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Unexpected robot failures are inevitable. We propose to leverage socio-technical relations
within the human-robot ecosystem to support adaptable strategies for handling
unexpected failures. The Theory of Graceful Extensibility is used to understand how
characteristics of the ecosystem can influence its ability to respond to unexpected events.
By expanding our perspective from Human-Robot Interaction to the Human-Robot
Ecosystem, adaptable failure-handling strategies are identified, alongside technical,
social and organizational arrangements that are needed to support them. We argue
that robotics and HRI communities should pursue more holistic approaches to failure-
handling, recognizing the need to embrace the unexpected and consider socio-technical
relations within the human robot ecosystem when designing failure-handling strategies.
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INTRODUCTION

In 2016, a security robot at a shopping mall ran over a child and kept walking (Kircher, 2016). In
2017, a patrol robot rolled itself into a fountain (Swearingen, 2017). In 2020, a delivery robot got
stuck on a sidewalk and needed to be rescued (Media, 2020). As robots become more common in
public spaces (44% growth in 2019; IFR, 2020), questions of what to do when they fail become
increasingly important. Inmost Sci-Fi movies, when the protagonist’s autonomous tool breaks down,
they leave it and move on. In reality, the robot is its owner’s responsibility. Suppose 85-year-old
Maggie was at the mall with her robot assistant, when suddenly it ran over a child, fell into a fountain,
or got stuck. Maggie cannot ignore the incident, she cannot shut the robot off and leave it at the mall,
and she cannot carry it home herself. What should she do?

Despite their grandiose portrayals in the media, robots still struggle to reliably perform tasks in
nondeterministic environments. Failures, “degraded states of ability causing the behavior or service
being performed by the system to deviate from the ideal, normal, or correct functionality” (Brooks,
2017, p.9), often occur. Countless autonomous fault-diagnosis and failure-handling methods have
been developed (Ku et al., 2015; Hanheide et al., 2017; O’Keeffe et al., 2018; Kaushik et al., 2020). Yet,
design improvements will never fully eliminate the potential for unexpected failures. Assistive robots
will operate in many dynamic unstructured environments, among people with changing goals,
abilities, and preferences (Jung and Hinds, 2018), so there will always be unexpected events,
challenging the robot (Woods, 2018).

We propose to leverage socio-technical relations within the human-robot ecosystem (HRE) to
develop strategies for handling unexpected failures. Social interactions with technical parts of the
ecosystem can be the source of unexpected failures (Drury et al., 2003; Carlson and Murphy, 2005;
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Mutlu and Forlizzi, 2008), help detect unexpected failures
(Giuliani et al., 2015; Mirnig et al., 2017) and facilitate
resolutions (Steinbauer, 2013; Knepper et al., 2015). For
example, bystanders can cause robots to freeze, but can also
help robots identify and overcome technical obstacles. Customer
service policy can dictate whether unexpected failures are
resolved quickly or continue to escalate. Considering
unexpected failures within the broader socio-technical
ecosystem can predict sources of failure and novel methods of
response.

When performance is challenged by extenuating
circumstances, organized structures and processes in the HRE
will change (Holling, 1996), influencing the robot’s ability to
respond. For example, if the robot sparked a fire; bystanders, who
normally would help the robot, may refuse to assist. Social
resources (like emergency services or specialized engineers)
may become available to overcome the failure. Therefore, there
are bilateral relationships between unexpected robot failures and
socio-technical aspects of the HRE; unexpected robot failures can
be caused by members of the ecosystem and the robot’s response
to them can impact the structure of the ecosystem, which, in turn,
may influence the robot’s ability to further respond. Considering
relationships between the robot and its surrounding social
context becomes critical for understanding which failure
handling strategies are available.

To model socio-technical relations within the HRE, and
understand how they impact robots abilities to respond to
unexpected failures, we apply the Theory of Graceful
Extensibility (TGE; Woods, 2018). TGE explains
fundamental principles behind successful cases of
sustained adaptability in systems. Sustained adaptability,
the “ability to be poised to adapt,” is critical for systems to
respond and recover from unexpected disruptions (Woods,
2019). Most theoretical frameworks assume that certain
components in the ecosystem remain fixed, focus on
specific types of socio-technical relations or do not
consider systemic changes that occur when the ecosystem
is significantly challenged (e.g. Zieba et al., 2011; Ouedraogo
et al., 2013; Ruault et al., 2013). TGE is flexible enough to
account for different socio-technical relations, recognizing
that entities within the ecosystem and their relations are
constantly changing. It provides insight regarding how the
ecosystem’s structure influences its ability to adapt to surprise
events, like unexpected failures.

