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Abstract

The relative importance between additive and non-additive genetic variance has been widely argued in quantitative
genetics. By approaching this question from an evolutionary perspective we show that, while additive variance can be
maintained under selection at a low level for some patterns of epistasis, the majority of the genetic variance that will persist
is actually non-additive. We propose that one reason that the problem of the ‘‘missing heritability’’ arises is because the
additive genetic variation that is estimated to be contributing to the variance of a trait will most likely be an artefact of the
non-additive variance that can be maintained over evolutionary time. In addition, it can be shown that even a small
reduction in linkage disequilibrium between causal variants and observed SNPs rapidly erodes estimates of epistatic
variance, leading to an inflation in the perceived importance of additive effects. We demonstrate that the perception of
independent additive effects comprising the majority of the genetic architecture of complex traits is biased upwards and
that the search for causal variants in complex traits under selection is potentially underpowered by parameterising for
additive effects alone. Given dense SNP panels the detection of causal variants through genome-wide association studies
may be improved by searching for epistatic effects explicitly.
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Introduction

There exists a paradox in evolutionary biology. Despite a near-

ubiquitous abundance of genetic variation [1] traits under

selection often evolve more slowly than expected and, contrary

to expectation, genetic variation is maintained under selection.

This problem is known as ‘stasis’ [2,3], and it is particularly

evident in fitness-related traits where the genetic variation tends to

be highest [4] yet there is commonly no observed response to

selection at all [5–7]. There are a number of mechanisms by which

this might arise, amongst which the most commonly cited are

various forms of constraints [8,9] or stabilising selection [10].

Because stasis is widespread its properties may reveal insights into

the genetic architecture of complex traits related to fitness and thus

inform the strategies that are employed to detect their underlying

genetic variants. After hundreds of genome-wide association

(GWA) studies [11] a picture is emerging where the total genetic

variation explained by variants that have been individually

mapped to complex traits is vastly lower than the amount of

genetic variation expected to exist as estimated from pedigree-

based studies, a phenomenon that has come to be known as the

problem of the ‘missing heritability’ [12]. Again, there are

probably numerous contributing factors, and ostensibly the most

parsimonious explanation is that complex traits comprise many

small effects that GWA studies are underpowered to detect

[13,14], but whether this is the complete story deserves

exploration.

With respect to the fields of both the aforementioned issues, it is

typical to model genetic variation using an additive framework,

such that each allele affecting a trait acts in an independent, linear,

cumulative manner. For many practical applications this is a very

useful approach (e.g. [15,16]), but there does exist a popular school

of thought that suggests that the mechanisms of gene action, and

the architecture of complex traits, are actually much more

complex than the additive model allows (e.g. [17–20]). Epistasis,

defined in functional terms as the event whereby the effect of one

locus depends on the genotype at another locus, is one source of

non-additive genetic variation. How it contributes to both the

paradox of ‘stasis’ and the problem of the ‘missing heritability’ will

be the focus of this study.

The importance of epistasis in complex traits has proven to be a

particularly divisive issue throughout the history of quantitative

genetics. Recently it has been suggested that epistasis might form

part of the answer to the ‘missing heritability’ [21–24], but how

this might manifest is not immediately obvious. When heritability

estimates are reported for complex traits they typically pertain to

the narrow-sense (h2, the proportion of the phenotypic variance

that is due to additive genetic effects). Calculating the broad-sense

heritability (H2, or the proportion of variance that is due to both

additive and non-additive genetic effects), is an intractable
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problem for non-clonal populations [25], thus we have little

knowledge of how much epistasis exists in human and animal

traits. In this light one might suggest that we are actually dealing

with two problems: the ‘missing heritability’, and the ‘unknown

heritability’. By definition epistasis will form a part of the

‘unknown heritability’, but theory shows that epistatic interactions

could also contribute to h2 estimates. This could arise through two

possible mechanisms, firstly by generating real additive variation

as marginal effects from higher order genetic interactions [26–29];

or secondly by creating a statistical illusion of additive variance

through confounding between non-additive and common envi-

ronment effects in twin study based estimates [24,30].

Beyond the realm of complex trait genetics it appears that

epistasis does appear to be common. For example in molecular

studies it is routine to observe ‘phenotypic rescue’ where the

phenotypic effect of a gene knockout can be masked by a second

knockout (e.g. [31]). Another commonly encountered form of

epistasis is ‘canalisation’ [32], where phenotypes exhibit robustness

to the knockout of one gene, requiring a second knockout to elicit

a response (e.g. [33]). At the macroevolutionary scale, epistasis is

also of central importance, for example it has recently been shown

that an advantageous substitution in one species is often found to

be deleterious in others, thus the substition’s effect on fitness is

dependent upon the genetic background in which it is found [34].

The mechanisms behind pathway-level [32,35,36] or species-level

epistasis [20,34,37] are widely explored, and yet at the interme-

diate, within-population level there is a distinct lack of evidence for

any widespread importance of epistasis arising from natural

variation, and most genetic variation appears to be additive [28].

