80 years may increase the mortal-
ity risk for a patient with haemoglobin <10 g/dL but may have
less effect (or no effect) for patients with haemoglobin between
10 and 12 g/dL. So the effect of each variable cannot be isolated
and measured as it is in logistic regression. Thus the evaluation
of the effect of each variable on the probability of the event is
difficult. In general, a clear statistical description of the effect of
the variables on the prediction of the event, as in logistic regres-
sion (magnitude of the coefficient and P-value), is not comput-
able and only an indirect qualitative measure can be obtained.
For this reason, in the present study, the method of analysing
the change in the AUC value was used when the effect of each
specified variable is turned off. This is the method used to com-
pare random forest and logistic regression.

The description of this study follows the Transparent Reporting
of a multivariable prediction model for Individual Prognosis Or
Diagnosis (TRIPOD) Guidelines [22]. Therefore the completed
TRIPOD checklist is provided as Supplementary Table S1.

RESULTS

The study includes a total of 1571 incident HD patients collected
throughout a period of up to 20 years who fulfilled the inclusion
criteria (Figure 1).

Of the total cohort, 61% were male and the mean age at the
initiation of dialysis was 62.3 years. The mean Charlson comor-
bidity index score was 5.99. Table 1 shows baseline comorbid-
ities and biochemistry results obtained during the first 30 days
of dialysis.

Results from random forest analysis are shown in Figure 2
and from logistic regression analysis in Figure 3. For both
approaches, the eight most important variables are reported. In
Figures 2A-I and 3A–I, the dashed line represents the value of
the AUC of the mortality prediction ROC curve obtained by both
models. Each dot shows the AUC value obtained if the effect of
the specified variable is turned off; this is achieved by randomly
changing the values of the variable in the test set; therefore, the
larger the decrease in the AUC value, the greater impact of the
variable in the prediction of mortality.

Table 2 shows a comparison of the AUCs obtained by ran-
dom forest and logistic regression for different baseline collec-
tion periods (30, 60 and 90 days) and prediction of mortality at
6 months, 1 year and 2 years.

Prediction of mortality of HD patients by random forest
and logistic regression

Prediction of mortality after 6 months on HD. Separate analyses
were performed using the baseline data collected at 30, 60 and
90 days. Results from the random forest analysis are shown in
Figure 2A–C and from logistic regression in Figure 3A–C.

Using baseline data at 30 days (Figure 2A), the AUC obtained
by the random forest mortality prediction model is 0.70. The
most influential variable is serum creatinine; the absence of se-
rum creatinine reduced the AUC value from 0.70 to 0.68. The
next two most influential variables are Kt/Vurea and BMI. Using
baseline data at 60 days (Figure 2B), the AUC is 0.68 and the
three variables with the most predictive power are haemoglo-
bin, calcium and potassium. With baseline data at 90 days, the
AUC is 0.72 (Figure 2C) and Kt/Vurea becomes the variable with
the greatest predictive power.

The results from logistic regression analysis are shown in
Figure 3. Using the 30-day baseline data, the AUC is 0.69 and se-
rum creatinine had the highest predictive power, followed by
vascular access and Kt/Vurea. Using the 60-day data, diuresis
becomes the variable with the highest predictive power, fol-
lowed by vascular access and haematologic disease. Using data
collected at 90 days, diuresis becomes the variable with the
highest predictive power.

Prediction of mortality after 1 year on HD. Results of random for-
est analysis are shown in Figure 2D–F. Using the baseline data
collected at 30 days (Figure 2D), the AUC by random forest is
0.73. The most influential variable is BMI, followed by serum al-
bumin and serum creatinine. Using the 60-day baseline data
(Figure 2E), the AUC is 0.73 and the variables with the most pre-
dictive power are BMI, serum albumin and Kt/Vurea. With 90-day
data, the AUC is 0.73 (Figure 2F) and serum albumin becomes
the variable with the most predictive power, followed by BMI
and haemoglobin.

