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Alterations of endogenous pain-modulatory system
of the cerebral cortex in the neuropathic pain

Peng Chen,1,6,7,* Chen Wang,2,6 Qian Gong,3,6 Yihui Chai,1 Yunzhi Chen,1 Cuiwen Song,1 Yuanhua Wu,4,*

and Long Wang5,*

SUMMARY

Neuropathic pain (NeP) remains a significant clinical challenge owing to insuffi-
cient awareness of its pathological mechanisms. We elucidated the aberrant
metabolism of the cerebral cortex in NeP induced by the chronic constriction
injury (CCI) using metabolomics and proteomics analyses. After CCI surgery,
the values of MWT and TWL markedly reduced and maintained at a low level.
CCI induced the significant dysregulation of 57 metabolites and 31 proteins in
the cerebral cortex. Integrative analyses showed that the differentially ex-
pressed metabolites and proteins were primarily involved in alanine, aspartate
and glutamate metabolism, GABAergic synapse, and retrograde endocannabi-
noid signaling. Targeted metabolomics and western blot analysis confirmed the
alterations of some keymetabolites and proteins in endogenous pain-modulatory
system. In conclusion, our study revealed the alterations of endocannabinoids
system and purinergic system in the CCI group, and provided a novel perspective
on the roles of endogenous pain-modulatory system in the pathological mecha-
nisms of NeP.

INTRODUCTION

Neuropathic pain (NeP) is formally defined as pain induced by a lesion or disease of the somatosensory

nervous system and commonly characterized by ongoing burning pain, paroxysmal pain, allodynia, and hy-

peralgesia.1,2 Data from epidemiological studies show that approximately 6.9%–10% of the general pop-

ulation experience neuropathic pain due to stroke, spinal cord or brain trauma, diabetes, multiple sclerosis,

infection, cancer, and chemotherapy.3,4 Currently, pharmacological treatments, such as tricyclic antide-

pressants, serotonin, and norepinephrine reuptake inhibitors, and gabapentinoids, are effective in less

than half of patients.5 Hence, a deeper study of the pathophysiological mechanisms in neuropathic pain

is urgently needed, which is essential for new drug discovery.

Multiple complex mechanisms from the periphery to brain are implicated in neuropathic pain.4,6 In

recent decades, an extensive cortical network has been revealed to play a critical role in the perception

and modulation of pain, such as primary somatosensory cortex (S1), anterior cingulate cortex (ACC), and

prefrontal cortex (PFC).7–10 Functional and structural synaptic plasticity in S1 and ACC are viewed as bio-

markers for neuropathic pain and characterized as the increase of turnover rate in dendritic spines,

changes in spine morphology, and transformation of pyramidal neurons into hyperactivity.9 PFC is a brain

region where it integrates noxious inputs with sensory perception, cognition, and emotion. It critically

modulates the pain experience and a large number of comorbidities of painful disease are evoked by

PFC changes, structural reorganization of neurons and glia, signal transduction, and cellular

metabolism.11,12

Recently, some studies have revealed an association between neuropathic pain and metabolic distur-

bances in the serum, spinal cord, and pain-related brain regions using multiple approaches.13 Patti et al.

reported the dysregulation of sphingomyelin-ceramide metabolism in the dorsal horn of neuropathic

pain animal models induced by tibial nerve transection.14 Juliana found that regulation of cholesterol meta-

bolism in the spinal microglia alleviated neuropathic pain by inhibiting the perpetuation of neuroinflamma-

tion.15 The metabolic alteration caused by neuropathic pain also emerges in brain. For example, Huo et al.

found the change of brain metabolic connectivity and network in rodent models of neuropathic pain
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induced by brachial plexus avulsion injury using 2-deoxy-2-[18F] fluoro-D-glucose (18F-FDG) PET im-

ages.16,17 However, the molecular mechanism underlying the phenomena in brain is far from clear.

The chronic constriction injury (CCI) model developed by Bennett and Xie has been a most commonly used

model of neuropathic pain caused by peripheral nerve injury.18 The objective of this study is to investigate

the alterations in metabolite and protein expression profiles in the cerebral cortex of the CCI model, with

the aim of elucidating the underlying mechanisms involved in the development of neuropathic pain, using

proteomic and metabolomic analyses.

RESULTS

CCI caused the changes in pain-related behaviors

As the crucial indicators of pain-related behaviors, mechanical withdrawal threshold (MWT) and thermal

withdrawal latency (TWL) are assessed before and 3, 7, 11, and 15 days after CCI surgery. No difference

in MWT and TWL values was observed between the sham group and CCI group before surgery

(p < 0.05) (Figures 1A and 1B). The MWT and TWL values in the CCI group markedly reduced at 3 days after

surgery and maintained at a low level during the observation compared with those in the sham group

(p < 0.01) (Figures 1A and 1B), suggesting that CCI surgery caused significant hyperalgesia.