Nevertheless some convincing examples of epistasis have been

reported, for instance there are a number of cases of canalisation

in Homo sapiens [38,39], Gallus gallus [40], Drosophila melanogaster

[41], Saccharomyces cerevisiae [42], and Arabidopsis thaliana [43] to

name but a few.

At the statistical level, for a pair of single nucleotide

polymorphisms (SNPs) that exhibit epistasis, in addition to

interaction terms between the two loci, the total genetic effect is

likely to also include marginal additive or dominance effects at

each locus [28,44]. The proportion of additive to non-additive

genetic variation will depend both on the genotype-phenotype

map (G-P map), and the allele frequencies at each locus. In turn

these frequencies will depend on selection acting on the

phenotype. Thus, if epistasis contributes towards fitness then

how selection acts is highly dependent on the particular genotype-

phenotype map in question [45]. Ostensibly, the additive

framework that is used in GWA studies follows Occam’s razor,

employing the hypothesis that introduces the fewest new

assumptions (i.e. non-additive variation cannot be estimated, thus

SNPs are not modelled to have non-additive effects). But whether

the phenomenon of stasis can accommodate a purely additive

genetic model remains an open question.

The premise of this study is centred around finding common

ground between the problems of stasis and the missing heritability.

Given that fitness related traits often exhibit stasis then the

underlying genetic architecture may not solely comprise indepen-

dent additive effects. Through theory and simulations we

demonstrate that epistasis will maintain additive genetic variation

under selection at higher levels than independent additive effects,

and that by extending GWA studies to search for epistasis directly

we could improve statistical power to detect additive genetic

variation.

Results

Selection rapidly drives deleterious additive effects to fixation,

but how effective is selection at purging deleterious, non-additive

effects? We simulated 56 G-P maps (including neutral, additive,

dominant, and 51 epistatic two-locus patterns; Figure S1) and

assuming that the phenotype had a direct effect on fitness we

calculated their expected allele frequency trajectories over time.

With these outcomes we were able to make inferences on i) the

ability of epistasis to maintain genetic variation and the allele

frequencies at which different G-P maps might stabilise, ii) the

amount of genetic variation and the proportion of additive to non-

additive variation that we would expect at frequencies that are

evolutionarily stable, iii) the impact of incomplete linkage

disequilibrium on our estimation of these G-P maps with SNP

data, and iv) the relative performances of various GWA strategies

at detecting additive genetic variation. The results are detailed

below.

Epistasis maintains genetic variation under selection
Our results demonstrate that for many of the patterns of

epistasis that we assayed, deleterious effects can be maintained at

intermediate frequencies over long evolutionary time periods

(Figure 1 patterns 1–3, and Figures S1, S2 and S3). As might be

expected, a number of G-P maps that maintained genetic variation

at intermediate frequencies also exhibited over-dominance, or

some form of heterozygote advantage (e.g. Figure 1 patterns 4–6).

However, most patterns of epistasis that we assayed (Figure S1) do

not exhibit heterozygote advantage, and these can also effectively

temper the rate of extinction of deleterious alleles. Conversely,

some level of under-dominance is required for variation to be

maintained, for example although the classic A|A pattern of

epistasis (pattern 52, Figure S1) can theoretically avoid fixation

when both loci are at allele frequencies of 0:5 (Figure S2), drift

provides sufficient perturbation to prevent it from being

maintained at equilibrium (Figure S3).

The consequences of these results are examined below. In

summary, we show that a small amount of additive variation is

maintained by epistasis but most genetic variation is non-additive;

that there is a strong bias in GWA studies that lead to an

overestimation of additive effects at QTLs; and that, perhaps

counterintuitively, the most powerful way to uncover additive

Author Summary

In this study we have shown that two independent
problems may have a common cause. Why do traits under
selection exhibit additive genetic variance, and why is the
proportion of the heritability explained by additive effects
much smaller than the total heritability estimated to exist?
Our results indicate that epistatic interactions can allow
deleterious mutations to persist under selection and that
these interactions can abate the depletion of additive
genetic variation. Furthermore, a much larger element of
non-additive genetic variance is maintained, which sup-
ports the notion that the heritability estimated from family
studies could be a mixture of both additive and non-
additive components. We show that searching directly for
epistatic effects greatly improves the discovery of variants
under selection, despite the multiple testing penalty being
much larger. Finally, we demonstrate that common
practices in genome-wide association studies could lead
to both an ascertainment bias in detecting additive effects
and a confirmation bias in perceiving that most of the
genetic variance is additive.

Epistasis and the Missing Heritability
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variation under selection is to parameterise the search to include

epistatic effects using dense genotype information.