The results of logistic regression analysis are shown in
Figure 3D–F. Considering the 30-day baseline data, the AUC is
0.71. The variables with the highest predictive power are age, di-
uresis and serum creatinine. With the 60-day data, the AUC is
0.71 and the variables with the most predictive power are age,
diuresis and haemoglobin. With the 90-day data, the AUC is 0.72
and the variables with the most predictive power are age, albu-
min and haemoglobin.

Table 1. Baseline comorbidities and biochemistry obtained during
the first 30 days of dialysis

Baseline Characteristics

Gender (male/female), n (%) 953 (61)/618 (39)
Age (years), mean 6 standard deviation (SD) 62.33 6 15.89
Comorbidities, n (%)
Diabetes mellitus 482 (31)
Cardiac failure 319 (20)
COPD 144 (9)
Tumoral disease (non-metastatic) 131 (8)
Myocardial infarction 102 (6)
Hepatopathy (non-cirrhotic) 68 (4)
Stroke 9 (1)
Charlson comorbidity index (mean) 6
Biochemical parameters, mean 6 SD
Haemoglobin (g/dL) 10.08 6 2.79
Ferritin (ng/mL) 290.1 6 362.64
TSI (%) 18.73 6 10.32
Creatinine (mg/dL) 7.3 6 4.4
Albumin (g/dL) 3.54 6 0.55
CRP (median) (mg/L) 8.8 (IQR: 19.5)
Calcium (mg/dL) 9.04 6 3.88
Phosphorous (mg/dL) 5.04 6 1.66
PTH (pg/mL) 288.35 6 297.72
Alkaline phosphatase (UI/L) 124.88 6 108.64
Potassium (mEq/L) 4.91 6 0.89
Magnesium (mg/dL) 2.22 6 0.45
b2-microglobulin (mg/L) 19.44 6 8.61
Others
BMI, mean 6 SD 27.1 6 5.41
Residual diuresis (mL), mean 6 SD 631.73 6 730.6
Vascular access (catheter), n (%) 830 (53)
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Prediction of mortality after 2 years on HD. The results of the
random forest analysis are shown in Figure 2G–I. With baseline
data at 30 days (Figure 2G), the AUC is 0.73 and the most influ-
ential variable is BMI, followed by age and serum albumin.
Using the 60-day data (Figure 2H), the AUC is 0.72 and the varia-
bles with the most predictive power are the same as with 30-
day data. With 90-day data, the AUC is 0.72 (Figure 2I) and the
variables with significant predictive power are the same as with
30- and 60-day data.

Figure 3G-I shows the results of logistic regression analysis.
Considering data collected at 30, 60 and 90 days, the AUCs are
0.69, 0.69 and 0.70, respectively. Age, BMI and Kt/Vurea are the
variables with significant predictive value for data at 30 days
(Figure 3G). Age, diuresis and BMI are the variables with signifi-
cant predictive value for data at 60 days (Figure 3H). Age, serum
albumin and BMI are the variables with significant predictive
value for data at 90 days (Figure 3I).

Comparison of results obtained with logistic regression
and random forest

Using the baseline data collected at 30 days, the AUCs predict-
ing mortality at 6 months, 1 year and 2 years obtained with ran-
dom forest are greater than with logistic regression (Table 2).
The difference in AUC in favour of random forest is greater in
the prediction of 2-year mortality (3.86%, P< 0.001).

Similar results were obtained for data collected at 60 days.
The AUC by random forest is significantly greater than that of
logistic regression (3.78%, P< 0.001). The AUC by random forest
is also superior to logistic regression for the 90-day data collec-
tion period at 2 years (2.28%, P< 0.001). In all the prediction peri-
ods, the benefit of random forest tends to increase with the
number of events (deaths).

DISCUSSION

The aim of the present study was to compare models to predict
mortality in HD patients based on conventional logistic regres-
sion and random forest analysis [23]. The mortality of incident
HD patients at 6 months, 1 year and 2 years was analysed using
baseline data collected during the 30, 60 and 90 days after the
initiation of regular HD. The main finding was that the

mortality prediction models obtained with the random forest
method were more accurate than with logistic regression. The
superiority of random forest versus logistic regression was
greater in the prediction of mortality at 2 years. Furthermore,
the variables that each method identified as predictors of mor-
tality were not always the same.