Prior studies viewed robots as part of larger technological
ecosystems (Quan and Sanderson, 2018; Kim, 2019) or performed
socio-technical analyses (Fiore et al., 2011; Lima et al., 2016; Shin,
2019; Morgan-Thomas et al., 2020). However, studies on the
impact of social infrastructure on robots’ ability to handle
unexpected failures are scarce (Honig and Oron-Gilad, 2018).
Viewing human-robot relations within a socio-technical
ecosystem using TGE offers new directions for research. In
advancing this perspective, we respond to calls to identify new
strategies for predicting, preventing and handling unexpected
robot failures (Zhang et al., 2017). We highlight and demonstrate
first and second order relations between the robot’s response to
unexpected failures and the socio-technical ecosystem it resides

in, frequently ignored in robotics literature. Our goal is to trigger
the robotics and HRI communities to adopt holistic approaches
to failure-handling, recognizing the need to embrace the
unexpected and consider socio-technical relations within
the HRE.

THE THEORY OF GRACEFUL
EXTENSIBILITY

TGE provides a formal base for characterizing how complex
systems maintain or fail-to-maintain adaptability to changing
environments, contexts, stakeholders, demands, and
constraints. Complex systems are modeled by “Tangled
Layered Networks” of adaptive units (UABs; Units of
Adaptive Behavior). Each UAB has adaptive capacity - the
potential for adjusting activities to handle future changes.
This generates a range of adaptive behaviors allowing the
UAB to respond to changing demands (termed Capacity for
Maneuver; CfM). Since this range is finite, all UABs risk
saturation (running out of CfM) when presented with
surprises (events that fall near or outside boundaries).
Consequently, units require ways to extend their adaptive
capacity when they risk saturation.

Performance of any UAB as it approaches saturation
differs from when it operates far from saturation, resulting
in two forms of adaptive capacity: base and extended. Base
adaptive capacity refers to the potential to adapt to well-
modeled changes (far from saturation) and is more
ubiquitous in contemporary robotic design. In this mode,
the goal is efficiency (“faster/better/cheaper”). Extended
adaptive capacity, or Graceful Extensibility, represents the
ability to expand CfM when surprise events occur (when risk
of saturation is increasing or high). Near saturation, UABs
aim to maintain performance.

Layers in the network represent hierarchical functional
relations between UABs - lower layers provide services to
upper layers (Doyle and Csete, 2011). In networks with high
graceful extensibility, UABs in upper layers continuously
assess the risk of saturation of themselves, their neighbors,
and UABs in lower layers, by monitoring the relationship
between upcoming demands and response capacity. When
risk is high, upper UABs act to increase CfM of lower UABs
by changing priorities, invoking new processes, extending
resources, removing potential restrictions, empowering
decentralized initiatives, and rewarding reciprocity. UABs
increase the CfM of their neighbors by providing assistance
(e.g., sharing resources). A UAB’s ability to model and track
CfM is limited, and their localized perspective in the network
obscures their perceptions of the environment, so ongoing
efforts and shifts in perspective are required to improve a
unit’s estimation of its own and others’ capabilities and
performance.

Woods (2018) identified three common patterns leading
adaptive systems to break down. Decompensation, exhausting
the capacity to adapt as challenges grow faster than solutions
can be implemented, occurs when CfMs of UABs are
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mismanaged, UABs are not synchronized, or lower level
UABs are unable to take actions to limit event escalation.
Working at cross purposes occurs when one UAB increases
its CfM while reducing CfM of others, i.e., locally adaptive
but globally maladaptive, and is often caused by mis-
coordination across UABs. The third pattern involves
failing to ensure current strategies are still effective as
system states change. To sustain adaptability, one should
empower decentralized initiative at lower layers, reward
reciprocity and coordinate activities between UABs to meet
changing priorities.