CCI alters the metabolism in the cerebral cortex

Untargeted metabolomic analyses were used to estimate metabolic disorders in the cerebral cortex trig-

gered by CCI. A total of 816 metabolites in positive ion mode and 605 metabolites in negative ion mode

were detected using UHPLC-Q-TOF/MS. Principal component analysis and orthogonal partial least-

squares discriminant analysis (OPLS-DA) were performed to analyze the overall distribution and difference

between groups (Figures 2A–2D). There was a clear separation between the sham group and CCI group,

suggesting alterations of the metabolism in the cerebral cortex induced by neuropathic pain. The results of

permutation tests showed the stability and validity of the OPLS-DA model (Figures 2E and 2F).

In the OPLS-DA model, the variable importance in the projection (VIP) value was calculated to explain the

importance of each variable to classification. The screening conditions of differentially expressed metab-

olites (DEMs) were VIP＞1 and p < 0.05. In total, 57 DEMs (33 upregulated and 24 downregulated) were

screened out in the CCI group compared with the sham group (Figure 3A). Based on the chemical taxon-

omy, the DEMs largely belong to the classes of amino acids, peptides, and analogs, carbohydrates and car-

bohydrate conjugates, and fatty acid esters (Figure S1A).

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was performed to elucidate the bio-

logical functions of DEMs. The enrichment analysis revealed that the DEMs mainly involved in alanine,

aspartate and glutamate metabolism, carbon metabolism, biosynthesis of amino acids, phospholipase

Figure 1. TheMWT and TWL values between the CCI group and sham group before and 3, 7, 11, and 15 days after

CCI surgery

(A) The MWT values between the CCI group and sham group.

(B) The TWL values between the CCI group and sham group.*p < 0.05 and **p < 0.01 versus the sham group.
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D signaling pathway, arginine biosynthesis, glucagon signaling pathway, phenylalanine, tyrosine and tryp-

tophan biosynthesis, pentose phosphate pathway, lysosome, and purine metabolism (Figures 3B and S1B).

Pearson’s correlation analysis was conducted to determine the correlation of DEMs and visualized using a

heatmap, with the red and blue color representing strong positive and negative correlations (|r|> 0.8 and

p < 0.05) (Figure S2). For instance, the level of inosine had a significant positive correlation with the abun-

dances of alpha�Linolenic acid, 7-acetoxy-3-formylchromone, and 3-deoxy-d-glycero-d-galacto-2-nonu-

losonic acid. These data demonstrate that CCI can cause metabolic disorder in the cerebral cortex.

CCI causes abnormal expression of proteins in the cerebral cortex

Tandem mass tag quantitative proteomic analysis was applied to determine abnormal expression of

proteins in the cerebral cortex induced by CCI. Based on the screening conditions of |FC|R1.2 and

p value＜0.05, 31 differentially expressed proteins (DEPs) were identified in the CCI group compared

with the sham group, including 19 upregulated and 12 downregulated proteins (Figures 4A and 4B). The

DEPs between the CCI and sham groups were primarily located in the nuclear, cytoplasm, and plasma

membrane predominantly located in nucleus, extracellular region, cytoplasm, plasma membrane, and

mitochondria (Figure S3A).

Gene ontology annotation was used to classify the cellular component, molecular function (MF), and bio-

logical process (BP) of the DEPs between the CCI and sham groups (Figure S3B). For MF, the DEPs were

predominantly enriched in oxidoreductase activity, saccharopine dehydrogenase activity, 8-hydroxy-20-de-
oxyguanosine DNA binding, forked DNA-dependent helicase activity, telomeric D loop binding, and so on

(Figure 4C). For BP, the DEPs were mainly involved in regulation of response to interferon-gamma, inter-

feron-gamma-mediated signaling pathway, humoral immune response mediated by circulating immuno-

globulin, alpha-amino acid biosynthetic process, positive regulation of tyrosine phosphorylation of STAT

protein, and so on (Figure 4C). The enrichment analysis of KEGG showed that the DEPs were closely related

to lysine degradation, D-glutamine and D-glutamate metabolism, nitrogen metabolism, GABAergic syn-

apse, and arginine biosynthesis (Figure 4D).

