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Abstract: Speckle tracking echocardiography enables the detection of subclinical left ventricular
dysfunction at rest in many heart diseases and potentially in severe liver diseases. It could also
possibly serve as a predictor for survival. In this study, 117 patients evaluated for liver transplantation
in a single center between May 2010 and April 2016 with normal left ventricular ejection fraction
were included according to clinical characteristics of their liver disease: (1) compensated (n = 29),
(2) clinically significant portal hypertension (n = 49), and (3) decompensated (n = 39). Standard
echocardiography and speckle tracking echocardiography were performed at rest and during
dobutamine stress. Follow-up amounted to three years to evaluate survival and major cardiac events.
Altogether 67% (78/117) of the patients were transplanted and 32% (31/96 patients) died during the
three-year follow-up period. Global longitudinal strain (GLS) at rest was significantly increased
(became more negative) with the severity of liver disease (p < 0.001), but reached comparable values
in all groups during peak stress. Low (less negative) GLS values at rest (male: >−17/female: >−18%)
could predict patient survival in a multivariate Cox regression analysis (p = 0.002). GLS proved
valuable in identifying transplant candidates with latent systolic dysfunction.

Keywords: strain analysis; echocardiography; cirrhotic cardiomyopathy; cardiac systolic function;
dobutamine stress test; outcome

1. Introduction

For liver transplant recipients, heart diseases are an important risk factor for perioperative
mortality [1]. Approximately 7–21% of deaths following liver transplantation are related to
cardiovascular events [2]. Ischemic events or acute heart failure may be associated with concomitant
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coronary artery disease, valvular disease, or cardiomyopathy. A special form leading to systolic
dysfunction is cirrhotic cardiomyopathy (CCM), which has been related to liver cirrhosis and portal
hypertension [3]. In patients with CCM, 17% of death in the perioperative phase are attributable
to cardiac causes [4]. The main triggers of CCM are hemodynamic stress (high cardiac output as a
consequence of peripheral vasodilation) and inflammation [5]. These triggers lead to progressive
disease starting with diastolic dysfunction, followed by an increasing reduction of the contractile
reserve and finally impaired systolic function at rest [6]. In most patients, the working capacity is so
severely restricted by liver insufficiency that impaired cardiac function is not detectable by evaluations
of working capacity. Thus, an accurate assessment of left ventricular (LV) function in patients awaiting
liver transplantation is crucial for risk stratification [7].

No accepted gold standard for the diagnosis of CCM exists [8], but echocardiography is by far the
most preferred method of diagnosis [9]. Of the echocardiographic parameters, LV ejection fraction
(LVEF) in particular is widely used to quantify LV systolic function [10,11]. In 2005, the World Congress
of Gastroenterology proposed a resting LVEF below 55% or a reduced increase in cardiac output in
any stress test as the definition of systolic dysfunction in cirrhosis [12]. However, there are numerous
publications showing that LVEF cannot adequately map LV systolic function, especially in the early
phase of systolic dysfunction [11,13,14]. Myocardial function can fluctuate significantly without any
changes in LVEF [14]. Thus, LVEF is not a good parameter for contractility [8], as it is also influenced by
preload, afterload and heart rate [15,16]. Even the prognostic value of LVEF is still controversial [17,18].
A better predictor of mortality in acute heart failure seems to be global longitudinal strain (GLS) [18].

Strain analysis is mostly performed by 2D speckle tracking echocardiography: small areas in a
region of interest are identified and tracked over the cardiac cycle to assess myocardial deformation [19].
The usefulness of this method has already been demonstrated in numerous clinical settings [19].
In particular, GLS is often used and considered to be more sensitive to subclinical ventricular
dysfunction than standard echocardiography [20,21]. However, this parameter is also influenced by
load [22] and a number of clinical factors, such as sex and age [23,24].

Despite these limitations, given the promising results in other clinical settings, information from
echocardiographic strain analysis could possibly improve the assessment of cardiac systolic function
prior to liver transplantation and prove beneficiary in predicting survival of these patients. Accordingly,
the aim of this study is to assess the predictive value of strain analysis for mortality of liver transplant
candidates with normal ejection fraction. Therefore, strain analysis was performed by 2D speckle
tracking both at rest and during a dobutamine stress echocardiography (DSE).

2. Material and Methods

2.1. Patient Cohort

This study was approved by the local ethics committee of the Uniklinik RWTH Aachen (EK
291/13; date of approval 22 June 2016) and conducted in accordance with the Declaration of Helsinki.
According to the ethics vote, informed consent of the patients was not required. All patients evaluated
for liver transplantation in an inpatient setting between May 2010 and April 2016 at the Uniklinik
RWTH Aachen (Aachen, Germany), with a minimum age of 18 years at the time of examination, were
screened for retrospective study enrollment. Patients with an echocardiographic examination at rest
performed using a GE ultrasound device (GE Healthcare, Milwaukee, WN, USA) recorded on the
server and without regional wall movement disorders or high-grade heart valve disease (>I◦) and a
normal LVEF at rest (≥50%) were subsequently included in the study. Figure 1 provides an overview
of all inclusion and exclusion criteria.

