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Abstract: We derive accessible upper and lower bounds for continuous-variable (CV) quantum states
on quantum mutual information. The derivations are based on the observation that some functions
of purities bound the difference between quantum mutual information of a quantum state and its
Gaussian reference. The bounds are efficiently obtainable by measuring purities and the covariance
matrix without multimode quantum state reconstruction. We extend our approach to the upper and
lower bounds for the quantum total correlation of CV multimode quantum states. Furthermore, we
investigate the relations of the bounds for the quantum mutual information with the bounds for the
quantum conditional entropy.
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1. Introduction

Quantum mutual information quantifies the total correlation in a quantum state. It pro-
vides a valuable tool for investigating various quantum phenomena, e.g., area laws in quan-
tum systems [1,2], quantum phase transitions [3,4] and quantum thermodynamics [5,6].
Furthermore, quantum mutual information also plays critical roles in quantifying quan-
tum correlations, e.g., squashed quantum entanglement [7] and quantum discord [8], and
assessing the performance of quantum information protocols [9].

To obtain quantum mutual information of a quantum state, we need to perform multi-
mode quantum state tomography, i.e., a standard method for inferring quantum states [10].
However, the amount of resources required for quantum state tomography is large and
radically increased by the number of modes. Furthermore, calculating quantum mutual
information of a continuous variable (CV) quantum state is often computationally challeng-
ing because of the requirement of solving infinite-dimensional eigenvalue problems [11]. It
is thus favorable if efficient and reliable estimation methods exist for the quantum mutual
information. The classical correlation attainable by local positive operator-valued measures
(POVMs) is a known lower bound for quantum mutual information [12]. However, it is
generally difficult to find and realize the optimal local POVMs to extract the maximum
classical correlation from CV quantum states [13].

On the other hand, the extremality of Gaussian states [14] has attracted consider-
able research interest in CV quantum information [15,16]. A measure M[ρ] has Gaus-
sian extremality if it is always lower-bounded, i.e.,M[ρ] ≥ M[ρG], or upper-bounded,
i.e.,M[ρ] ≤M[ρG], by its Gaussian reference ρG having the same first-order and second-
order quadrature moments with the state ρ. A Gaussian state is uniquely determined by its
first-order and second-order quadrature moments. Therefore, if a measure has Gaussian
extremality, the measure can be efficiently estimated by homodyne detection. In the same
vein, one may prefer if the quantum mutual information has Gaussian extremality [17].
However, quantum mutual information does not exhibit Gaussian extremality [18].

Fortunately, the bounds for the difference in the quantum mutual informations of a
quantum state and its Gaussian reference are determinable. In this study, we derive the
upper and lower bounds for the quantum mutual information of a quantum state by adding
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some functions of purities to the quantum mutual information of its Gaussian reference.
The bounds are efficiently obtainable by measuring purities and the covariance matrix
without multimode quantum state reconstruction. We generalize the proposed approach
to obtain the upper and lower bounds for the quantum total correlation of CV multimode
quantum states. We also investigate how the bounds for the quantum mutual information
are related to the bounds for the quantum conditional entropy.

2. Preliminaries

Quantum mutual information of a two-mode quantum state ρ12 is defined as quantum
relative entropy of the global quantum state ρ12 with respect to the product form of local
quantum states ρ1 ⊗ ρ2,

I(ρ12) = S(ρ12||ρ1 ⊗ ρ2) = S(ρ1) + S(ρ2)− S(ρ12), (1)

where S(τ||σ) = tr[τ ln τ − τ ln σ] denotes the quantum relative entropy of τ with respect
to σ and S(τ) = −tr[τ ln τ] is the von Neumann entropy of τ. Throughout the paper, we
employ the natural unit of information, i.e., nat, instead of the binary unit of information,
i.e., bit, to quantify the amount of information. Note that the quantum mutual information
of a quantum state ρ is relevant to the minimum amount of noise required for erasing the
correlation of the quantum state ρ [19] and the maximally achievable secure communication
rate between the modes of the quantum state ρ [20].