APPLYING THE THEORY OF GRACEFUL
EXTENSIBILITY TO FAILUREHANDLINGOF
ASSISTIVE ROBOTS
The HRE’s ability to adapt and respond to unexpected failures
can be modeled via TGE. Since we aim to improve service and
understand socio-technical relations, we take a systems approach.
We view the robot as one adaptive unit within a broader system,
rather than delving into architectural components, consistent
with other socio-technical networks (Mens, 2016). For clarity of
presentation, we layered UABs by their ability to extend the CfM

FIGURE 1 | Tangled Layered Networks of socio-technical relations in the Human-Robot Ecosystem (HRE), (A) with limited base Adaptive Capacity, (B) with
improved base Adaptive Capacity, (C) adapting in response to an unexpected event that challenged the network.

Frontiers in Robotics and AI | www.frontiersin.org July 2021 | Volume 8 | Article 6563853

Honig and Oron-Gilad Expect the Unexpected in HRI

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


of lower UABs, rather than by their hierarchical functional
relations. Although the models are abstracted representations
of HREs, they are sufficient to showcase the importance of socio-
technical relations to the design of failure-handling strategies for
unexpected robot failures.

Base Adaptive Capacity
Imagine that a sensor onMaggie’s robotmalfunctionedwhile at the
mall, and the robot no longer recognizes obstacles or people in its
environment. The robot runs its automatic diagnostic program,
failing to find anomalies. Neither the robot nor Maggie know what
caused the issue or how to resolve it. Maggie wants to complete her
shopping, return home with her robot and belongings, and fix the
malfunction as quickly as possible. The robot is carrying Maggie’s
belongings, some of which she cannot carry herself.

One possible network is modeled in Figure 1A. This network
is representative of many robotic services today, which rely
primarily on communications between the robot, the user and
the service provider (through the robot, customer service,
technicians or online) to resolve failures. Each UAB has its
own CfM, indicated by the size of the dotted circle around it.
Links between UABs are depicted by arrows. An engineer can
send a push update to Maggie’s robot (extending its CfM), so it is
in a higher layer than the robot.

Various social and socio-technical strategies for resolving the
unexpected issue are supported by this network. For example, the
robot could ask Maggie to guide it through a safe path with no
obstacles (e.g., by holding its hand) and display a warning signal to
alert people in the environment to stay clear. The robot could
automatically flag the problem to an engineer to remotely run
debugging tests; or to customer service, who could initiate a service
call to helpMaggie resolve the issue. The robot could guideMaggie
through questions to help isolate the problem source.

Unexpected failures fall within base adaptive capacity when the
existing HRE infrastructure is able to successfully help UABs adapt
to achieve their goals efficiently, while managing their risk of
saturation. Here, the sensor failure would fall within base
adaptive capacity if the type of coordination needed to enable
Maggie to complete her shopping and return home in a timely
manner is well-supported within the ecosystem (e.g., if customer
service managed to remotely fix the sensor failure, or if Maggie was
able to guide the robot back home safely, despite the sensor failure).

The base adaptive capacity of this network is quite limited,
as communications are distributed across few UABs. If the
connections within the HRE were extended (e.g., in
Figure 1B), various additional social and socio-technical
strategies could be leveraged to resolve a wider variety of
unexpected issues, increasing the base adaptive capacity of the
network. For example, expert users could be rewarded for
providing troubleshooting support to Maggie. The robot could
call a security guard to move Maggie’s belongings to a shopping
cart and store the robot until a technician arrives. Robots of
the same model could help it identify the issue; sharing the
outcomes of their learning algorithms or prior experiences
(Arrichiello et al., 2017). The robot could call Maggie’s
daughter to pick them up and wait for a technician elsewhere.
If the socio-technical infrastructures that are needed to support

these interactions have been put into place in advance, then the
risk of saturation for Maggie, the robot, customer service agents,
and other UABs in the network would remain low despite the
unexpected issue.

The robot’s technical design will influence the ability of
solutions to take place. For the security guard to take the
robot to storage, it must be easily moveable. For Maggie’s
daughter to pick up her mother and the robot, it must be light
enough to be lifted into a car. For inexperienced users to help the
robot identify and/or resolve unknown issues, there must be a
user-friendly interface that guides them. Social and socio-
technical failure-handling solutions require social and
technical infrastructures to support them.

Behavior Near or At Saturation
Imagine that Maggie’s robot accidentally sparked fire at the mall.
How will the network in Figure 1B respond? If the robot alerts
people who are already aware of the fire or are not receptive to
listening, or starts its usual diagnostics while ignoring the fire
altogether, it is failing to ensure its current strategies are still
effective. The robot can alert an engineer, who can then alert the
product manager, initiating crisis management processes, but by the
time this feedback loop closes, the situation in the mall may escalate.
This would be an example of decompensation. The robot can
attempt to direct people toward an emergency exit, however, if it
is programmed to walk at slow speed, it may block other escapees.
This would be an example of the robot working at cross purposes.