In order to assess the influence of the stages of liver disease as a possible trigger of CCM,
the patient cohort was divided into 3 groups according to the classification described by de Franchis
et al. [25] based on the status at the time of examination: (1) patients with compensated advanced
liver disease (cALD); (2) patients with cALD and clinically significant portal hypertension (CSPH);
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and (3) patients with decompensated advanced liver disease (dALD). Clinically significant portal
hypertension was defined as proven gastroesophageal varices or a platelet count below 150,000 [25].
The definition of decompensation for dALD was based on the presence of one of the following features:
hydropic decompensation, transjugular intrahepatic portosystemic shunt, hepatorenal syndrome, or
spontaneous bacterial peritonitis. Hepatorenal syndrome and spontaneous bacterial peritonitis were
diagnosed according to Lerschmacher et al. [26].

Figure 1. Overview of the inclusion and exclusion criteria.

2.2. Patient Characteristics

Detailed information, such as baseline demographics, systolic blood pressure (sBP) and diastolic
blood pressure (dBP), heart rate, blood values, cardiovascular risk factors and medications, was
obtained from the records. In detail, these were the following data collected for each individual patient:
sex, age, presence of diabetes mellitus or arterial hypertension, intake of antihypertensive or diuretic
drugs, and blood values of creatinine, bilirubin, international normalized ratio, platelets, C-reactive
protein, sodium, hemoglobin, and albumin. The Model for End-Stage Liver Disease (MELD) score was
calculated to assess the individual clinical status. All patients included were monitored for 3 years
with regard to complications such as major cardiac events (MACE), transplantation, and survival, if
possible. MACE was defined as one of the following: death, heart failure (both left and right), and
ischemic cardiac events.

2.3. Echocardiography at Rest

All echocardiographic examinations at rest were performed with a GE Vivid 7 ultrasound system
(General Electric (GE) Healthcare, Buckinghamshire, GB) combined with a 5S ultrasound probe (GE) at
a frame rate of 56–92 s−1. Apical 2-, 3-, and 4-chamber views, parasternal long-axis, and parasternal
short-axis images at 3 different levels (mitral valve, papillary muscles and apical) were saved as
2-dimensional greyscale cine-loops for subsequent analysis.

LVEF and LV volumes were determined from the apical 2- and 4-chamber views using the biplane
Simpson method. According to Agricola et al. [27], an increase in LVEF during DSE of less than 5%
was considered as limited contractile reserve. Tricuspid annular plane systolic excursion (TAPSE) was
assessed in M-mode and mitral annulus early diastolic velocity (E’) was identified by tissue Doppler
imaging in a 4-chamber view. Mitral inflow velocities, such as transmitral peak early passive filling
velocity (E), late diastolic filling velocity caused by atrial contraction (A) and deceleration time, were
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determined using PW-Doppler over the mitral valve in 4-chamber views. The degree of diastolic
dysfunction (◦I–◦III) of each patient was assessed according to the criteria of Nagueh et al. [21].

Analyses of the two-dimensional speckle tracking echocardiography recordings at rest (both long-
and short-axis images) were acquired with EchoPac-PC (Version 112, GE Healthcare, Buckinghamshire,
GB) by a single examiner. The region of interest was manually placed along the endocardium (while
excluding the papillary muscle), and the width was adjusted to the wall thickness. The region of interest
tracked by the computer over the cardiac cycle was visually checked and manually adjusted as needed.
All measured parameters were averaged from several consecutive beats. Global values for longitudinal
(GLS), radial, and circumferential strain were calculated from the appropriate views [28,29].

Abnormal GLS values were defined according to the publication by Asch et al. using the values at
rest without pausing beta blockers [30]: values below −26 for females and −24 for males were defined
as high, and values above −18 and −17 were defined as low. Thus, more negative values are termed
higher. This resulted in 3 categories: patients with (1) low GLS, (2) normal GLS, and (3) high GLS. For
the multivariate analysis, a GLS increase during DSE of <2% was defined as pathological according to
Lancellotti et al. [31].

To calculate the LV twist, apical heart rotation (i.e., circumferential strain) was subtracted from the
basal rotation as described by Mielczarek et al. [32].