Integrative analyses of DEMs and DEPs between the CCI and sham groups

An integrative analysis was performed to clarify the relationship between proteins and metabolites. Based

on KEGG database, 11 shared pathways of DEMs and DEPs were found, including neuroactive

ligand�receptor interaction, alanine, aspartate and glutamate metabolism, lysine degradation,

GABAergic synapse, arginine biosynthesis, glycerophospholipid metabolism, and retrograde endocanna-

binoid signaling (Figures 5A and 5B). The correlation between DEMs and DEPs was calculated using Pear-

son correlation coefficient and constructed into a correlation network with |r|R0.8 and P＜0.05 (Figures 5C

and 5D). In addition, IPA was applied to categorize the DEMs and DEPs into two functional networks,

including ‘‘cell cycle, cell-to-cell signaling and interaction, post-translational modification’’ and ‘‘develop-

mental disorder, hereditary disorder, and metabolic disease’’ (Score＞20, Figures S4 and S5).

CCI alters endogenous pain-modulatory system in the cerebral cortex

Alterations of some key metabolites and proteins in endogenous pain-modulatory system, such as retro-

grade endocannabinoid signaling and purine metabolism, were found based on the above bioinformatic

analysis, and then validated using targeted metabolomics and western blot analysis. The results showed

that CCI significantly decreased the levels of ATP, indosine-50-triphosphate, deoxyguanosine-50-triphos-
phate, arachidonic acid, arachidonoyl ethanolamide (AEA), and linoleate, while increased the levels of

adenosine and inosine (INO) (P＜0.05) (Figure 6). At the protein level, the expression of cyclooxygenase

2, prostaglandin (PG) F2alpha synthase (FAM213B), and adenylate cyclase (ADCY) was elevated in CCI

model, while the content of potassium voltage-gated channel (KCNJ) was reduced (P＜0.05, Figure 6).

These proteins were the key enzyme in the production of PGs from arachidonic acid and the downstream

molecules of AEA and adenosine receptors, respectively.

Figure 2. PCA score plots, OPLS-DA score plots, and permutation tests in cerebral cortex samples between the CCI (C) and sham (S) groups in the

positive and negative ion modes

(A and B) PCA score plots in the positive and negative ion modes.

(C and E) OPLS-DA score plots and permutation tests in positive ion modes.

(D and F) OPLS-DA score plots and permutation tests in negative ion modes.
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DISCUSSION

The extensive network of the cerebral cortex is considered to play an essential role in the perception and

modulation of pain.7 NeP is almost invariably accompanied by the structural, functional, and metabolic al-

terations in the pain-related cortical areas.9,19 In turn, these changes further promote the progression of

neuropathic pain. At present, the metabolic mechanism underlying the changes was rarely reported in

the cerebral cortex of neuropathic pain.

In this study, we elucidated the aberrant metabolism in the cerebral cortex induced by CCI using the pro-

teomics and metabolomics analyses. For metabolomics analysis, NeP caused significant alterations of 57

metabolites (33 upregulated and 24 downregulated) in the cerebral cortex of the CCI rats, which were en-

riched in some important pain-related pathways including alanine, aspartate and glutamate metabolism,

biosynthesis of amino acids, and purine metabolism. For proteomics analysis, NeP induced aberrant

expression of 31 proteins (19 upregulated and 12 downregulated) in the cerebral cortex. Integrative ana-

lyses between proteomics and metabolomics showed that DEMs and DEPs were primarily involved in

alanine, aspartate and glutamate metabolism, lysine degradation, GABAergic synapse, arginine biosyn-

thesis, glycerophospholipidmetabolism, and retrograde endocannabinoid signaling. Finally, targetedme-

tabolomics and western blot further confirmed that retrograde endocannabinoid signaling and purine

metabolism were the most important pathways in the regulation and progression of NeP.

AEA is one of the best-characterized endocannabinoids that acts in regulating pain sensation and serves as an-

algesics in several pain models and clinical neuropathies.20,21 AEA is classically hydrolyzed from N-acyl-

phosphatidylethanolamine by specific phospholipase D and arachidonic acid and ethanolamine by fatty acid

amidhydrolase.22Arachidonicacid canbemetabolized intoPGthatmostly acts as importantmediatorsof inflam-

matory response andpain.23,24 The analgesic effect of AEA in the central nervous system is tightly associatedwith

the cannabinoid receptor 1 (CBR1), which is widely expressed at presynaptic neurons in the cerebral cortex.21,25

Typically, stimulation of CBR1 inhibits the activity of adenylyl cyclase and protein kinase A, regulates diverse ion

Figure 3. Bioinformation analysis of the DEMs in cerebral cortex samples between the CCI and sham groups

(A) The clustering heatmap of the DEMs in cerebral cortex samples between the CCI and sham groups.