Maggie’s goal would no longer be to return home quickly with her
belongings and the robot, but to return home safely. To provide good
service in such situations, the entire ecosystem will adapt in
unexpected ways to meet this new goal. For example, the robot
may need to obtain permission to walk faster than its normal speed
range. An engineer previously working on developing new features,
may need to send the robot’s last location to emergency services.
Customer service agents may need to contact owners of similar robots
to prevent additional occurrences.

Examples of possible ad-hoc network changes due to the fire
are modeled in Figure 1C in bold. These changes can impact the
ability of UABs to further respond to this event. For example, if
firefighters are using the robot to locate the fire, it may not be
able to lead Maggie to an emergency exit. If the call center is
overwhelmed by concerned customers, Maggie may not be able to
reach them to explain how the fire began. New resources will
become available, e.g., firefighters can locate and/or extinguish
the fire. Contrarily, some resources in the ecosystem that under
normal circumstances are leveraged, may no longer be available,
e.g., people at the mall may become reluctant or unavailable to
help. The CfM of UABs in the network could change based on
changes to the network that occurred as a result of the failure–for
example, the product manager’s CfM could increase as a result
the fire, because they would be justified in setting aside all non-
urgent responsibilities and using/recruiting additional resources
to respond to the extenuating circumstances. It is therefore
important for the robot and service providers to consider the
immediate consequences of attempted failure-handling measures
and the unintentional outcomes that occur due to socio-technical
changes within the ecosystem.
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TABLE 1 | Socio-technical considerations for handling unexpected failures that challenge the human-robot ecosystem.

Principle Research Directions and Recommendations Related Literature

Monitor and enhance the range of adaptive behaviors
(CfM) that units in the HRE can perform.

Incorporate an understanding of the roles and capabilities of
people within the HRE into the robot’s cognitive architecture
to inform decision making and task sharing. Model how
human-related, task-related, robot-related, and environment-
related factors can impact roles and capabilities.

Scerri et al. (2003), Howard and Cruz (2006), Alami
et al. (2011), Fiore et al. (2011), Akkaladevi et al. (2016),
Joshi and Sabanovic (2017), Musić and Hirche (2017),
Ranz et al. (2017), Welfare et al. (2019), Strohkorb
Sebo et al. (2020)

Description: Model and estimate CfM of the relevant
units in the network (robots, support teams, local
support, etc.).

Estimate or obtain information about individuals’ capabilities
(e.g., physical limitations, expertise, and perceived mental
model) to inform the robot’s decision-making.

Arboleda et al. (2020), Milliez et al. (2014), Rossi et al.
(2017), Martins et al. (2019), Martín et al. (2020),
Umbrico et al. (2020)

Continuously look for ways to enhance capacity (via
design or organizational changes). Anticipate
bottlenecks and create processes in advance to
accommodate them. Share CfM-related information
between units in the network.

Incorporate recognition of changes in the social
environment (e.g., social activity) into the robot’s cognitive
architecture. For example, note how the social
environment may impact the robot and how subsequent
robot behaviors may further impact the social
environment (e.g., relations between pedestrians’ flow
and robot navigation, robot use and work practices, etc.)

Eldridge and Maciejewski (2005), Lee et al. (2012),
Giuliani and Knoll (2013), Jiang et al. (2016), Jiang et al.
(2020), Nikolaidis et al. (2017), Chen et al. (2018), Jung
and Hinds (2018), Pelikan et al. (2018), Sebo et al.
(2020)

Purpose:Understand when units may require additional
resources, from whom they can ask for help, when they
should offer support to others, and when to reprioritize
goals. Early detection and prevention of
decompensation within the network.

Promote the ability to form accurate mental models of
robot behavior and capabilities for people in the HRE
(e.g., using shared cognition models).

Marble et al. (2004), Murphy and Burke (2005),
Bradshaw et al. (2009), Scheutz et al. (2017), Hellström
and Bensch (2018), Kwon et al. (2018), Thomas
(2019), Ehsan et al. (2019), Demir et al. (2020), Tabrez
et al. (2020), Han et al. (2021), Ramaraj (2021)

Develop mechanisms for robots to understand and react
to emotions, like pain, fear, panic, confusion, and
distress, to correctly identify warning conditions requiring
a reaction.