Logistic regression showed that the most determinant varia-
bles predicting mortality were age, type of vascular access (the
fistula being protective of mortality) and also the residual diure-
sis volume. These results agree with studies such as the
Dialysis Outcomes and Practice Patterns Study [24], which iden-
tified age, vascular access, albumin and other comorbidities as
variables that may influence mortality. Other studies [25] have
shown that mortality at 6 months is determined by age, demen-
tia, peripheral vascular disease and low serum albumin. The
England registry [7], which included 5447 patients on HD and
peritoneal dialysis (PD) followed for 3 years, showed that mor-
tality was associated with the following variables: advanced
age, being white, diabetes as the cause of end-stage renal dis-
ease, HD (versus PD), vascular disease, smoking, haemoglobin
and serum values of albumin, creatinine, calcium and
phosphorus.

According to random forest analysis, the main variables pre-
dicting mortality in HD at 6 months are serum albumin, Kt/Vurea

and haemoglobin. Variables predicting mortality at 1–2 years
were BMI, age, serum albumin and Kt/Vurea.

Interestingly, random forest identifies serum albumin more
often as one of the most important predictive variables and lo-
gistic regression identifies residual diuresis and vascular access
as predictors of mortality.

In our study, the ability to predict mortality by both tests
was compared by analysing the AUC of the ROC curves obtained
by both methods (Table 2). The superiority of random forest ver-
sus logistic regression in predicting mortality was statistically
significant at years 1 and 2, but it was more evident in the pre-
diction of mortality at year 2. At 6 months, random forest was
not significantly superior to logistic regression, probably due to
the small number of events (deaths). Furthermore, logistic re-
gression has the worst prediction accuracy (67.2%) and random
forest has the best (73.3%).

There are studies that demonstrate the superiority of ran-
dom forest if the data include variables that have an influence

Table 2. Comparisons of AUCs obtained by random forest and logistic regression

Prediction of mortality

Number of
patients Deaths

AUC

Difference in AUC
(RF � LR) (%) P-valuePrediction pPeriod

Period (days)
after first HD for
baseline data collection

Random forest Logistic regression

AUC (%) 95% CI AUC (%) 95% CI

6 months 30 1456 80 70.14 67.95–72.33 69.01 66.8–71.21 1.13 0.32
60 1432 56 67.55 64.88–70.22 66.84 64.15–69.52 0.71 0.61
90 1419 43 71.75 68.84–74.65 67.15 64.18–70.13 4.60 0.18

1 year 30 1336 166 73.31 71.8–74.82 71.16 69.62–72.7 2.15 0.01*
60 1312 142 73.19 71.56–74.81 71.22 69.57–72.87 1.97 0.02*
90 1299 129 72.82 71.12–74.52 71.94 70.22–73.65 0.88 0.32

2 years 30 1244 271 72.59 71.37–73.81 68.73 67.47–69.99 3.86 <0.001
60 1220 247 72.42 71.14–73.7 68.64 67.33–69.96 3.78 <0.001
90 1207 234 72.06 70.75–73.37 69.78 68.45–71.12 2.28 <0.001

For each mortality prediction period (6 months, 1 year and 2 years), analysis was based on baseline variable values obtained during a minimum number of days after

the first HD session: 30 days, 60 days and 90 days.
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on each other [14, 15]. The use of random forest was instrumen-
tal in establishing an association among parameters of mineral
metabolism in HD patients [18]. The identification of variables
that predict outcome has allowed the construction of models
and formulating algorithms with a specific objective, such as
anaemia treatment with erythropoiesis-stimulating agents [26].
Other studies have shown the utility of random forest interac-
tion trees on predictive covariates and the estimation of indi-
vidualized treatment effects [17].