Most genetic variation maintained under selection is
non-additive

The genetic variance of a G-P map depends on the allele

frequencies of the loci involved, and selection drives these allele

frequencies to minimise the directional effect of each locus. From

this we can calculate the expected changes in genetic variance over

time. For many of the patterns of epistasis studied they maintain

genetic variance over long evolutionary periods (Figure 2a and

Figure S5), as often their allele frequencies can be maintained at

intermediate levels. However the majority of this variance is non-

additive, with almost all of the additive variance eventually

disappearing (Figure 2b and Figure S6).

Although this study assesses a large number of G-P maps,

because the parameter space of epistatic G-P maps is effectively

infinite the question of how much additive variance can possibly

be maintained under selection by a two-locus system still remains.

To answer this we used a genetic algorithm to heuristically search

the parameter space of the two-locus GP-map, with the objective

of finding epistatic patterns that maintain high additive variance

over evolutionary time. We should note that the purpose of this

exercise is not to identify biologically feasible patterns per se, rather

it is to assess the propensity for additive variance to be maintained

under selection. The epistatic patterns that emerged with the

highest level of maintained additive variance, as a proportion of

total genetic variance, are shown in Figure 1 (patterns 4–6). The

main feature of these patterns is that they exhibit overdominance,

and that even in these extreme cases where the algorithm attempts

to generate the G-P maps with the largest possible maintained

additive variance, it is clear that the majority of genetic variance

that is maintained will still be non-additive.

Incomplete LD leads to the erroneous belief that genetic
effects are mostly additive

While it appears that additive variance is difficult to maintain

either through independent additive effects or through epistatic

interactions, it is clear that most causal effects that have been

discovered through GWA studies appear additive in nature [11].

This paradox may result from both ascertainment and confirma-

tion biases that arise when there is incomplete linkage disequilib-

rium between underlying causal variants and the observed SNPs in

a GWA study.

Figure 2b and Figure S6 show that although estimated genetic

variance at observed SNPs decreases as LD with causal variants

decreases, the estimated proportion of the variance that is additive

actually increases. To illustrate this further Figure 3 shows how

estimates of epistatic GP-maps change when LD is reduced, and

two important biases can be shown.

Firstly, the higher order variance components (rows 3–5) rapidly

haemorrhage genetic variance (see Figure S8), such that even at

LD of r2~0:5 the genotype class means are close to identical. This

means that detection is strongly dependent upon high or complete

LD, even when effect sizes are large, so most epistatic mutations

will remain undetected and their prevalence underestimated.

Hence, because additive variance decays linearly with LD [46], at

low LD they remain detectable leading to an ascertainment bias

for additive vs non-additive effects.

Secondly, with the patterns of canalisation (rows 1–2), as LD

reduces although some genetic variance is maintained, the G-P

map appears entirely additive. Thus functional maps that confer

epistatic effects that can be detected at relatively low LD are likely

to be interpreted as being entirely additive. Thus, researchers who

attempt to quantify the contribution of non-additive variance from

SNPs associated with a trait are liable to incorrectly confirm that

most variants act additively.

Figure 1. Allele frequency trajectories under selection. Top row: G-P maps. 1. Independent additive effects at locus A and B; 2. Dominant
pattern of canalisation; 3. Recessive pattern of canalisation; 4–6. Patterns generated by a genetic algorithm optimising for maximised additive
variance and long-term survival at intermediate frequency. Middle row: Expected allele frequency trajectories for G-P maps under selection, as
derived deterministically, with initial frequencies of 0.1, 0.3, 0.5, 0.7, and 0.9 enumerated over both loci. Frequencies on the y-axis correspond to
alleles a/b. Only one colour appears for patterns 1–3 because the trajectories of both alleles are identical. Bottom row: The path of allele frequencies
as observed through stochastic simulations of populations comprising 1000 individuals and H2~10% at generation 0, with initial allele frequencies
at both loci of 0.5.
doi:10.1371/journal.pgen.1003295.g001

Epistasis and the Missing Heritability
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Searching for epistatic effects improves power to detect
persistent additive variation

Typically GWA studies test each SNP one at a time for additive

effects. To explicitly include interaction terms in the search this

approach can be extended from one dimension (1D) to two

dimensions (2D), where every pair of SNPs is tested jointly for an

association [26,47].

Given that we know the trajectory of allele frequencies under

selection, it is possible to ask what the best GWA strategy for

detecting evolutionarily likely variants might be. Two main search

methods were tested, 1D scans (as are typically performed in GWA

studies), and exhaustive 2D scans (previously computationally

unfeasible until the availability of more advanced software [47]).

For each search method various different model parameterisations

were also tested. We used a Bonferroni correction for all methods,

so 2D scans had a much more severe multiple testing penalty than

1D scans.

Broadly, the results show two important points. Firstly, there is

no single method that is always superior under the conditions that

were tested. Secondly, it is very rare that parameterising for

additive effects is the most powerful method (Figure 4a and Figure

S7). Rather, if LD is no higher than, for example r2~0:7, between

causal variants and observed SNPs then one dimensional scans,

although not particularly powerful in absolute terms, are most

effective provided that both additive and dominance effects are

modelled (2 d.f. test). In the case of very high LD (e.g. dense marker

panels, imputed data, sequence data), a strong advantage in power

to detect variants at evolutionarily likely frequencies can be

conferred by using exhaustive two-dimensional scans and model-

ling whole genotype effects (8 d.f. test).