2.4. Stress Echocardiography

All patients were instructed to pause beta blockers, calcium antagonists and nitrates for 72 h
before DSE. The Philips iE33 ultrasound device was used with an X5-1 probe. DSE was started with a
dobutamine flow rate of 10 µg/kg BW/min. Subsequently, the flow rate was increased every 3 min by
10 µg/kg BW/min up to 40 µg/kg/min to reach an age-adapted target heart rate [33]:

maximum heart rate = (220 − age) × 0.85. (1)

Images were evaluated at 4 defined time points: before (base), at low dobutamine infusion
dose (10 µg/kg BW/min), at maximum dobutamine infusion dose (peak), and after stopping the
dobutamine infusion and recovering baseline heart rates (post). The scans were digitally stored for
offline analysis with a frame rate of 50–58 s−1. During the examination, echocardiography, sBP, and
dBP were monitored and recorded continuously. Mean BP was calculated as

mean BP = dBP + 1/3 × (sBP − dBP). (2)

Image analysis of stress echocardiographic recordings was performed using TOMTEC Imaging
Systems (TOMTEC Imaging Systems, Unterschleissheim, Germany). Here, the endocardium was
marked in end systole, and subsequent automated tracking was manually corrected if needed [34].
EF and stroke volume index (SVi) were calculated from left ventricular volumes. The stroke work
index was obtained by multiplying the mean arterial pressure and SVi. GLS was calculated from apical
views [34].

2.5. Statistical Analysis

Statistical evaluation was performed using SPSS IBM Statistics version 25 (IMB Corp., Armon
NY, USA), and graphs were created with GraphPad Prism version 8 (GraphPad Software, San Diego,
CA, USA). Continuous data are presented as the mean ± standard deviation, and categorical variables
are presented as numbers and percentages. Between-group differences were investigated by means
of univariate analysis of variance with Tukey’s post hoc test, chi-square test or variance analysis for
repeated measurements. Contrast analysis with baseline values as a reference was used to describe the
effect of time and dobutamine dosage. The effect of predefined predictors for survival (severity of liver
cirrhosis, MELD, GLS, LVEF, body mass index, transplantation, age, and diastolic dysfunction) was
assessed by Cox regression analyses. Significant predictors from the univariate analysis were included in
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a stepwise forward multivariate approach after sorting by p-values. p-values < 0.05 were considered
statistically significant.

3. Results

3.1. Patient Selection and Group Allocation

Of the 331 patients screened for study inclusion (from May 2010 to April 2016), a total of 214 were
excluded. The reasons were a missing echocardiography study at rest performed by a GE device in
205 cases, a reduced EF (<50%) in two cases, regional cardiac wall movement disorders in 2 cases, and
high-grade valvular heart diseases in five cases (Figure 1). Thus, 117 patients were enrolled. Strain
analysis both at rest and under dobutamine stress was available in 52 of these patients. No stress test
was performed in 26 cases, alternative techniques (such as stress test using ergometry, single-photon
emission computed tomography or magnetic resonance imaging) were used in 28 patients, and DSE
image quality was too poor for strain analysis in 11 cases.

The 117 patients included in the study were divided as follows: 29 patients in the cALD group,
49 patients in the CSPH group, and 39 patients in the dALD group. Of these patients, strain analysis
during DSE was performed in eight (cALD), 26 (CSPH) and 18 (dALD) patients.

3.2. Patient Characteristics

Baseline characteristics of patients are listed in Table 1. The three most frequent etiologies of
liver disease were ethyltoxic in 31.6% (37 out of 117), viral in 17.9% (21 out of 117) and tumor-related
in 12.8% (15 out of 117). Although the distribution of diagnoses was not equal in the three groups
(p < 0.001), GLS at rest (p = 0.129) or LVEF (p = 0.532) did not differ significantly between them.

There were no significant differences among groups in age (p = 0.538), body mass index (p = 0.830),
sex (p = 0.524), or sBP (p = 0.106). Patients in the dALD group had significantly higher MELD values
than those in the cALD group (p = 0.005), higher C-reactive protein values than those in the CSPH
group (p = 0.014), and lower hemoglobin (p = 0.002 resp. p = 0.045) and albumin values (p = 0.002
resp. p = 0.035) than those in both other groups. All patients in the CSPH and dALD groups had lower
platelet counts (all p < 0.001) and lower diastolic blood pressure than the patients in the cALD group
(pGroup = 0.009). The medication only differed significantly among groups regarding beta blockers
(p = 0.005) and diuretics (p = 0.001): Patients in the cALD group took significantly fewer beta blockers
(p = 0.002) and diuretics (p < 0.001).