One limitation of our study is that the data come from a sin-
gle centre and the values of mortality may not be extrapolated

to other populations; however, comparison of different meth-
ods of analysis should be valid. Another limitation is that infor-
mation on tobacco use and treatment with erythropoietin,
intravenous iron and vitamin D was not included. Data collec-
tion was rigorous and the number of patients and follow-up
periods were adequate and therefore the results obtained
should be applicable to this type of population. Prospective
studies are necessary to confirm our results. Analysis based on
the artificial intelligence approach generally requires a large
amount of data, which is now expedited by advances in com-
puter processing power, relatively cheap digital storage and a

2219 HD patients

1571
(incident patients with data

recorded within 90 days after
the first regular HD session)

Mortality at 6 months
(patients being followed

up to 6 months)
N=1456

N=1456
(baseline data collected
during the first 30 days)

N=1432
(baseline data collected
during the first 60 days)

N=1419
(baseline data collected
during the first 90 days)

N=1336
(baseline data collected
during the first 30 days)

N=1312
(baseline data collected
during the first 60 days)

N=1299
(baseline data collected
during the first 90 days)

N=1244
(baseline data collected
during the first 30 days)

N=1220
(baseline data collected
during the first 60 days)

N=1207
(baseline data collected
during the first 90 days)

Mortality at 1 year
(patients being followed

up to 1 year)
N=1336

Mortality at 2 years
(patients being followed

up to 2 years)
N=1244

FIGURE 1: Cohort selection flow chart. The comparison of mortality models was performed on nine different cohorts that are represented in the dashed boxes. On the

left, the number of patients included to evaluate the prediction of mortality at 6 months, 1 year and 2 years. For each mortality prediction period there were three sepa-

rate analyses according to the minimal period after the first HD session used for the collection of baseline data (input variables: 30, 60 or 90 days).
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flood of available digital data. The inherent requirement for
large-scale, high-quality, well-structured data might ultimately
limit the areas in which artificial intelligence can bring benefits
to healthcare [13].

Not all published studies have found the same variables as
predictors of mortality. In the present study, the analysis of the
same data by two different methods did not identify the same
variables as predictors of mortality. The diversity of methods
may not allow uniformity of results.

The ability to interpret the logistic regression variable coeffi-
cients (ORs) is an important advantage of this method, but this
oversimplification may limit the accuracy of the prediction with
respect to random forest. Therefore one must be inclined to rec-
ognize that the variables identified by random forest are more
reasonable than logistic regression. This last statement is not
easy to assume after years of logistic regression analysis.
Nevertheless, the analysis of the predictive value of single vari-
ables should be interpreted cautiously. In random forest, the
predictive value of a variable on mortality is given not only by
that specific variable, but also by the effect of other dependent
variables (covariates) that in a non-linear manner may also af-
fect mortality. It is easy to compare the predictive values of vari-
ables obtained by logistic regression and random forest.

Cox regression is another popular method for survival analy-
sis and mortality prediction. Since with Cox the patients lost to
follow-up are generally considered to build the model, we pre-
ferred comparing random forest with logistic regression so as to
have the two models trained on exactly the same set of
patients. Furthermore, different from random forest and logistic
regression, Cox regression cannot be considered a binary
classifier.

Additional studies will be needed to determine if one
method like random forest is more accurate and useful than
other more classical methods. The authors of the present work
have no opinion as to whether one method of analysis is better
than another; however, the information obtained clearly indi-
cates that the applicability of artificial intelligence in determin-
ing mortality in HD patients is more than acceptable.

In conclusion, random forest regression analysis is an alter-
native valid method to identify variables and generate models
that are useful to predict mortality in HD patients. The incorpo-
ration of statistical methods based on artificial intelligence
holds promise for substantially improving healthcare delivery.
It is predicted that familiarity with these methods for analysing
big data will be a fundamental requirement for the next genera-
tion of physicians [27]. They will become important actors in
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the therapeutic relationship and will need to be bound by the
core ethical principles, such as beneficence and respect for
patients, that have guided clinicians [28].
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