(B) The KEGG enrichment analysis of DEMs in cerebral cortex samples between the CCI and sham groups. See also Figures S1 and S2.
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channels, and activates several mitogen-activated protein kinases to modulate pain transmission.26–28 In our

study,we founda significant reduction in levels ofAEA, arachidonic acid, and linoleic acid, theprecursor of arach-

idonic acid, and varying degreesof elevation in PGbymetabolomics analyses. And the results of proteomics and

western blot analysis revealed the decrease of KCNJ3 and the increase of ADCY5 and FAM213B. Therefore, we

speculated that the excessive synthesis of PG led to the depletion of arachidonic acid and AEA, and abnormal

changes of endocannabinoid signaling in neuropathic pain.

The purinergic system, involving ATP and its metabolite adenosine, exerts a critical role in pain generation and

transmission.29 Adenosine is mainly produced by hydrolysis of adenine nucleotides or S-adenosylhomocysteine

Figure 4. Bioinformation analysis of the DEPs in cerebral cortex samples between the CCI and sham groups

(A) Volcano plots of the DEPs in cerebral cortex samples between the CCI and sham groups.

(B) Clustering heatmaps of the DEPs in cerebral cortex samples between the CCI and sham groups.

(C) GO enrichment analysis of the DEPs in cerebral cortex samples between the CCI and sham groups.

(D) KEGG pathway enrichment analysis of the DEPs in cerebral cortex samples between the CCI and sham groups. See also Figure S3.
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via a series of enzymes.30 The generation of adenosine is strictly regulated by themetabolic state of cells. Physio-

logically, adenosinemaintains in the lownanomolar range,butmarkedly increasesduring the statesof heightened

metabolic demand, including epilepsy, pain, inflammation, and cancer.31 Adenosine primarily acts on A1 and A3

adenosine receptors to suppress astrocyte activation, inhibits proinflammatory cytokine expression, and restores

GABAergic inhibitory function in the cerebral cortex of neuropathic painmodel.29,32 Inosine, the firstmetabolite of

adenosine, can also induce antinociceptive effect via adenosine A1 receptor.33,34 In our study, the content of en-

ergymolecules, including ATP, GTP, and dGTP, was reduced to varying degrees and the levels of adenosine and

inosine were significantly elevated in CCImodel, indicating that CCI initiated excessive consumption of energy in

the cerebral cortex and stimulatedendogenous adenosine system for analgesia toexert a ‘‘guardianangel’’ role.31

The endocannabinoids system and purinergic system has been reported to have complex interactions in

the past. ATP is usually synthesized in large quantities at the site of tissue injury, and mobilize the release

of arachidonic acid and PGE2.35 Feedback regulation also occurs between multiple pairs of molecules in

two systems. Arachidonic acid increases tonic adenosine modulation as a possible feedback loop to limit

arachidonic acid facilitation of neuronal excitability.36 Both AEA and adenosine play inhibitory roles in pain

signals downstream of ATP.37–39 In the development of neuropathic pain, multiple pain and analgesic

Figure 5. Integrative analyses of DEMs and DEPs in cerebral cortex samples between the CCI and sham groups

(A and B) The shared significant KEGG enrichment pathway of DEMs and DEPs in cerebral cortex samples between the CCI and sham groups.

(C and D) Correlation of DEMs and DEPs in cerebral cortex samples between the CCI and sham groups. See also Figures S4 and S5.
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pathways are disordered, resulting in pathological hyperalgesia. Taking our research findings as an

example, the two systems showed opposite trends in the classical analgesic pathway in the CCI model (Fig-

ure 7). The depletion of AEA relieves the inhibition of ACDY5, making ATP further trigger downstream pain

pathways. However, inhibition of this process by adenosine is not sufficient to reverse the upregulation of

Figure 6. Targeted metabolomics and western blot analysis of key DEMs and DEPs in cerebral cortex samples

between the CCI and sham groups

*p < 0.05 and **p < 0.01 versus the sham group.
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ACDY5. The role of ‘‘guardian angel’’ may be not enough to extinguish the ‘‘painful flame’’ of hyperalgesia.

Based on the above findings, we speculate that the treatment of hyperalgesia caused by neuropathic pain

requires more understanding of endogenous pain regulatory networks (such as in-depth analysis of the

multi omics), and it is possible to reduce individual pathological feelings through multi-point intervention.

In conclusion, we demonstrate the alterations of endocannabinoids system and purinergic system in CCI-

induced NeP using metabolomics and proteomics analyses. Our study provides a novel perspective on the

potential roles of endogenous pain-modulatory system in the pathological mechanisms of NeP.