The quantum Rényi entropy of a quantum state ρ is defined as follows:

Sα(ρ) =
1

1− α
ln trρα. (2)

Note that the equation becomes identical to the von Neumann entropy in the limit
of α = 1, i.e., limα→1 Sα(ρ) = S(ρ), and it is directly related to the purity µρ ≡ trρ2 when
α = 2, i.e., S2(ρ) = − ln µρ.

An N-mode Gaussian state ρG is uniquely determined by its mean values of local quadra-
ture operators, i.e., 〈Q̂〉ρG = {〈q̂1〉ρG , 〈 p̂1〉ρG , . . . , 〈q̂N〉ρG , 〈 p̂N〉ρG}T with 〈Ô〉ρ = tr(ρÔ), and
its covariance matrix ΓρG whose elements are defined as follows:

ΓρG,jk =
1
2
〈Q̂jQ̂k + Q̂kQ̂j〉ρG − 〈Q̂j〉ρG〈Q̂k〉ρG , (3)

where q̂j =
1√
2
(âj + â†

j ) and p̂j =
1

i
√

2
(âj − â†

j ) are the position and momentum operators
for jth mode, respectively.

For the Gaussian state ρG, the von Neumman entropy S(ρG) and the quantum Rényi-2
entropy S2(ρG) are expressed as follows:

S(ρG) =
N

∑
j=1

g(λj), (4)

with g(x) = (x + 1
2 ) ln(x + 1

2 )− (x− 1
2 ) ln(x− 1

2 ) and

S2(ρG) = ln(2N
√

det ΓρG) =
N

∑
j=1

ln(2λj), (5)

respectively, where λj with j ∈ {1, 2, . . . , N} denotes the jth symplectic eigenvalue of the
covariance matrix ΓρG [16].

One may employ local POVMs and classical communications to extract the correlation
from a two-mode quantum state. Throughout the paper, we refer to the mutual information
of the joint probability distribution obtained by local POVMs as the classical mutual
information extractable by joint local POVMs. Here we express a set of joint local POVMs
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as {Π̂} = {Π̂(1)
j ⊗ Π̂(2)

k } with ∑j Π̂(1)
j = ∑k Π̂(2)

k = I. The classical mutual information of a
two-mode quantum state ρ extractable by the joint local POVMs is obtained as follows:

C{Π̂}(ρ) = DKL(P12(z1, z2)||P1(z1)P2(z2)), (6)

where DKL(X||Y) = ∑z X(z)[ln X(z) − ln Y(z)] is the Kullback–Leibler divergence [21]
between the two probability distributions X and Y, P12(j, k) = tr[ρ(Π̂(1)

j ⊗ Π̂(2)
k )] is the

probability to obtain the jth outcome on the first mode and the kth outcome on the second
mode, and Pn(j) = tr[ρnΠ̂(n)

j ] with n ∈ {1, 2} is the probability to obtain the jth outcome
on the nth mode. It is known that C{Π}(ρ) is upper-bounded by min{S(ρ1), S(ρ2), I(ρ)}
and C{Π̂}(ρ) = I(ρ) can be achieved for classically correlated states [12]. In addition,
if I(ρ) > min{S(ρ1), S(ρ2)} is satisfied, C{Π̂}(ρ) is strictly smaller than I(ρ) for any set
of joint local POVMs. Finding the optimal set of local POVMs to maximize C{Π̂}(ρ) is
generally difficult for high-dimensional quantum states. For this reason, we focus on
homodyne detection, which is experimentally feasible for CV quantum states.

The classical mutual information extractable by joint homodynde detection is ex-
pressed as follows:

C{φ1,φ2}
HD (ρ) = DKL(P{φ1,φ2}

ρ (q1, q2)||P
{φ1,φ2}
ρ1⊗ρ2

(q1, q2)), (7)

where φj denotes the phase angle for the homodyne detection on the jth mode. Here the

joint probability distribution P{φ1,φ2}
ρ (q1, q2) is obtained by the following expression:

P{φ1,φ2}
ρ (x1, x2) = tr(ρ

2⊗
j=1

|qj,φj = xj〉〈qj,φj = xj|), (8)

where |qj,φj = xj〉 is the unnormalized eigenstate of the rotated local quadrature operator
q̂j,φj = q̂j cos φj + p̂j sin φj for the jth mode with the eigenvalue xj, i.e., q̂j,φj |qj,φj = xj〉 =
xj|qj,φj = xj〉. We define CHD(ρ) as the maximum of C{φ1,φ2}

HD (ρ) optimized over the phase
angles:

CHD(ρ) ≡ max
φ1,φ2
C{φ1,φ2}

HD (ρ). (9)

3. Bounds for Quantum Mutual Information

Our upper and lower bounds on quantum mutual information of a two-mode quantum
state ρ are expressed as follows:

I+(ρ) ≡ I(ρG) +F (ρ), (10)

and
I−(ρ) ≡ I(ρG)− min

j∈{1,2}
F (ρj), (11)

respectively, where the function F (σ) for an N-mode quantum state σ is expressed as
follows:

F (σ) = S2(σG)− S2(σ) + N ln
e
2

, (12)

where S2(σ) and S2(σG) are directly related to the purities of the N-mode quantum state
σ and its Gaussian reference σG, respectively. Here I+(ρ) is always non-negative because
I(σ) and F (σ) are non-negative for an arbitrary quantum state σ. However, I−(ρ) can be
negative when minj F (ρj) is greater than I(ρG), which signifies that I−(ρ) is useful when
I(ρG) is sufficiently large.

We can derive Equation (10) by using S(σG) ≥ S(σ) [22] and the inequality appeared
in [23]:
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S2(σG)− S2(σ) ≥ S(σG)− S(σ) + N ln
2
e

, (13)

for an N-mode quantum state σ. The proof is as follows:

I(ρ) = S(ρ1) + S(ρ2)− S(ρ)
≤ S(ρ1,G) + S(ρ2,G)− S(ρ)
≤ S(ρ1,G) + S(ρ2,G)− S(ρG) +F (ρ)
= I(ρG) +F (ρ)
= I+(ρ).

(14)

We can derive Equation (11) by using the fact that the non-Gaussian measure by
quantum relative entropy is non-increasing under partial trace [17]:

S(ρG)− S(ρ) ≥ S(ρj,G)− S(ρj), (15)

and Equation (13). The proof is as follows:

I(ρ) = S(ρ1) + S(ρ2)− S(ρ)
≥ maxj,k∈{1,2}{S(ρj,G)− S(ρG) + S(ρk 6=j)}
≥ maxj,k∈{1,2}{S(ρj,G)− S(ρG) + S(ρk 6=j,G)−F (ρk 6=j)}
= I(ρG)−minj∈{1,2} F (ρj)

= I−(ρ).

(16)

We explain how the bounds are accessible without multimode quantum state recon-
struction. We first obtain the covariance matrix of the quantum state ρ that can be efficiently
measurable through homodyne detection. By using the covariance matrix, we obtain the
quantum mutual information I(ρG) and the quantum Rényi-2 entropies of the reference
Gaussian state ρG, i.e., S2(ρ1,G), S2(ρ2,G), and S2(ρG). Finally, the quantum Rényi-2 en-
tropies of the state ρ, i.e., S2(ρ1), S2(ρ2), and S2(ρ), can be obtained without quantum state
reconstruction by homodyne detection [24] or parity detection [25].

3.1. Gaussian State

If a quantum state σ is Gaussian, its Gaussian reference σG is the quantum state σ
itself, i.e., σG = σ. In addition, a local mode of a multimode Gaussian state is represented
by a single-mode Gaussian state. Therefore, it is straightforward to observe that, for every
two-mode Gaussian state ρ, I−(ρ) is smaller than I(ρ) by ln(e/2) ' 0.307,

I(ρ)− I−(ρ) = ln
e
2

, (17)

and I+(ρ) is greater than I(ρ) by 2 ln(e/2) ' 0.614,

I+(ρ)− I(ρ) = 2 ln
e
2

. (18)

These results signify that I−(ρ) and I+(ρ) work well for a broad range of Gaussian
states with small differences.