Kulic and Croft (2007), Leite et al. (2013), Le and Lee
(2014), Jung (2017), Bagheri et al. (2020), de
Kervenoael et al. (2020), Spezialetti et al. (2020),
Weidemann and Rußwinkel (2021)

Perform task analysis, communication analysis, workflow
analysis, and usability studies of robot interactions with
people in the HRE (users, bystanders, customer service
agents, etc.). Test in real-world environments, under
normal and degraded conditions, to identify challenges,
potential degraded states, and conflicts originating from
interactions within the HRE. Identify metrics for
acceptable levels of service for different levels of
degradation.

Casper and Murphy (2002), Casper and Murphy
(2003), Burke et al. (2004), Adams (2005), Mutlu and
Forlizzi (2008), Cunningham et al. (2013), Sabanovic
et al. (2014), Frennert et al. (2017), Welfare et al. (2019),
Niemelä et al. (2019), Cameron et al. (2021)

Improve anomaly recognition of human and robot activities. Panangadan et al. (2004), Zweigle et al. (2013),
Hornung et al. (2014), Häussermann et al. (2015),
Ordóñez et al. (2015), Bezemskij et al. (2016), Rossi
et al. (2018), Guo et al. (2018), Park et al. (2019),
Azzalini et al. (2020), Basurto et al. (2020), Zhou
et al. (2020), Castellano-Quero et al. (2021)

Monitor resources available to robots and other units in
the HRE. Identify in advance resource reserves that can
be called upon during surprise events (e.g., non-critical
robot processes that can be postponed, personnel that
can be pulled from their normal assignments to respond
to robotic failures, etc.)

Dressler and Fuchs (2005), Sadrpour et al. (2013),
De Carolis et al. (2014), Lee (2018), Baums (2019)

Monitor the time it takes for problems to be solved, the
time between surprise events, and the performance level
that can be restored following different types of failures to
detect decompensation.

Itti and Baldi (2005), Schreckenghost et al. (2009b),
Schreckenghost et al. (2009a), Schreckenghost et al.
(2010), Cabal-Yepez et al. (2012), Duff et al. (2014),
Jiang et al. (2017), Khaldi et al. (2017), Damacharla
et al. (2018), Qiao and Weiss (2018)

Reevaluate and reprioritize goals and resources in
response to surprise events.

Enable robots to estimate or inquire about people’s
changing goals, expectations, mental state, and priorities.
Then, adapt robot goals and behaviors accordingly.

Demiris (2007), Breazeal et al. (2009), Gillain et al.
(2013), Devin and Alami (2016), Shevtsov and Weyns
(2016), Leite et al. (2018)

Description: Reevaluate goals and resources when
unexpected failures occur. Detect events that fall
outside of base adaptive capacity.

Develop adaptable emergency response capabilities for
robots.

Ostergaard et al. (2001), Kumar et al. (2004), Liu et al.
(2007), Ferranti and Trigoni (2008),Witkowski et al. (2008),
Tang et al. (2016), Nadi and Edrisi (2017), Sakour and Hu
(2017), Hashemipour et al. (2018), Willms et al. (2019)

Purpose: Ensure the planned or re-planned course of
action is still appropriate.

Develop algorithms optimized to promote operation and
adaptation during degraded conditions and surprise
events. Prioritize failure-handling solutions that can adapt

Zhang et al. (2017), Chattunyakit et al. (2019), Tan et al.
(2020), Wilson et al. (2020)

(Continued on following page)
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Graceful Extensibility
Preparing for Unexpected Robot Failures That
Challenge the Ecosystem
While it is impossible to eliminate the risk of robotic failures or to
predict how theHREwill change during surprise events, it is possible to

design robots that promote graceful extensibility; allowing the HRE to
make required adjustments to accommodate new contingencies.
Various strategies can be developed, in advance, to manage risk of
saturation and increase the range of adaptive behaviors for better
preparedness to unexpected failures. In Table 1, we describe principles

TABLE 1 | (Continued) Socio-technical considerations for handling unexpected failures that challenge the human-robot ecosystem.

Principle Research Directions and Recommendations Related Literature

to facilitate a broad range of failure situations over failure-
specific solutions.
Develop adaptive resource allocation and management
strategies.