A more detailed view of this relationship between LD and

detectability is shown in Figure 4b (patterns 4–6). When LD

between causal variants and observed SNPs is high, although

additive variation exists, much greater power can be achieved in

its detection if the search focuses on the larger non-additive

variance components. However, as LD decreases, the proportion

of the genetic variance that is additive increases, thus one

dimensional scans gain an advantage. Nevertheless, as one might

expect at low LD there is in general very little power from any

method.

It may seem surprising that despite the much larger multiple

testing penalty, the 2D scans perform well in terms of power. But

there exists a trade-off between the extra variance explained by

extending the search into higher dimensions, and the amount of

variance required to be detected in order to overcome the multiple

testing correction. The results show that because non-additive

variance components can be maintained under selection the 2D

strategy is conferred an advantage in this trade-off.

Discussion

The architecture of genetic variation must be understood if we

are to make progress in fields such as disease risk prediction,

personalised medicine, and animal and crop breeding. This study

sought to examine the potential for epistasis to maintain genetic

variation under selection, and thus to inform GWA strategies

based on these results.

Figure 2. Deterministic change in variance components of G-P maps under selection. For (a) Genetic variance and (b) Additive variance as
a proportion of genetic variation, with initial frequencies of 0.1, 0.3, 0.5, 0.7 and 0.9 enumerated over both loci. The variance decomposition was
performed at the causal locus (r2~1), and at SNP pairs that were in incomplete LD with the causal loci. Boxes represent the different G-P maps from
Figure 1.
doi:10.1371/journal.pgen.1003295.g002

Epistasis and the Missing Heritability
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Figure 3. Effect of LD on G-P map estimation. Different G-P maps of causal variants (rows of graphs) deterministically calculated from
neighbouring SNPs in different levels of linkage disequilibrium (columns of graphs). All SNP and causal variant frequencies are set to 0.5. Rows 1–2:
Canalisation; 3: A|A; 4: A|D; 5: D|D.
doi:10.1371/journal.pgen.1003295.g003

Epistasis and the Missing Heritability
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We investigated to what extent deleterious mutations could be

maintained as common polymorphisms under selection. A large

sample of potential G-P maps were assayed [48] in order to

develop a broad picture of the general behaviour of epistasis under

selection, and this was extended further by heuristically searching

through the parameter space of epistatic G-P maps. It was

demonstrated that the maintenance of genetic variation at

intermediate frequencies, for traits under selection over evolution-

ary time, could be achieved through a wide range of two-locus

epistatic models. By definition, such is not the case for independent

additive effects (Figures S2 and S3). Following on, it was

demonstrated that even in the best case scenario, where G-P

maps were generated to maximise additive variance, total genetic

variance was mostly composed of non-additive components

(Figure 2b and Figure S6). This finding is in disagreement with

a recent study [28], which showed that for various two-locus

epistatic models, the deterministic partitions of genetic variance

calculated across different frequency distributions were largely

comprised of the additive component. Here we show that those

allele frequencies at which additive variance is high (a large

proportion of the frequency spectrum), are evolutionarily unstable,

thus should epistatic variants be affecting fitness traits then the

majority of the variance will be non-additive. Ultimately there is

no simple mechanism whereby two-locus epistasis will significantly

contribute towards the missing heritability, unless h2 estimates

have been contaminated by non-additive genetic components or

common environment effects. This is a well-known potential

problem with full-sib based estimates and twin studies [30].

Indeed, a recent examination of this problem showed that additive

variance estimates could be inflated significantly when complex

traits are controlled by epistasis [24].

The results suggest that we should expect significant levels of

non-additive variation to be maintained in fitness-related traits.

While non-additive variance components are often considered to

be nuisance terms in quantitative genetics [49], their existence can

be levered to actually improve the detection of additive variance.

Here the premise is that if additive variation is observed then there

is likely to be an accompanying non-additive genetic component

that allows it to persist in the population. Power comparisons were

made between 1D and 2D scans, as well as different model

parameterisations, with a view to testing the power to detect

variants under selection at evolutionarily likely frequencies.