Limitations of the study

This study provided a novel perspective on the potential roles of endogenous pain-modulatory system in

the pathological mechanisms of NeP. Unfortunately, we are unable to measure the changes of biochemical

and metabolic response at different time points, which is important to obtain a more comprehensive un-

derstanding of the pathway sequence and the dynamics of energy demand in NeP.
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B Lead contact

B Materials availability

Figure 7. Endogenous pain regulation network

The network mainly contains the endocannabinoids system and purinergic system, which showed opposite trends in the

classical analgesic pathway in the CCI model. The ‘‘guardian angel’’ role of endogenous adenosine system can be not

enough to extinguish the ‘‘painful flame’’ of hyperalgesia induced by the depletion of AEA.
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Rabbit anti-ADCY5 Bioss Cat# bs-3922R; RRID: AB_10857032

Rabbit anti-FAM213B Abcam Cat# Ab180932

Rabbit anti-COX2 Affinity Cat# AF7003; RRID: AB_2835311

Anti-GDNF antibody Good Here Biotech Cat# AB-P-R 001

Goat anti–rabbit horseradish peroxidase (HRP) Wuhan Boster Biological Technology Cat# BA1054; RRID: AB_2734136

Chemicals, peptides, and recombinant proteins

Methanol Fisher Scientific Cat# A456-4

Acetonitrile Merck Cat# 1499230-935

Ammonium acetate Merck Cat# 70221

Ammonium hydroxide Fisher Scientific Cat# A470-500

Ammonium formate Merck Cat# 70221

Formic acid Merck Cat# 00940

Sodium dodecyl sulfate (SDS) Bio-Rad Cat# 161-0302

Dithiothreitol Merck Cat# 9163-5G

Trypsin Promega Cat# V5113

KH2PO4 Sinopharm Cat# 10017618

KCl Sinopharm Cat# 10016318

RIPA lysis buffer Meilunbio Cat# MA0151

Protease inhibitors Meilunbio Cat# MB12707

PVDF membrane Millipore Cat# IPVH00010

Critical commercial assays

Isotope standards Cambridge Isotope Laboratories N/A

BCA protein assay Biyuntian Cat# P0012

TMT reagent Thermo Scientific N/A

Experimental models: Organisms/strains

Rat: Sprague-Dawley Hunan SJA Laboratory Animal Co. N/A

Software and algorithms

SPSS Statistics https://www.ibm.com/support/pages/

downloading-ibm-spss-statistics-27

Version 27.0.

KASS http://www.genome.jp/kegg/kaas/ Version 2.0

Proteome Discoverer Thermo Scientific Version 1.4

MASCOT Matrix Science Version 2.2

Others

Electronic von Frey anaesthesiometer IITC Life Science Model: 38450

Paw stimulator analgesia meter IITC Life Science Model: 390

UHPLC system Agilent Technologies Model: 1290 Infinity

Triple TOF 6600 mass spectrometer AB Sciex Model: Triple TOF 6600

6500+ QTRAP mass spectrometer AB Sciex Model: QTRAP 6500+

C18 column Waters Model: ACQUITY UPLC BEH C18
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(740466982@qq.com).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d All data reported in this paper will be shared by the lead contact on request.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact on request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals

Sprague-Dawley rats (male, six weeks old, 160-200g) were obtained from Hunan SJA Laboratory Animal

Co., Ltd, (Changsha, China; Certificate NO. SCXK (Xiang) 2019-0004) and maintained in specific path-

ogen-free (SPF) facility with a 12-hour light/dark cycle and a liberalized diet. Fourteen rats were randomized

into the sham group and CCI group (n=7 in each group). Animal experimental design and procedures were

reviewed and approved by Animal Use and Ethic Committee of the First Affiliated Hospital of Guangzhou

University of Chinese Medicine (License No. GZTCMF1-2018037).

METHOD DETAILS

Animal models

The rats were anaesthetized with pentobarbitone sodium for preparation of CCI surgery in reference to the

previous literature.13 The skin of the left thigh was incised and the local muscles were separate to

adequately expose the sciatic nerve. The nerve was moderately ligated by making four thread knots using

4-0 silk with a 1 mm separation between each knot. In parallel, the rats in the sham group underwent the

same surgical steps without ligation.