Mainland et al. (2005), Airy et al. (2009), Berenz and
Suzuki (2011), Eibel et al. (2015), Zhang et al. (2016),
Afrin et al. (2019), Afrin et al. (2021), Trucco et al. (2021)

Facilitate coordination and synchronization between
units in the HRE.

Design robots to facilitate and encourage bi-directional
communication between people in the HRE (e.g., the
robot can provide users and bystanders with relevant
contacts for troubleshooting and emergencies, give
recommendations on when and where to find help,
facilitate direct calls to the support team, etc.)

Yamamoto et al. (1992), Park et al. (2009),
Kristoffersson et al. (2013), Kramer and Demaerschalk
(2014), Nyssen and Blavier (2017), Hock et al. (2018)

Description: A broad range of communication and
coordination types should be supported, and
redundancy is encouraged. When possible, units in the
HRE should be encouraged and empowered to
consider a situation from another unit’s perspective.
Communication channels should support bi-directional
messaging between units in the ecosystem.

Share failures and efforts to relieve them between
stakeholders in the HRE in a way that optimizes their
ability to understand the situation and contribute to
solutions (e.g., by including all relevant information, by
preventing negative emotional responses like panic or
stress, etc.)

Engelhardt et al. (2017), Honig and Oron-Gilad (2018),
Nayyar and Wagner (2018), Sebo et al. (2019),
Banerjee et al. (2020), Cameron et al. (2020), Choi et al.
(2020), Kontogiorgos et al. (2020), Tolmeijer et al.
(2020), Washburn et al. (2020)Purpose: to prevent decompensation, to prevent

working at cross purposes, and to empower
decentralized initiative.

Encourage shifts in perspective. Develop robots that
can imagine the world from another viewpoint,
leveraging the perspectives views of users,
bystanders, and other agents to clarify potential
ambiguities, inform decision-making and resolve
unexpected issues.

Trafton et al. (2005), Breazeal et al. (2006), Warnier
et al. (2012), Pandey and Alami (2013), Pandey and
Alami (2014), Milliez et al. (2014), Milliez et al. (2016),
Fischer and Demiris (2016), Zhao et al. (2016)

Develop inter-firm networks and standardized protocols
to ensure different robotic frameworks can communicate,
cooperate and learn from one another.

Mizukawa et al. (2000), Bruyninckx (2001), Das et al.
(2005), Ferketic et al. (2006), Schilling and Phelps
(2007), Lechevalier et al. (2011), Spulber (2013),
Foucart and Li (2021)

Enable and encourage units in the HRE to help one
another.

Design approachable robots that provide people with
advice, feedback and instructions in a manner that
encourages cooperation and compliance, particularly
during first encounters (e.g., by adhering to social and
cultural norms).

Yamamoto et al. (1992), Torrey (2009), Wang et al.
(2010), Torrey et al. (2013), Trovato et al. (2013), Salem
et al. (2014), Geiskkovitch et al. (2016), Gehle et al.
(2017), Choi et al. (2019), Xu (2019), Hashemian et al.
(2019), Sanoubari et al. (2019), Lim et al. (2020),
Avelino et al. (2021), Ullrich et al. (2021), Fischer et al.
(2021), Tian and Oviatt (2021)

Description: Units should be actively encouraged to
take initiative in helping other units resolve problems.
Motivating mechanisms and incentives must be
formed.

Develop mechanisms to help robots identify when people
may require additional support and when the robot
should offer help or take initiative.

Torrey et al. (2013), Ramachandran et al. (2016),
Baraglia et al. (2017), Brscic et al. (2017), Ito et al.
(2020)

Purpose: Reward reciprocity, prevent decompensation
and empower decentralized initiative.

Design mechanisms and interaction technologies that
enable robots to ask for and receive human assistance
effectively from bystanders and inexperienced users in
degraded conditions. Identify when it is appropriate to
ask for help, whom the robot may ask, and what type of
assistance can be expected. Test robot designs under
degraded conditions.

Huttenrauch and Eklundh (2003), Ross et al. (2004),
Hüttenrauch and Severinson-Eklundh (2006), Thomaz
and Breazeal (2007), Rosenthal et al. (2011), Rosenthal
et al. (2012), Wongphati et al. (2012), Foster et al.
(2013), Fischer et al. (2014), Glas et al. (2015), Bajones
et al. (2016), Cha and Mataric (2016), Srinivasan and
Takayama (2016), White et al. (2020), Ito et al. (2020)

Develop mechanisms that enable robots to help repair
one another and/or facilitate mutual learning and problem
solving (viewing individual robots as part of a distributed
team).