Surprisingly, the simplest and most widely used parameterisation,

modelling for additive effects in one dimension, was seldom the

most powerful approach. On the contrary, because other forms of

genetic variance are co-precipitated along with additive variance,

by parameterising the tests to include them the power was seen to

improve. However, it was observed that even with modest

reductions in LD between causal variants and observed SNPs all

testing strategies tended to decline in performance rapidly. This

Figure 4. The percentage of total additive variance detected by each of 5 different methods. Columns of graphs refer to G-P maps
(Figure 1), rows refer to r2 between causal variants and observed SNPs. (a) Deterministic calculations were performed 25 times, each with different
initial allele frequencies. The percentage of additive variance explained is summed across all runs and generations. (b) The summed VA detected at
each generation as a percentage of the summed VA simultaneously present in 50 populations. For clarity, only the most powerful 1D test (A+D) is
compared against the most powerful 2D test (full parameterisation). A Bonferroni threshold was used, 1:7|10{7 for 1D strategies and 1:1|10{13 for
2D strategies.
doi:10.1371/journal.pgen.1003295.g004
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leaves researchers in a difficult situation, where the strategy of

increasing SNP panel densities as an intuitive response to improve

LD coverage comes at a quadratic cost (in the two-locus case) in

computation time and multiple testing penalties. An important

outcome here is that there is no single test with consistently

superior performance, and this resonates with the idea of the ‘‘no

free lunch’’ theorem, which states that although competing

algorithms will behave differently under different conditions, they

will have identical performance when averaged across all

conditions [50]. The key in such a situation is to know which

conditions are most likely to manifest in the data, and here our

argument is that for fitness traits non-additive effects are likely to

exist at frequencies where additive variance is minimised.

Although the intention behind the use of the genetic algorithm

in this study was to explore the potential for a two-locus system to

maintain additive variance, rather than to necessarily identify

biologically feasible maps, those maps that emerged did not appear

biologically untenable. In fact they can be supported by reports in

the literature due to their tendencies for exhibiting heterozygote

advantage [51,52]. The example of the single locus case,

overdominance, is central to processes of heterosis and inbreeding

depression [52,53], and has been identified in molecular studies

also [54,55]. Indeed, heterozygote advantage plays an important

role in evolutionary theory, as it confers segregational load on a

population, and this type of load cannot be purged due to

balancing selection, potentially rendering populations susceptible

to accumulating a critical mass of such polymorphisms [56]. The

idea of a critical mass of deleterious mutations has been widely

explored in amictic haploid populations, particularly in the context

of Muller’s ratchet, and in this case synergistic epistasis has been

suggested as a mechanism that could alleviate the problem in some

situations [57,58]. This study may offer a similar answer for the

analogous problem of segregational load in diploid populations,

because it can be observed that while patterns of overdominance

(Figure S3, pattern 55) form a stable equilibrium, small

perturbations to this G-P map through the introduction of an

interacting locus (e.g. patterns 45, 47, 53) could destabilise the

equilibrium and lead to eventual fixation.

It is important to note that the processes underlying stasis and

missing heritability are unlikely to be caused by any single factor.

For example, a compelling argument is that though most traits

exhibit genetic variation, selection acts upon multidimensional

trait space in which there is no genetic variation [59], and this will

hold under an additive model of genetic variation. It is also

important to consider the manner in which traits of interests, such

as human diseases, are involved in fitness. For example in an

assessment of selection signatures on SNPs implicated in type 1

diabetes it has been shown that the causal alleles have undergone

positive selection to a greater extent than protective alleles, while

with Crohn’s disease the converse is true [60]. In the case of both

diseases more variants are being discovered as sample sizes

increase [61,62], but given that only a small proportion of the total

heritability has so far been explained, and the search has

concentrated on additive variants only, inferences about the

genetic architecture cannot be made.

Occam’s razor can be invoked to justify the additive paradigm

used in GWA studies [28]. But the analyses presented here

demonstrate that perhaps rejecting more complex models in

favour of simple ones should not always be the automatic choice.

With sample sizes growing and with the tools now available to

search for epistasis in a computationally efficient manner (e.g.

[47,63–66]) it should be possible to explore the genetic architec-

ture of complex traits in directions that were not previously

possible.

Methods

We were interested in simulating the behaviour of epistatic

interactions under selection in order to ask the questions i) for how

long and at which frequencies are deleterious mutations

maintained under selection, ii) how much additive variance can

this produce, and iii) what is the best strategy to identify

evolutionarily persistent variation. We approached this problem

through two methods, using stochastic simulations and by

calculating the expected trajectories deterministically, and overall

a range of different epistatic and dominant G-P maps were

assessed. In addition, we heuristically searched the two-locus

genotype-phenotype parameter space using a genetic algorithm to

assess what the upper limit on how much additive genetic variation

can be maintained under selection.

Deterministic simulations
The evolutionary fate of an arbitrary two-locus epistatic fitness

pattern can be characterised by the allele frequencies and

recombination fraction of the two loci as a Markovian process.

Therefore it is straightforward to calculate the trajectory of allele

frequencies over evolutionary time for a wide range of epistatic

patterns. For each G-P map, deterministic simulations were

performed with varying conditions for initial allele frequencies (25

initial allele frequencies enumerating the set 0:1,0:3,:::,0:9f g over

both loci) and linkage disequilibrium between the linked and

causal SNPs (r2~ 1,0:85,0:7f g). Variance components and

expected test statistics for different parameterisations and under

different assumed search strategies were calculated.