Here we examine a two-mode squeezed thermal state in the form of ρ = Ŝ(r)(τn̄,1 ⊗
τn̄,2)Ŝ†(r) where Ŝ(r) = er(â†

1 â†
2−â1 â2) is the squeezing operator with squeezing parameter

r and τn̄ = ∑∞
k=0

n̄k

(n̄+1)k+1 |k〉〈k| is the thermal state with the mean photon number n̄. Its
covariance matrix Γρ is expressed as follows:

Γρ =


a 0 b 0
0 a 0 −b
b 0 a 0
0 −b 0 a

, (19)
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with a = (n̄ + 1
2 ) cosh 2r and b = (n̄ + 1

2 ) sinh 2r. The quantum mutual information of the
two-mode squeezed thermal state is obtained by the following expression:

I(ρ) = I(ρG) = 2g(a)− 2g(
√

a2 − b2). (20)

We have S2(ρ) = S2(ρG) = −2 ln(2
√

a2 − b2) and

S2(ρj) = S2(ρj,G) = − ln 2a, (21)

for j ∈ {1, 2}.
The joint quadrature distribution of the two-mode squeezed thermal state is expressed

as follows:

P{φ1,φ2}
ρ (q1, q2) =

1

2π
√

u2 − v2
exp

[
−

u(q2
1 + q2

2)− 2vq1q2

2(u2 − v2)

]
, (22)

with u = (n̄ + 1
2 ) cosh 2r and v = (n̄ + 1

2 ) sinh 2r cos(φ1 + φ2). We analytically determine
that CHD(ρ) = ln a√

a2−b2 is achieved when φ1 + φ2 = 0.
In Figure 1, we plot I(ρ), I+(ρ), I−(ρ) and CHD(ρ) for a two-mode squeezed thermal

state with n̄ = 1. The curves in Figure 1 show that I−(ρ) becomes positive for r > 0.279
and I−(ρ) > CHD(ρ) happens for r > 0.399. Here, I−(ρ) outperforms CHD(ρ) for a wide
range of parameters. Interestingly, as the squeezing parameter r approaches infinity, the
ratio of I−(ρ) to I(ρ) and the ratio of I+(ρ) to I(ρ) get closer and closer to unity. This
observation manifests that I−(ρ) and I+(ρ) work better for Gaussian states with larger
quantum mutual information.

0 1 2
r0

2

4

6

8
(nats)

Figure 1. Quantum mutual information I(ρ) (black solid line), its lower and upper bounds I−(ρ)
(red dashed line), and I+(ρ) (blue dot-dashed line), respectively, and the maximum of the classical
mutual information extractable by joint homodyne detection CHD(ρ) (purple dotted line) for the
two-mode squeezed thermal state with n̄ = 1 against the squeezing parameter r. Note that one nat is
equal to 1

ln 2 ' 1.44 bits.

3.2. Pair Coherent State

We here investigate pair coherent states [26,27] in the form of |ϕx〉 = 1√
I0(2x)

∑∞
k=0

xk

k! |k〉1|k〉2
where In(x) denotes the modified Bessel function of the first kind of order n [28]. Its
covariance matrix is expressed as follows:

Γ|ϕx〉〈ϕx | =


a 0 b 0
0 a 0 −b
b 0 a 0
0 −b 0 a

, (23)
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with a = 1
2 + xI1(2x)

I0(2x) and b = x. The quantum mutual information of the pair coherent state
ρ = |ϕx〉〈ϕx| is obtained by the following expression:

I(ρ) = −2
∞

∑
k=0

x2k

(k!)2 I0(2x)
ln

x2k

(k!)2 I0(2x)
. (24)

We have S2(ρ) = 0 and

S2(ρ1) = S2(ρ2) = − ln
∞

∑
k=0

{
x2k

(k!)2 I0(2x)

}2

. (25)

The joint quadrature distribution of the pair coherent state is expressed as follows:

P{φ1,φ2}
ρ (q1, q2) =

1
I0(2x)

∞

∑
j=0

∞

∑
k=0

xj+k

j!k!
Pφ1
|j〉〈k|(q1)Pφ2

|j〉〈k|(q2), (26)

where the local quadrature distribution Pφ

|j〉〈k|(q) in Fock basis is determined by

Pφ

|j〉〈k|(q) =

√
1

π2j+k j!k!
e−q2

e−i(j−k)φHj(q)Hk(q), (27)

and Hn(x) denotes the Hermite polynomial of order n [28]. We numerically determine
that the classical mutual information extractable by joint homodyne detection C{φ1,φ2}

HD (ρ) is
maximized when φ1 + φ2 = 0.