3.3. Echocardiographic Findings at Rest

Parameters describing ventricular dimensions, as well as systolic and diastolic function at rest, are
shown by group in Table 2. Patients in the cALD, CSPH and dALD groups had comparable ventricular
dimensions. From the parameters describing left ventricular function, only GLS displayed significant
differences (p < 0.001): CSPH and dALD patients showed higher GLS values than cALD patients. Of
all patients in the cALD group, 24% (7 out of 29) had low, 62% (18 out of 29) had normal and 3% (1 out
of 29) had high GLS values. In the CSPH group 8% (4 out of 49) were identified as low, 61% (30/49)
as normal and 18% (9 out of 49) as high GLS values, and in the dALD group, 8% (3 out of 39) were
identified as low, 62% (24 out of 39) as normal and 28% (11 out of 39) as high GLS values. TAPSE
demonstrated the highest values in the dALD group (p < 0.05). From the diastolic parameters, E/A was
significantly higher in the CSPH group and E as well as left atrial volume index were significantly
higher in the CSPH and dALD groups compared to the cALD group. Thus, the degree of diastolic
dysfunction was higher in patients with CSPH and dALD.

In resting echocardiography, patients with beta blockers had significantly lower GLS values in all
groups than patients without beta blockers (cALD: −17 ± 2 vs. −19 ± 2; CSPH: −21 ± 3 vs. −24 ± 2;
dALD: −21 ± 4 vs. −24 ± 3) (p < 0.001). However, this effect did not significantly differ between cALD,
CSPH, and dALD (p = 0.693).
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Table 1. Patient characteristics (mean +/− SD).

cALD
(n = 29)

CSPH
(n = 49)

dALD
(n = 39)

P
between
Groups

Female (n (% of group)) 12 (41%) 17 (35%) 11 (28%) 0.524
Age (years) 55.1 ± 7.3 57.0 ± 10.0 55.0 ± 10.1 0.538
BMI (kg/m2) 26.4 ± 5.1 26.9 ± 5.6 26.2 ± 4.0 0.830

Diagnosis cirrhosis (n) <0.001
Acute liver failure 4 ‡‡ 0 0
C2 cirrhosis 3 16 18
Viral cirrhosis 1 12 8
PSC/PBC 6 2 1
NASH cirrhosis 0 4 2
Cryptic cirrhosis 0 6 7
Tumor/cystic 10 ‡‡ 5 0
Other 5 4 3

Decompensation (n)
Hydropic 0 ‡‡ 0 ‡‡ 30 ‡‡ <0.001
TIPSS 0 0 ‡ 10 ‡‡ <0.001
SBP 0 0 ‡‡ 14 ‡‡ <0.001
HRS 0 0 ‡‡ 15 ‡‡ <0.001
MELD score 12.9 ± 7.8 15.1 ± 6.8 18.3 ± 6.2 ** 0.006
Creatinine (mg/dL) 1.7 ± 2.0 1.1 ± 0.6 1.6 ± 1.1 0.072
Bilirubin (mg/dL) 2.7 ± 4.7 5.4 ± 8.2 4.4 ± 5.1 0.214
INR 1.4 ± 1.7 1.4 ± 0.3 1.4 ± 0.5 0.905
Platelets (1/nL) 209 ± 80 92 ± 44 *** 88 ± 47 *** <0.001
CRP (mg/L) 16.8 ± 20.6 10.1 ± 12.8 30.0 ± 50.7 † 0.019
Sodium (mmol/L) 138 ± 2 137 ± 4 133 ± 7 0.063

Further blood analysis (g/dL)
Hb 12.4 ± 2.1 11.6 ± 2.2 10.4 ± 2.3 ** † 0.002
Albumin 3.5 ± 0.7 3.3 ± 0.7 2.9 ± 0.5 ** † 0.002
Systolic BP (mmHg) 123 ± 17 116 ± 18 113 ± 17 0.106
Diastolic BP (mmHg) 75 ± 11 67 ± 15 * 67 ± 9 * 0.009
HR (1/min) 82 ± 13 71 ± 13 ** 78 ± 16 0.005

Medication (n (% of group))
Beta blocker 8 (28%) ‡ 32 (65%) 21 (54%) 0.005

ACE inhibitor or
AT1 antagonist 7 11 4 0.243

Diuretics 8 ‡‡ 29 28 0.001
Other antihypertensive agents 4 3 1 0.186

Medical history (n)
T1D 0 1 0 0.497
T2D 8 20 15 0.485
aHTN 8 22 11 0.165

* p≤ 0.05, ** p≤ 0.01, *** p≤ 0.001 vs. cALD; † p < 0.05 vs. CSPH. ‡ < 0.008; ‡‡ < 0.001 vs. expected value. Abbreviations:
ACE inhibitor, angiotensin-converting enzyme inhibitor; aHTN, arterial hypertension; AT1 antagonist, angiotensin
II receptor subtype 1 antagonist; BMI, body mass index; BP, blood pressure; cALD, compensated advanced liver
disease; CRP, C-reactive protein; CSPH, compensated advanced liver disease with clinically significant portal
hypertension; dALD, decompensated advanced liver disease; Hb, hemoglobin; HR, heart rate; HRS, hepatorenal
syndrome; Hydropic, hydropic decompensation; INR, international normalized ratio; MELD, model of end-stage
liver disease; other antihypertensive agents: drugs such as calcium channel blocker; alpha2-agonists, dihydralazine,
endothelin receptor antagonists, phosphodiesterase type 5 inhibitors; SBP, spontaneous bacterial peritonitis; T1D,
type 1 diabetes mellitus; T2D; type 2 diabetes mellitus; TIPSS, transjugular intrahepatic portosystemic shunt.