Two-locus frequency calculations. For a two-locus gametic

fitness pattern Gij , where each value of G represents the mean

phenotypic value for individuals with haplotypes i and j,

AB Ab aB ab

AB G11 G12 G13 G14

Ab G21 G22 G23 G24

aB G31 G32 G33 G34

ab G41 G42 G43 G44,

assuming that Gij~Gji, this can be related to the two-locus G-P

map Wij as:

AA Aa aa

BB W11~G11 W12~G13 W13~G33

Bb W21~G12 W22~G14~G23 W23~G34

bb W31~G22 W32~G24 W33~G44:

We can calculate the expected haplotype frequencies fAB, fAb, faB,

fab after one generation based on selection using [45] and [67].

Here, the haplotype frequencies of the current generation are

represented as ci where i~f1,:::,4g denotes each haplotype in the

order listed above, and c0i is the haplotype frequency of the next

generation:

c0i~(ciGizgiRG22(c2c3{c1c4))=�GG: ð1Þ

Here

Gi~
X

j

Gij , ð2Þ

Epistasis and the Missing Heritability
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g1~g4~1, g2~g3~{1, R is the recombination fraction between

the two loci (R~0:5 denotes the two loci are effectively on

separate chromosomes) and

�GG~
X

ciGi: ð3Þ

We ran the simulations for 200 generations, or until one of the loci

becomes fixed. If the minor allele from at least one locus l breaks

the condition

1=2Nƒfl , ð4Þ

where N is the population size (arbitrarily set to 1000 for these

simulations), the epistatic pattern is considered fixed. While this

condition is satisfied, expected variance decomposition and

statistical power are assessed on the system at each generation.

Variance decomposition. As the allele frequencies change

due to selection, while the functional epistatic pattern remains the

same the variance components are liable to change. The

following calculations, taken from [68], can be used to calculate

the marginal additive variances at each locus in a pairwise

epistatic interaction for populations at each generation of the

simulations. Given marginal fitnesses at the three genotypes at

locus A

ui~f 2
B W1iz2fBfbW2izf 2

b W3i, ð5Þ

and at locus B

vi~f 2
AWi1z2fAfaWi2zf 2

a Wi3, ð6Þ

the marginal additive variance at locus A is

2fAfag2
A ð7Þ

and the marginal additive variance at locus B is

2fBfbg2
B ð8Þ

where

gA~fAu1z(1{2fA)u2{fau3 ð9Þ

and

gB~fBv1z(1{2fB)v2{fbv3: ð10Þ

However, because linkage disequilibrium can be generated

between interacting loci under selection (Figure S4) it is incorrect

to quantify the additive variance as the sum of the two marginal

variances. Instead, we use the decomposition method detailed in

[69] and [70] to calculate the total additive genetic variance in a

two-locus system as

VA~2 fAfah2
Az2hAhBdzfBfbh2

B

� �
ð11Þ

where

hA~ gA{
dgB

fAfa

� �
1{

d2

fAfafBfb

� �{1

, ð12Þ

hB~ gB{
dgA

fBfb

� �
1{

d2

fAfafBfb

� �{1

, ð13Þ

and

d~fAB{fAfB: ð14Þ

It should be noted that these calculations assume Hardy-

Weinburg equilibrium, and selection is likely to generate pseudo

LD between unlinked markers, as well as favour certain genotypes

over others which results in a violation of this assumption.

However there is currently no known two-locus variance

decomposition method that maintains orthogonality when the

two loci are under linkage disequilibrium and Hardy-Weinburg

disequilibrium [71], therefore correct estimates of variance

components often cannot be made. However, given that current

testing strategies still use the incomplete extant methods, we can

examine their behaviour without the requirement of orthogonality

between the non-additive components. We use the NOIA method

of decomposition [71] to calculate total genetic variance (VG ) and

the 8 variance components, VA1,VA2,VD1,VD2,VAA,VAD,VDA,f
VDDg.

Detection of additive variance. By specifying the broad-

sense heritability H2 of a fitness trait at generation 0 for each

simulation it is possible to calculate expected F-test performances

under different parameterisations and scan strategies. During the

simulation selection can modify VG by changing allele frequencies,

but the non-genetic variance, VE , remains constant as a function

of VG0
, the genetic variance at initial allele frequencies:

VE~
VG0

H2
{VG0

: ð15Þ

We wanted to find, given a GWAS testing strategy wherein a

SNP’s contribution to the narrow-sense heritability is only

considered if the test statistic meets some significance threshold,

how best to parameterise the hypothesis tests to maximise the

expected amount of additive variance significantly identified for

any given simulation time point. Using an F-test,

F~
Vexplained

k

� �
VE

N{kz1

� �{1

*F (k,N{kz1), ð16Þ

where N is the sample size and k is the number of parameters in

the model, we compared different parameterisations of Vexplained

for exhaustive one and two dimensional scans by quantifying how

much of the total additive variance in the two-locus system was

detected using different GWAS strategies.