Bererton and Khosla (2001), Bererton and Khosla
(2002), Burke and Murphy (2007), Kutzer et al. (2008),
Davis et al. (2016)
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based on TGE that support better sustained adaptability in the HRE,
and specify recommendations for how robot developers, designers and
robot companies can act on them. The result is a set of guidelines for
what could be done, in advance, to provide better handling of
unexpected robot failures.

DISCUSSION

Existing robotic failure-handling techniques struggle to create
appropriate responses to predictable failures, let alone unexpected
ones that challenge the Human-Robot Ecosystem (HRE). The
Theory of Graceful Extensibility provides a framework within
which the HRE and its ability to adapt to unexpected failures can
be modeled, evaluated, and improved. By expanding from Human-
Robot Interaction (HRI) to HRE, adaptable failure-handling
strategies can be identified, alongside social and technical
infrastructure requirements needed to support them.

Investing in responses to unexpected failures is a fine balancing
act (Woods, 2018). Resources that improve performance near
saturation may undermine performance far from saturation.
Encouraging people to contact customer service will inevitably
lead to increased demand for customer service, costing money that
could have gone toward improving the robot’s failure-prevention
systems. Similarly, resources that support graceful extensibility
challenge the ecosystem’s desire for efficiency during normal
operations. Sustained adaptability requires the ecosystem to
continuously search for the balance between improving base
adaptive capacity and supporting graceful extensibility.

The ability to handle unexpected failures requires shared
acknowledgement that unexpected failures are natural and
unavoidable. Robotic companies today seem to prioritize
perception of perfection over facilitating open communication
and collaboration within their ecosystems. It is currently difficult
to obtain information regarding the types of failures robots
experience and possible resolutions. This is problematic for all
failure types, but particularly for unexpected ones, as it often
takes additional effort to differentiate between known and
unknown problems. Grassroots efforts to overcome poor socio-
technical relations such as YouTube instructional videos are less
effective as complexity increases. Forewarning people of robot

imperfections can improve evaluations of the robot and quality of
service following failures (Lee et al., 2010). Taking steps to improve
communication, cooperation, and collaboration between people in
the ecosystem is likely to improve customer acceptance of robots.

Issues of information overload, control management and
privacy arise from many of the strategies suggested to support
adaptive capacity. How do we facilitate communication and
collaboration between people in the ecosystem without
annoying or overwhelming them? Who decides with whom
the robot can share information and what it can share? How
do we protect Maggie’s privacy? Many social, legal and ethical
questions are raised from this approach and remain unresolved
(Scheutz and Arnold, 2016; Santoni de Sio and van den Hoven,
2018). Close collaborations with government agencies, regulators,
and related service corporations and organizations (e.g., malls,
hospitals, etc.) will be needed to answer these questions. However,
we strongly believe in the importance of extending adaptive
capacity through socio-technical means in order to handle
unexpected failures in robots.
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ACM), 87–95. doi:10.1145/3171221.3171276

Le, B. V., and Lee, S. (2014). “Adaptive Hierarchical Emotion Recognition from
Speech Signal for Human-Robot Communication,” in Tenth International
Conference on Intelligent Information Hiding and Multimedia Signal
Processing (IEEE), 807–810. doi:10.1109/IIH-MSP.2014.204

Lee, M. K., Kiesler, S., Forlizzi, J., and Rybski, P. (2012). “Ripple Effects of an
Embedded Social Agent,” in Proceedings of the 2012 ACM annual conference
on Human Factors in Computing Systems - CHI ’12, Texas, Austin, USA, May
5 - 10, 2012, Editor Joseph A. Konstan(New York, New York, USA: ACM
Press), 695. doi:10.1145/2207676.2207776

Lee, M. K., Kiesler, S., Forlizzi, J., Srinivasa, S., and Rybski, P. (2010). “Gracefully
Mitigating Breakdowns in Robotic Services,” in 2010 5th ACM/IEEE
International Conference on Human-Robot Interaction (HRI), Kitakyushu,
Japan, 27-29 Aug. 2014, (New Jersey: IEEE), 203–210. doi:10.1109/
HRI.2010.5453195

Leite, A., Pinto, A., and Matos, A. (2018). A Safety Monitoring Model for a Faulty
Mobile Robot. Robotics 7, 32. doi:10.3390/robotics7030032