3.4. Echocardiographic Findings during DSE

Heart rate at rest was significantly lower in the CSPH group than in the other two groups (p = 0.003
vs. cALD and p = 0.002 vs. dALD) and increased significantly during stress in all groups (Table 3).
The predefined maximum heart rate was achieved on average in all groups. The peak heart rate did
not differ significantly between the groups (p = 0.066), nor did the mean arterial pressure demonstrate
any significant differences between the groups (p = 0.311). The LV end-systolic volume index and
stroke work index decreased significantly without differences among groups (Table 3). GLS, LVEF and
the cardiac index increased significantly during stress (p < 0.001) without differences between groups
(Figure 2 and Table 3). DSE caused a significant reduction in the end-diastolic volume index (EDVi)
and SVi (p < 0.001 each), with significant differences among groups (pEDVi = 0.047 and pSVi = 0.025).
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Table 2. Echocardiographic parameters at rest (mean +/− SD).

cALD
(n = 29)

CSPH
(n = 49)

dALD
(n = 39) Pgroup

Dimensions
LVEDD (mm) 44.3 ± 4.5 46.6 ± 4.6 47.0 ± 5.3 0.057
LVESD (mm) 26.1 ± 4.5 27.4 ± 5.4 28.6 ± 7.3 0.221
Septum ED (mm) 10.5 ± 1.9 9.7 ± 2.1 9.7 ± 1.8 0.144

Systolic parameters
LVEF (%) 61.1 ± 5.9 62.9 ± 4.8 63.3 ± 4.4 0.185
TAPSE (mm) 23.5 ± 4.2 26.3 ± 5.4 27.1 ± 5.9 * 0.017
GCS (%) −25.5 ± 5.0 −27.0 ± 5.1 −27.5 ± 5.8 0.354
GRS (%) 28.6 ± 10.3 29.7 ± 14.4 25.0 ± 10.0 0.227
GLS at rest (%) −18.8 ± 2.4 −21.9 ± 3.2 *** −22.4 ± 3.6 *** <0.001
LV twist (◦)] 7.7 ± 9.1 7.4 ± 9.0 7.5 ± 9.1 0.980

Diastolic parameters
E/A 0.95 ± 0.32 1.24 ± 0.44 ** 1.11 ± 0.27 0.004
DT (ms) 228 ± 52 223 ± 54 214 ± 58 0.586
E (m/s) 0.60 ± 0.15 0.73 ± 0.17 ** 0.77 ± 0.19 *** <0.001
E’ (m/s) 0.069 ± 0.022 0.073 ± 0.024 0.071 ± 0.017 0.668
E/E’ 10.0 ± 3.5 11.2 ± 4.2 11.1 ± 3.2 0.369
TR velocity (m/s) 1.4 ± 0.3 1.3 ± 0.2 1.4 ± 0.2 0.414
LA vol index (mL/m2) 19.2 ± 6.3 25.9 ± 6.7 ** 26.8 ± 9.0 *** 0.001

Diast dysf (n) 0.021
I◦ 13 8 6
II◦ 3 5 3
III◦ 0 5 1

* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001 vs. cALD. Abbreviations: cALD, compensated advanced liver disease; CSPH,
compensated advanced liver disease with clinically significant portal hypertension; dALD, decompensated advanced
liver disease; Diast dysf, diastolic dysfunction; DT, deceleration time; E, mitral valve early diastolic velocity; E’,
mitral annulus early diastolic velocity; ED, end diastolic; E/A, ratio of early transmitral flow velocity to late diastolic
filling velocity caused by atrial contraction; E/E’, ratio of the mitral valve early diastolic flow velocity to the mitral
annulus early diastolic flow velocity; GCS, global circumferential strain; GLS, global longitudinal strain; GRS,
global radial strain; LA vol index, maximum left atrial volume index; LV twist, left ventricular twist according
to [32]; LVEDD, left ventricular end-diastolic diameter; LVESD, left ventricular end-systolic diameter; LVEF, left
ventricular ejection fraction; TAPSE, tricuspid annular plane systolic excursion; TR velocity, tricuspid regurgitation
peak velocity.