For the one dimensional strategy tests for purely additive

effects (Vexplained~VAi; k~1) or complete marginal effects

(Vexplained~VAizVDi; k~2) were performed at each locus i. A

significance threshold of 0:05=300000~1:7|10{7 was set. If met

at only one locus i then VAi additive variance was considered

detected. If met at both loci then the total additive variance VA

was considered detected.

For the two dimensional strategy three different parameterisa-

tions were compared under the conditions of an exhaustive two

dimensional scan. These were for purely marginal effects across

both loci (Vexplained~VA1zVD1zVA2zVD2; k~4), purely
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epistatic effects (Vexplained~VAAzVADzVDAzVDD; k~4), and

for total genetic variance (Vexplained~VG ; k~8). The significance

threshold was set at 0:05=(3000002=2{300000)~1:1|10{12. If

the pairwise test met this threshold then, for the purposes of

understanding the efficacy of two dimensional strategies at

detecting narrow sense heritability, the total additive variance

VA across both loci was deemed to have been detected.

Incomplete LD between causal variants and observed

SNPs. We considered how variance decomposition and testing

strategies were affected when the observed SNPs were at different

levels of linkage disequilibrium with the causal variants

(r2~ 1,0:85,0:7f g). To do this, we transformed the G-P map of

the causal loci (Wij ), to the G-P map of the observed SNPs that

have some level of LD with the causal loci ( ~WWij ). This is

constructed by considering that when LD is reduced, the

genotype class means of ~WWij are a composite of not only Wij ,

but also other genotype class means, and the expected

contribution of the other class means depends on the level of

recombination between the observed SNPs and the causal

variants. We performed the above variance decomposition

calculations on ~WWij , assuming that

~ccj~cj ð17Þ

where ~ccj are the gametic frequencies of the observed SNPs. For

simplicity, only the causal variants were inherited from one

generation to the next, with new linked SNPs being composed at

each new generation. The G-P map ~WWij is calculated as

~WWij~
X3

k

X3

l

TAikTBjlWkl

 !
fAifBj

� �{1
, ð18Þ

where the frequencies fmi are the expected genotype frequencies

for the m interacting causal variants A and B, such that

fAi~

f 2
A, i~1

2fAfa, i~2

f 2
a , i~3

8><
>: ð19Þ

and

fBi~

f 2
B , i~1

2fBfb, i~2

f 2
b , i~3;

8><
>: ð20Þ

and matrix T is 3-dimensional with dimensions 2|3|3, where

Tm:: is defined as

D2
m1 2Dm1Dm2 D2

m2

2Dm1Dm3 2(Dm2Dm3zDm1Dm4) 2Dm2Dm4

D2
m3 2Dm3Dm4 D2

m4

2
64

3
75 ð21Þ

where the four gametic frequencies (Dm:) for the interacting

causal loci (m~ A,Bf g), and their correlated observed SNPs were

calculated as:

Dm1~r2f 2
m(1{fm)2zf 2

m ð22Þ

Dm2~Dm3~fm(1{fm){r2f 2
m(1{fm)2 ð23Þ

Dm4~r2f 2
m(1{fm)2z(1{fm)2: ð24Þ

Genetic algorithm for generating epistatic patterns
The purpose of genetic algorithms is to heuristically search a

large solution domain for optimal model parameters whilst

avoiding a computationally prohibitive exhaustive search [72].

In this case, the algorithm is used to search for two-locus epistatic

fitness patterns W that simultaneously maximise additive genetic

variance and avoid fixation through selection, where W is a 3|3
G-P map whose values represent the fitness associated with each

two-locus genotype. In this case the building blocks are the nine

two-locus genotype class means that comprise the G-P map.

Initialisation. Initially a set W of nW randomly generated

candidate patterns W are created by sampling values for each of

the 9 cells from a uniform distribution, and then scaling all values

so that the maximum and minimum values for each W are 1 and 0

respectively.

Selection. The candidate patterns are assessed based on two

rounds of selection: expected time to fixation and expected level of

additive variance generated. A set S of simulations are initialised

given sets of WA and WB initial allele frequencies for loci A and B

respectively, such that nP~nWA nWB (e.g. 25 simulations initialised

by enumerating all combinations of the sets WA~WB~

0:1,0:3,0:5,0:7,0:9f g across two loci). Allele frequency changes

and fixation are measured as in equations (1) and (4) respectively at

each generation c for C generations. For the candidate pattern to

be considered for selection at least n of its simulations must remain

unfixed after C generations. For each candidate pattern its total

additive genetic variance sTA over time is calculated by summing

the joint additive variance for both loci (VA) for each generation

starting after generation n and until either fixation or generation C,

and across all initial allele frequency conditions:

sTA~
XnWA

i

XnWB

j

XC

c~n

H(W ,WA
i ,WB

j ,c) ð25Þ

where H(W ,WA
i ,WB

j ,c) is the additive variance at generation c of

simulation Sij . The nL candidate patterns with the largest total

additive variances are selected for the next round, comprising the

set L, or if no candidate patterns reach the threshold t then all

patterns are randomly initialised again.