Behavioral tests

Mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were performed to evaluate

mechanical and thermal hyperalgesia before surgery and 3, 7, 11 and 15 days after surgery. For MWT test,

the rats were individually acclimated to the environment in a transparent plexiglass box with a mental metal

mesh floor for 30 min. The ipsilateral plantar surface of the rats was stimulated using an electronic von Frey

anaesthesiometer (IITC Life Science Instruments, Woodland Hills, CA, USA) five times at five-minute inter-

vals. For TWL test, the rats were individually acclimated to the environment in transparent plastic boxes for

30 min. A radiant heat source (Model 390, IITC Life Science Instruments, Woodland Hills, CA, USA) was

focused on the surface of the left hindpaw. When the rats lifted or licked the hindpaw, the corresponding

figures on the screen were documented and averaged to obtain MWT and TWL values.

Continued
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Amide column Waters Model: ACQUITY UPLC BEH Amide

Centrifuge Eppendorf Model: 5430R

Empore� SPE Cartridges C18 Merck Cat# 66883-U

AKTA Purifier system GE Healthcare Model: Purifier100

Q-Exactive mass spectrometer Thermo Scientific Model: Q-Exactive HF-X

Acclaim PepMap100 Thermo Scientific N/A

EASY column Thermo Scientific N/A
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Sample preparation

At day 15 after surgery, the animals were intraperitoneally injected with pentobarbitone sodium (40 mg/kg)

and heavily anaesthetized. In accordance with standard anatomical landmarks, we carefully separated the

cerebral cortex from whole brain tissue of rats to investigate this region.40,41 Specifically, we used the

following method: 1) Following decapitation, the rat’s skull was carefully removed, and the brain was ex-

tracted while being kept on ice; 2) The cerebral cortex was then separated from the whole brain by peeling

it away along the midline on the surface of the brain. The hippocampus, located at the base of the cerebral

cortex, was clearly visible and was not included in our dissection; 3) It’s important to note that the cerebral

cortex is composed of gray matter, while the subcortical cortex is composed of white matter, and these

regions were readily distinguishable with the naked eye. Cerebral cortical tissues were harvested, immedi-

ately frozen in liquid nitrogen and stored at -80�C for ultraperformance liquid chromatography/quadrupole

time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and liquid chromatography-tandem mass spectrom-

etry (LC-MS/MS).

Untargeted metabolomics analysis

The cerebral cortex samples were homogenized three times (20s each) in 200 mL of H2O with five ceramic

beads by the homogenizer. The homogenized solution was added with 800 mL of pre-cooled methanol/

acetonitrile (1:1 volume ratio) and centrifuged for 15 min (14000 g, 4�C) to take the supernatant and dry

it in a vacuum centrifuge.

For untargeted metabolomics analysis, LC-MS/MS were conducted with an Agilent1290 Infinity UHPLC sys-

tem (Agilent Technologies, Santa Clara, CA, USA) coupled to a Sciex TripleTOF 6600 instrument (AB Sciex,

Foster City, CA, USA). Hydrophilic interaction liquid chromatography (HILIC) separation was performed us-

ing an ACQUITY UPLC BEH column (2.1 mm3100 mm, 1.7 mm; Waters, Manchester, UK) with the injection

volume of 2 mL, the flow rate of 0.3 mL/min and the column temperature of 25�C. The mobile phase con-

sisted of buffer A (25 mM ammonium acetate + 25 mM ammonium hydroxide + water) and buffer B (aceto-

nitrile) with a linear gradient as follows: 85% buffer B for 1 min, a linear decrease of buffer B from 85% to 65%

for 11min, a decrease of buffer B from 65% to 40% for 0.1min, 40% buffer B for 4min, and a rapid increase of

buffer B from 40% to 85% for 0.1 min.

MS analysis was carried out in electrospray ionization (ESI) negative and positive modes and the conditions

were set as follows: ion source gas1 (GS1) 60 psi, ion source gas2 (GS2) 60 psi, curtain gas (CUR) 30 psi, tem-

perature 600�C, and ion spray voltage (IS)G5500 V. MS acquisition was performed in a range of 60-1000 Da

with the accumulation time of 0.20 s/spectra. MS/MS acquisition was performed in a range of 25-1000 Da

with the accumulation time of 0.05 s/spectra. The product ion scan is acquired using information depen-

dent acquisition (IDA) model with the collision energy of 35 V G 15 eV, declustering potential of G60 V,

exclude isotopes within 4 Da, and 10 candidate ions to monitor per cycle.