3.5. Follow-Up Analysis

Within 3 years after the evaluation for possible liver transplantation, 66.7% (78/117) of the patients
had received a donor liver. The waiting period for a donor organ for patients who received a transplant
was 150 ± 137 (cALD group), 147 ± 164 (CSPH group), and 151 ± 152 days (dALD) from the time of
evaluation. Twenty-one patients (17.9%) were lost in the three years of follow-up (five with cALD, 10
with CSPH, and six with dALD). These were mainly patients without transplantation, as the others
were regularly seen for aftercare. Of the patients who were followed up for three years, 32.3% (31 out
of 96) died during the study period. The main cause of death was multiple organ failure from sepsis in
54.8% (17 out of 31) of all groups.

The Kaplan–Meier curves demonstrated that in the group with dALD, significantly fewer patients
survived the 3 years of follow-up (56.1%) than those of the other groups (cALD: 81.8%; CSPH: 79.8%)
(p = 0.022) (Figure 3a). In addition, non-transplant patients had significantly worse survival after an
evaluation for liver transplantation than transplanted patients (non-transplant vs. transplant: one-year
survival: 59,8% vs. 93.4%; three-year survival: 52.3% vs. 81.2%) (p < 0.001) (Figure 3b). Log-rank
(Mantel–Cox) test based on the GLS categories revealed that patients with low and high GLS values
tended to show a lower survival (64.3% and 61.9%) than patients with normal GLS (80.6%, p = 0.075)
(Figure 3c).
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Table 3. Stress echo parameters (mean +/− SD).

cALD
(n = 8)

CSPH
(n = 26)

dALD
(n = 18) Pgroup

MAP (mmHg) 0.311
Baseline 96 ± 14 80 ± 14 84 ± 9
Peak 93 ± 33 92 ± 21 97 ± 22

HR (1/min) <0.004 †††

Baseline 84 ± 9 67 ± 13 ** 83 ± 18 ‡‡

Peak 151 ± 9 143 ± 14 139 ± 7
CI (L/min/m2) 0.371 †††

Baseline 2.5 ± 0.8 2.5 ± 0.6 2.8 ± 0.8
Peak 3.3 ± 0.9 3.8 ± 1.0 3.8 ± 1.4

GLS (%) 0.546 †††

Baseline −20.3 ± 3.6 −21.8 ± 2.8 −22.5 ± 3.9
Peak −24.2 ± 4.2 −24.1 ± 4.2 −24.4 ± 4.6

LVESVi (mL/m2) 0.319 †††

Baseline 16.5 ± 4.6 22.4 ± 5.8 19.6 ± 5.2
Peak 11.4 ± 6.1 11.7 ± 4.8 12.9 ± 5.5

LVEDVi (mL/m2) 0.047 †††

Baseline 46.1 ± 11.4 58.8 ± 10.6 * 56.0 ± 13.2
Peak 33.4 ± 10.5 38.0 ± 10.2 40.6 ± 14.5

SWi (mmHg·mL/m2) 0.673 ††

Baseline 2875 ± 903 2912 ± 740 2824 ± 518
Peak 2037 ± 845 2420 ± 883 2655 ± 1259

††p < 0.01, ††† ≤ 0.001 time within groups; * p < 0.05, ** p ≤ 0.01 vs. cALD; ‡‡ p ≤ 0.01 vs. CSPH. Abbreviations:
cALD, compensated advanced liver disease; CI, cardiac index; CSPH, compensated advanced liver disease with
clinically significant portal hypertension; dALD, decompensated advanced liver disease; GLS, global longitudinal
strain; HR, heart rate; LVEDVi, left ventricular end-diastolic volume index; LVESVi, left ventricular end-systolic
volume index; MAP, mean arterial pressure; SWi, stroke work index.

Figure 2. Effect of dobutamine stress echocardiography (DSE) on left ventricular function related to
the severity of liver disease. The values at ‘base’ were recorded at rest before DSE, at ‘low’ with a
dobutamine rate of 10 µg/kg BW/min, at ‘peak’ with the maximum dobutamine rate and at ‘post’ after
stopping dobutamine and returning to baseline heart rates (mean +/− SD). The following parameters
of left ventricular function are shown (a) global longitudinal strain (GLS), (b) left ventricular ejection
fraction (LVEF), (c) end-diastolic volume index (EDVi) and (d) stroke volume index (SVi) (# p ≤ 0.05
between groups and * p < 0.05 vs. cALD at time point).
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Figure 3. Kaplan-Meier survival curves: survival probability was displayed according to (a) liver
disease groups, (b) liver transplantation and (c) global longitudinal strain (GLS) categories.