Leite, I., Pereira, A., Mascarenhas, S., Martinho, C., Prada, R., and Paiva, A. (2013).
The Influence of Empathy in Human-Robot Relations. Int. J. Human-Computer
Stud. 71, 250–260. doi:10.1016/j.ijhcs.2012.09.005

Lim, V., Rooksby, M., and Cross, E. S. (2020). Social Robots on a Global Stage:
Establishing a Role for Culture during Human-Robot Interaction. Int. J. Soc.
Rob.. doi:10.1007/s12369-020-00710-4

Lima, T., Santos, R. P. d., Oliveira, J., and Werner, C. (2016). The Importance of
Socio-Technical Resources for Software Ecosystems Management. J. Innovat.
Digital Ecosyst. 3, 98–113. doi:10.1016/j.jides.2016.10.006

Marble, J. L., Bruemmer, D. J., Few, D. A., and Dudenhoeffer, D. D. (2004).
“Evaluation of Supervisory vs. Peer-Peer Interaction with Human-Robot
Teams,” in 37th Annual Hawaii International Conference on System

Sciences, 2004. Proceedings of the, Big Island, HI, USA, 5-8 Jan. 2004,
(New Jersey: IEEE), 9. doi:10.1109/HICSS.2004.1265326

Martín, A., Pulido, J. C., González, J. C., García-Olaya, Á., and Suárez, C. (2020). A
Framework for User Adaptation and Profiling for Social Robotics in
Rehabilitation. Sensors 20, 4792. doi:10.3390/s20174792

Martins, G. S., Santos, L., and Dias, J. (2019). User-Adaptive Interaction in Social
Robots: A Survey Focusing on Non-physical Interaction. Int. J. Soc. Robotics 11,
185–205. doi:10.1007/s12369-018-0485-4

Media, J.. (2020). Delivery Robot Gets Stuck while Moving on Sidewalk. Yahoo News.
Available at: https://uk.news.yahoo.com/delivery-robot-gets-stuck-while-221930892.
html?guccounter�1&guce_referrer�aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_
referrer_sig�AQAAADFWoFZ3oEZtKVUtS3k610uRzKFrCGnhc2b2DuTR3a8Bpc
LMNqoVSSXPjOKkcMDWbHwJgsn73y_yQpdTmqEbvHxlaieZBuFi2vJYM.

Mens, T. (2016). “An Ecosystemic and Socio-Technical View on Software
Maintenance and Evolution,” in 2016 IEEE International Conference on
Software Maintenance and Evolution (ICSME), Raleigh, NC, USA, 2-7 Oct.
2016, (New Jersey: IEEE), 1–8. doi:10.1109/ICSME.2016.19

Milliez, G., Lallement, R., Fiore, M., and Alami, R. (2016). “Using Human
Knowledge Awareness to Adapt Collaborative Plan Generation, Explanation
and Monitoring,” in 2016 11th ACM/IEEE International Conference on
Human-Robot Interaction (HRI), Christchurch, New Zealand, 7-10 March
2016, (New Jersey: IEEE), 43–50. doi:10.1109/HRI.2016.7451732

Milliez, G., Warnier, M., Clodic, A., and Alami, R. (2014). “A Framework for
Endowing an Interactive Robot with Reasoning Capabilities about Perspective-
Taking and Belief Management,” in The 23rd IEEE International Symposium
on Robot and Human Interactive Communication, Edinburgh, UK, 25-29 Aug.
2014, (New Jersey: IEEE), 1103–1109. doi:10.1109/ROMAN.2014.6926399

Mirnig, N., Stollnberger, G., Miksch, M., Stadler, S., Giuliani, M., and Tscheligi, M.
(2017). To Err Is Robot: How Humans Assess and Act toward an Erroneous
Social Robot. Front. Rob. AI 4, 1–15. doi:10.3389/frobt.2017.00021

Morgan-Thomas, A., Dessart, L., and Veloutsou, C. (2020). Digital Ecosystem and
Consumer Engagement: A Socio-Technical Perspective. J. Business Res. 121,
713–723. doi:10.1016/j.jbusres.2020.03.042

Murphy, R. R., and Burke, J. L. (2005). Up from the Rubble: Lessons Learned about
HRI from Search and Rescue. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 49,
437–441. doi:10.1177/154193120504900347
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