The rawMS data were converted and imported into XCMS software for peak picking, peak grouping, anno-

tation of isotopes and adducts. The metabolites were identified by comparing accuracy m/z value

(<25 ppm) and MS/MS spectra with an in-house database which was established with available authentic

standards.42 After sum-normalization, the processed data were subjected to multivariate data analysis,

such as principal component analysis (PCA) and orthogonal partial least-squares discriminant analysis

(OPLS-DA). In the OPLS-DA model, the variable importance in the projection (VIP) value of each variable

was calculated to explain its contribution to classification. Furthermore, univariate analyses were conduct-

ed to determine the differences between the sham and CCI groups. VIP＞1 and P < 0.05 were used as the

screening criteria of differentially expressed metabolites (DEMs). Hierarchical clustering of samples and

DEMs was performed using ComplexHeatmap R package (Version 3.4). Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway annotations were carried out using KEGG Automatic Annotation Server

(KASS, http://www.genome.jp/kegg/kaas/). Pearson correlations of DEMs were conducted using a free on-

line platform (https://www.bioinformatics.com.cn).

Proteomics analysis

Sample lysis and protein extraction were performed with SDT buffer, including 4% sodium dodecyl sulfate

(SDS), 100 mM Tris-HCl (pH7.6) and 1mMdithiothreitol (DTT). Protein was quantified with the bicinchoninic

acid (BCA) protein assay (Biyuntian, Shanghai, China) and digested by trypsin using the filter-aided sample

preparation (FASP) method.43 The digested peptides were desalted using Empore� SPE Cartridges C18
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(Sigma, St Louis, MO, USA), concentrated by vacuum centrifugation and redissolved in 40 mL of 0.1% formic

acid. The peptide content was determined with UV light spectral density at 280 nm. To each sample,

approximately 100 mg peptides mixture was labeled using tandem mass tag (TMT) reagent (Thermo Scien-

tific, Waltham, MA, USA) based on the manufacturer’s instructions.

The fractionation of the labeled peptides was carried out by strong cation exchange chromatography with

the AKTA Purifier system (GE Healthcare, Piscataway, NJ, USA). Buffer A was 10 mM KH2PO4 in 25% of

acetonitrile (pH 3.0), buffer B was 500 mM KCl and 10 mM KH2PO4 in 25% of acetonitrile (pH 3.0). The pep-

tides mixture was reconstituted with buffer A, injected into a Polysulfoethyl column (4.6 mm3100 mm,

5 mm, 200 Å; PolyLC Inc, Maryland, USA), and separated at a flow rate of 1 mL/min with a linear gradient

as follows: 0% buffer B for 25 min, 0–10% buffer B for 7 min, 10%-20% buffer B for 10 min, 20-45% buffer

B for 5 min, 45%–100% buffer B for 5 min, and 100% buffer B for 8 min. The collected fractions were further

desalted and concentrated by vacuum centrifugation.

For proteomics analysis, LC-MS/MS were conducted with a Q-Exactive mass spectrometer (Thermo Scien-

tific) coupled to Easy nLC (Thermo Scientific). The peptides were loaded onto an Acclaim PepMap100 nano

column (100 mm32 cm; Thermo Scientific) and separated by a C18-reversed phase analytical column

(75 mm310 cm; Thermo Scientific) at the flow rate 300 nl/min. Buffer A was 0.1% Formic acid, and buffer

B was 0.1% formic acid in 84% acetonitrile with a linear gradient. MS analysis was carried out in the positive

ion mode. MS data was obtained in a data-dependent method by dynamically selecting the top 10 most

abundant precursor ions for high energy collision dissociation (HCD) fragmentation. The conditions

were set as follow: automatic gain control target 3e6, maximum inject time 10 ms, dynamic exclusion dura-

tion 40.0 s, survey scans at a resolution of 70,000 at m/z 200, HCD spectra at a resolution of 17,500 at m/z

200, isolation window 2 m/z, normalized collision energy 30 eV, and underfill ratio 0.1%.

The raw MS data were analyzed by the MASCOT engine (Version 2.2; Matrix Science, London, UK) and Pro-

teome Discoverer 1.4 software. Related parameters and instructions were set as follows: trypsin as the

enzyme, 2 maximum missed cleavages, peptide mass tolerance as G20 ppm, fragment mass tolerance

as 0.1 Da, and peptide false discovery rate (FDR) as %0.01. Only unique peptides were used for protein

quantification. Normalization was performed based on protein intensity values. |fold change (FC)| R1.2

and p<0.05 were defined as the screening criteria of differentially expressed proteins (DEPs). Hierarchical

clustering of samples and DEPs was performed using ComplexHeatmap R package (Version 3.4). Protein

subcellular localization was predicted with CELLO (http://cello.life.nctu.edu.tw/). Gene ontology (GO)

annotation and KEGG pathway annotation were conducted separately using Blast2GO software (https://

www.blast2.go.com/) and KEGG Automatic Annotation Server with enrichment analysis performed by

the Fisher’ exact tests.