Cox regression identified dALD (odds ratio (OR), 2.758; p = 0.048), MELD score, (OR, 1.145;
p < 0.001), GLS category at rest (OR, 2.614; p = 0.033), body mass index (OR, 0.898; p = 0.041), and
transplantation (OR = 0.277; p = 0.001) as predictors of mortality. After multivariate analysis, dALD
(OR, 7.561; p = 0.045), MELD score (OR, 1.191, p = 0.001), low GLS at rest (OR, 16.482; p = 0.002), and
transplantation (OR, 0.082; p = 0.001) kept a significant effect on mortality (Table 4).
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Table 4. Parameters that could predict mortality. Univariate and multivariate Cox regression analysis
displaying odds ratios (ORs) und p-values.

Univariate Multivariate

OR p-Value OR p-Value

Group
CSPH 1.068 0.906 2.728 0.332
dALD 2.758 0.048 7.561 0.045

MELD score 1.145 <0.001 1.191 0.001
GLS category at rest

GLS low 1.871 0.234 16.483 0.002
GLS high 2.614 0.033 1.128 0.864
GLS peak 1.061 0.410

Delta GLS < 2% 1.460 0.573
LVEF peak 0.933 0.120
Delta LVEF < 5% 2.070 0.260
BMI 0.898 0.041 0.898 0.086
Transplantation 0.277 0.001 0.082 0.001
Age 1.005 0.817
Diastolic dysfunction

I◦ 1.144 0.750
II◦ 0.588 0.475
III◦ 0.675 0.702

Abbreviations: At rest, during resting echocardiography (beta-blocker not paused); BMI, body mass index; CSPH,
clinically significant portal hypertension; dALD, decompensated advanced liver disease; delta, difference between
the values at rest and at maximum dobutamine rate; DSE, dobutamine stress echocardiography; GLS, global
longitudinal strain; GLS category, three categories of GLS values (low, normal and high) based on the thresholds
published by Asch et al. [30]; group, three groups based on the severity of liver cirrhosis according to the classification
of de Franchis et al. [25]; high, GLS < −26 (female) and < −24 (male); low, GLS > −18 (female) and > −17 (male);
LVEF, left ventricular ejection fraction; MELD, model of end-stage liver disease; OR, odds ratio; peak, point in time
during DSE with maximum dobutamine rate; transplantation, transplantation during the 3 years of follow-up.

The incidence of MACE differed significantly between the GLS categories (p = 0.019): patients
with both low and high GLS values suffered more frequently from MACE than patients with normal
GLS values (incidence with low GLS: 64%; normal GLS: 27%; high GLS: 43%).

4. Discussion

The results from this retrospective analysis of echocardiographic examinations in liver transplant
candidates with normal ejection fraction identified low GLS values at rest as an independent predictor
of mortality. Furthermore, survival was influenced by the severity of the underlying liver disease and
by transplantation.

GLS is the preferred strain parameter for describing left ventricular systolic dysfunction in
patients with heart failure and preserved ejection fraction (HFpEF). This is because the longitudinal
subendocardial fibers are more sensitive to early changes, and therefore, the resulting functional
alterations are better detected by GLS. Furthermore, GLS is independent of diastolic dysfunction [35].
A relevant variation in GLS can be observed despite a normal LVEF in many cardiac diseases. In contrast
to LVEF, GLS demonstrated a significant correlation with invasive measurements of contractility and
was less influenced by changes in afterload and preload [36].

This study indicates a similar relationship for liver transplant candidates: despite a normal
LVEF, liver transplant candidates showed a strongly fluctuating GLS at rest. Most of our patients
demonstrated normal values (67%), while 20% had high and 13% had low values, where low values
indicate latent systolic dysfunction. Previous studies describe reduced [13,20,37] or normal GLS [38] at
rest in patients with liver cirrhosis. In addition, advanced stages of liver disease led to an increase in
EDVi and SVi. According to the results of Chowdhury et al. EDVi did not correlate with GLS [36].
Higher GLS values occurred more frequently in patients with CSPH and dALD. This would display
the higher hemodynamic stress related to cirrhosis induced portal hypertension and might help to
describe its severity.
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In view of the interindividual differences in GLS, the question of relevance in terms of patient
outcome arises. Particularly, as predicting the outcome is the most important issue, and possible
parameters should be evaluated according to this criterion. There are fewer studies that examine
the effect of systolic dysfunction on mortality in liver cirrhosis than those that look at diastolic
dysfunction. Sampaio et al. calculated a hazard ratio of 1.67 (0.61–4.60; p = 0.322) if GLS was
higher than −19.8% [39]. Recently, Turco et al. described the effect of hemodynamics on mortality in
cirrhosis [40]: a cardiac output above 4.2 L/min or below 3.2 L/min was associated with increased
mortality. Thus, hyperdynamic circulation related to decompensated cirrhosis as well as hypodynamic
circulation related to CCM might increase mortality. This theory is reinforced by our data, as the
results of this study indicate that the relationship between survival and GLS does not appear to be
linear: both low and high GLS levels seem to be related to an increased risk of death. As high GLS
values are associated with more advanced liver diseases, only low values were independent predictors
of mortality. In contrast to high GLS values, low values were found in all groups. They seemed not
to be associated with hemodynamic stress of portal hypertension and did not indicate CCM. It is
unquestioned that the severity of cirrhosis affects survival [41], the underlying disease of the liver
might therefore be the main reason for the observed increased mortality in patients with high GLS
levels. In addition, it is known that liver transplantation improves survival, even in the presence of
CCM [5]. This was also evident in our data. The cause of low GLS values remains speculative. Patient
characteristics, except BMI, were not associated with low GLS values in the current investigation.
Patients with low GLS values demonstrated higher BMI (30.4 ± 5.7 vs. 26.4 ± 5.0, p = 0.005). Lee et al.
reported that obesity led to a decrease of GLS by 0.152% per 1 kg/m2 change in BMI [42].