Reproduction. The set of W0 candidate patterns for the next

round of selection is comprised of the L patterns selected from the

current round, a set of MLi
mutations for each selected pattern Li,

and a set of P random patterns produced as in the initialisation

step, thus W0~ P,L,M1,:::,MnL
f g. Mutation is performed by

adjusting each element of the candidate pattern:

W 0
ij~Wijz ð26Þ

where

*N(0,s) ð27Þ

Epistasis and the Missing Heritability

PLOS Genetics | www.plosgenetics.org 9 February 2013 | Volume 9 | Issue 2 | e1003295



and then scaling to the boundaries 0 and 1 as in the initialisation

step.
Termination. The algorithm is performed for r rounds.

Because the set L candidate patterns from the previous round are

always included in the following round, the maximum score will

never decrease. Therefore the optimal epistatic pattern is the

considered to be the highest scoring candidate pattern in the final

round. Different patterns can be generated by rerunning the entire

process with different random seeds.

The code for this algorithm is available at https://github.com/

explodecomputer/epiSpaces/.

Population simulations
To consider the potential impact of genetic drift and random

noise on the conclusions from the deterministic simulations, similar

conditions were recreated heuristically on randomly generated

populations. For each epistatic pattern we generated 300

populations of 1000 individuals. Each individual has a two-locus

genotype xijxik and a corresponding phenotype yi such that

yi~Wxijxik
ze ð28Þ

where

e*N(0,VE) ð29Þ

and xij and xik were the fitness values for indvidual i corresponding

to the G-P map Wjk. The non-genetic variance of the trait was

defined at generation 0 as in equation 15 and remained constant at

each generation. The heritability, H2, was set to 10% at generation

0. Each generation 500 individuals were sampled from a discrete

probability distribution where the individual’s phenotype was the

relative probability of being sampled, and from these 250 random

pairings were made to produce 1000 offspring for the next

generation. Phenotypes for each new individual were created at

each generation as in equation 28, and simulations continued until

at least one locus reached fixation. The initial allele frequencies were

0.5 for each locus, and the simulations ran for 200 generations or

until at least one locus became fixed.

The code for this algorithm is available at https://github.com/

explodecomputer/epiFit/.

Supporting Information

Figure S1 G-P maps. 1 Neutral; 2–51 Enumeration of all binary

trait patterns, excluding reflections, rotations and inversions, as

derived by [48] (6 and 29 are non-episatatic); 52–56 Additi-

ve6Additive, Additive6Dominance, Dominance6Dominance,

Over-dominance, additive.

(TIF)

Figure S2 Deterministic trajectory of allele frequencies as in Figure 1

(row 2), but for an extended set of patterns (detailed in Figure S1)

(TIF)

Figure S3 Simulated trajectory of allele frequencies as in Figure 1

(row 3), but for an extended set of patterns (detailed in Figure S1)

(TIF)

Figure S4 Quasi-LD generated by selection. For the 25

deterministic simulations the expected quasi-LD between the

physically unlinked causal SNPs was calculated. It can be seen that

significant levels are generated, such that orthogonal standard

parameterisation methods would violate assumptions of indepen-

dence. Boxes represent different G-P maps from Figure S1.

(TIF)

Figure S5 Deterministic change in genetic variance for loci under

selection exhibiting various epistatic patterns (Figure S1), when LD

between the causal variants and observed SNPs varies. For clarity,

only the results from initial frequencies of 0.5 at both loci are shown.

Boxes represent different G-P maps from Figure S1.

(TIF)

Figure S6 As in Figure S5, but this time showing the proportion

of the genetic variance that is additive.

(TIF)

Figure S7 As in Figure 4a, but for only three tests - Additive in

one dimension (A (1D)), genotype in one dimension (A+D (1D)),

and full epistatic in two dimensions (F (2D)). Each box has the

additive variance detected across all populations and generations

as a proportion of the total additive variance that was created for

each test when the observed SNPs were in varying levels of LD

with the causal variants. For 44 patterns the full epistatic test is

most powerful when r2~1, but when r2~0:7 it is never the most

powerful, rather 39 patterns are best detected by the one

dimensional genotype parameterisation.

(TIF)

Figure S8 Relationship between genetic variance of observed

SNPs (y axis) and their linkage disequilibrium with causal variants

(x axis). Observed SNPs have the same allele frequency as their

linked causal variants, and there is no linkage disequilibrium

between causal variants or between observed SNPs. The blue line

represents a purely additive G-P map, faint black lines each

represent the 55 dominant or epistatic G-P maps in Figure S1, and

the black dashed line represents the smoothed average of all black

lines. Allele frequencies of G-P maps are represented by boxes, the

frequency of locus A horizontally and locus B vertically.

(TIF)
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