Association analysis

All DEMs and DEPs were queried andmapped to KEGG pathways and enrichment analysis was carried out.

R Version 3.5.1 was applied to combine the annotation and enrichment results of KEGG in the two omics,

which was visualized by venn diagram and bar plot. Pearson correlation coefficient of DEMs and DEPs were

calculated via an online Omicshare Tools (https://www.omicshare.com/tools/) and loaded into Cytoscape

software (Version 3.7.2) to conduct a correlation network. Ingenuity pathway analysis (IPA, http://www.

ingenuity.com/) software was used to categorize the DEMs and DEPs into two functional networks.

Targeted metabolomics analysis

The samples were added with 1000 mL of cold methanol/acetonitrile/water (2:2:1 volume ratio) solvent and

stock solutions of stable-isotope internal standards, adequately vortexed and homogenized, sonicated at

4�C and then centrifuged for 20 min (14000 g, 4�C) to take the supernatant and dry it in a vacuum centrifuge

at 4�C. For LC-MS/MS analysis, the samples were redissolved in 100 mL acetonitrile/water (1:1 volume ratio)

and centrifuged for 15 min (14000 g, 4�C) to collect the supernatant.

Analyses were conducted with the Agilent1290 Infinity UHPLC system coupled to a quadrupole linear ion

trap mass spectrometer (QTRAP 6500+, AB Sciex, Foster City, CA, USA). HILIC separation and reversed-

phase liquid chromatography (RPLC) separation were performed respectively using the UPLC BEH Amide

and C18 columns (2.1mm3100mm, 1.7 mm; Waters, Manchester, UK) with the injection volume of 2 mL. For

HILIC separation, the mobile phase was composed of buffer A (90% H2O + 2 mM ammonium formate +
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10% acetonitrile) and buffer B (0.4% formic acid + methanol) with a gradient as follows: 85% buffer B for

1 min, 85%-80% buffer B for 2 min, 80% buffer B for 1 min, 80%-70% buffer B for 2 min, 70%-50% buffer

B for 4 min, 50% buffer B for 5.5 min, 50%-85% buffer B for 0.1 min, and 85% buffer B for 7.4 min at the

flow rate of 0.3 mL/min and the column temperature of 35�C. For RPLC separation, mobile phase A was

comprised of 5 mM ammonium acetate and 0.2% NH3$H2O in water, and mobile phase B was 0.4% formic

acid in methanol with the gradient as follows: 5%-60% buffer B for 5 min, 60%-100% buffer B for 6 min, 100%

buffer B for 2 min, 100%-5% buffer B for 0.1 min, and 5% buffer B for 2.9 min at the flow rate of 0.4 mL/min

and the column temperature of 40�C.

MS analysis was carried out using the 6500+ QTRAP mass spectrometer in negative and positive modes

and the conditions were set as follows: source temperature 580�C, GS1 45 psi, GS2 60 psi, CUR 30 psi,

and IS G4500 V. Multiple reaction monitoring (MRM) method was employed for MS quantitative data

acquisition. The quantitative data was processed by MultiQuant to calculate the relative content of

metabolite.

Western blot analysis

The total proteins were extracted from cerebral cortex by 1 3 RIPA lysis buffer (Meilunbio, Dalian, China)

containing protease inhibitors (Meilunbio, Dalian, China) and phosphatase inhibitors (Meilunbio, Dalian,

China). A total of 25 mg proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electropho-

resis (SDS-PAGE) and transferred to polyvinylidene fluoride (PVDF) membrane. Then the PVDF membrane

was in blocked with 5% skim milk powder solution in PBS-Tween 20 (PBST) for 60 min and incubated with

primary antibodies overnight at 4�C. After that, the membrane was incubated with secondary antibodies

for 40 min at room temperature. The blots were detected using ECL system (Vazyme Biotech, Nanjing,

China) and captured by a ChemiDoc MP Imaging System (Bio-Rad, Hercules, CA, USA). The primary anti-

bodies were as follows: KCNJ3 (Affinity, AF9101), ADCY5 (Bioss, bs-3922R), FAM213B (Abcam, Ab180932),

and COX2 (Affinity, AF7003).

QUANTIFICATION AND STATISTICAL ANALYSIS

All experimental data were expressed as means G standard deviations and statistical analyses were per-

formed using IBM SPSS Statistics 27.0. Shapiro-Wilk test and Levene test were respectively used to assess

the normality in the distribution of each group and the homogeneity in the variance between the CCI and

sham groups. Student’s t-test was used for comparisons between the two groups. P< 0.05 was statistically

significant.
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