Similar to survival, the correlation between the occurrence of MACE and GLS seemed not to be
linear: both patients with high and low GLS were more likely to have MACE during the three years of
follow-up, compared to patients with normal GLS.

In everyday clinical practice, DSE still plays a decisive role in screening for latent coronary artery
disease in a pre-transplant setting [43]. Furthermore, the contractile reserve is often assessed by means
of DSE [31]. For example, according to the criteria of the World Congress of Gastroenterology in
2005, DSE is used to diagnose systolic dysfunction and can thus support the diagnosis of cirrhotic
cardiomyopathy [44]. However, it should be noted that these diagnostic criteria are increasingly being
challenged, e.g., the criteria of the Cirrhotic Cardiomyopathy Consortium of 2019, suggest using strain
analysis (GLS) at rest instead of DSE parameters [44].

In our study, the hemodynamic stress associated with high cardiac index and higher EDVi was,
as expected, associated with an increase in contractility and thus GLS in most patients. The increase
in GLS during DSE represents the contractile reserve. Contractile reserve is often used to assess
myocardial function in progressive heart failure. In CCM, Moller et al. describe a reduced contractile
reserve before function at rest is impaired [45]. At least for patients with non-ischemic cardiomyopathy
with severely reduced LVEF, a prognostic benefit of a contractile reserve has been demonstrated: these
patients have a prolonged survival and a reduced rate of cardiovascular events [46]. Nevertheless,
the transferability to patients with end-stage liver disease is questionable: the results of our study
show that patients had higher GLS and EDVi values at rest with increasing severity of liver disease,
but all groups reached the same level during DSE. Since strain is determined by load and contractility,
this means that both contractility and ventricular filling were equal at maximum stress. Accordingly,
there seems to be a kind of maximum contractility, which obviously questions the relevance of the
increase, since a high baseline inevitably leads to the expression of a false negative contractile reserve.
The understanding and measurement of the contractile reserve should therefore be reconsidered at least
in patients with end-stage liver disease. Nevertheless, a reduced contractile reserve, as a consequence
of high values at rest and normal values at stress, will limit a further increase of cardiac output, which
could be necessary during major surgery or severe illness.
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Limitations

As with most clinical strain data [19], the study was conducted retrospectively so some
examinations, such as DSE, were not performed in every patient and some interesting parameters, such
as brain natriuretic peptide, were not measured regularly. Furthermore, DSE does not induce exactly
the same physiological response as physical stress. Nevertheless, an exercise stress test in patients with
severe liver cirrhosis is often not possible due to their limited exercise capacity related to muscular
weakness [47]. In addition, the echocardiographic examinations at rest and under stress were recorded
with two different devices and the analysis was carried out with two different tools. However, it must
be put into perspective that the results of the two analysis tools of GE EchoPac and TOMTEC Imaging
Systems are known to show a very good correlation [48]. As with any echocardiographic studies using
speckle tracking, the analysis is dependent on good image quality [49]. The exclusion of 11 patients
from the strain analysis due to poor image quality may, for example, led to selection bias. In addition,
the manual determination of the region of interest also creates the potential for error [19]. The reduced
number of patients with DSE may also have influenced the results and the picture of the contractile
reserve may have been different having a DSE in all patients. The unequal distribution of diagnoses in
the different groups could also have been a source of bias, even though the diagnosis had no significant
effect on left ventricular function as displayed by GLS or LVEF. Last but not least, the limited number
of patients also limits the validity of the results.

5. Conclusions

GLS has been shown to be useful in predicting survival and MACE in patients with end-stage liver
disease and normal LVEF: low and high GLS values were associated with increased mortality. Whereas
low values are an independent predictor of mortality, high values are associated with advanced
stages of liver disease, another independent predictor. Therefore, further cardiac evaluation should be
considered in patients with low values, whereas high values would indicate a high hemodynamic
stress level.
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