In Figure 2, we plot I(ρ), I+(ρ), I−(ρ) and CHD(ρ) for a pair coherent state ρ = |ϕx〉〈ϕx|.
The curves in Figure 2 reveal that I−(ρ) becomes positive for x > 0.193 and outperforms
CHD(ρ) for x > 0.235. The ratio of I−(ρ) to I(ρ) has the maximum of about 0.614 at
x ' 0.60 and the ratio of I+(ρ) to I(ρ) has and the minimum of about 1.238 at x ' 1.05.
This observation suggests that I−(ρ) and I+(ρ) may generally work better for Gaussian
states than non-Gaussian states.

0 1 2 3 4
x0

1

2

3

4

5
(nats)

Figure 2. Quantum mutual information I(ρ) (black solid line), its lower and upper bounds I−(ρ)
(red dashed line), and I+(ρ) (blue dot-dashed line), respectively, and the maximum of the classical
mutual information extractable by joint homodyne detection CHD(ρ) (purple dotted line) for the pair
coherent state ρ = |ϕx〉〈ϕx| against the parameter x.

3.3. CV Werner State

We here investigate CV Werner state [29,30] in the form of ρ = f |ψr〉〈ψr| + (1 −
f )|0〉〈0| ⊗ |0〉〈0| where |ψr〉 = sech r ∑∞

k=0 tanhk r|k〉1|k〉2 denotes the two-mode squeezed
vacuum with the squeezing parameter r. Its covariance matrix is expressed as follows:
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Γρ =


a 0 b 0
0 a 0 −b
b 0 a 0
0 −b 0 a

, (28)

with a = 1
2 f cosh 2r + 1

2 (1− f ) and b = 1
2 f sinh 2r. The quantum mutual information of

the CV Werner state is obtained by the following expression:

I(ρ) = S(ρ1) + S(ρ2)− S(ρ), (29)

where the von Neumann entropy of jth local mode is expressed as follows:

S1(ρj) =− (1− f tanh2 r) ln(1− f tanh2 r)

− f tanh2 r{ln( f sech2 r) + cosh2 r ln(tanh2 r)}, (30)

with j ∈ {1, 2} and the von Neumann entropy of the global state ρ is expressed as follows:

S(ρ) = −λ+ ln λ+ − λ− ln λ−, (31)

with λ± = 1
2{1±

√
1− 4 f (1− f ) tanh2 r}. We have the following expression:

S2(ρ1) = S2(ρ2) = − ln(1− 2 f tanh2 r +
2 f 2 tanh4 r
1 + tanh2 r

), (32)

and S2(ρ) = − ln(λ2
+ + λ2

−).
The joint quadrature distribution of the CV Werner state is expressed as follows:

P{φ1,φ2}
ρ (q1, q2) = f P{φ1,φ2}

|ψr〉〈ψr |(q1, q2) +
1− f

π
exp(−q2

1 − q2
2), (33)

where P{φ1,φ2}
|ψr〉〈ψr |(q1, q2) is given by

P{φ1,φ2}
|ψr〉〈ψr |(q1, q2) =

1

2π
√

u2 − v2
exp

[
−

u(q2
1 + q2

2)− 2vq1q2

2(u2 − v2)

]
, (34)

with u = 1
2 cosh 2r and v = 1

2 sinh 2r cos(φ1 + φ2). We numerically determine that the clas-

sical mutual information extractable by joint homodyne detection C{φ1,φ2}
HD (ρ) is maximized

when φ1 + φ2 = 0, just like the squeezed thermal states and the pair coherent states in
Sections 3.1 and 3.2, respectively.

Let us briefly explain the commonality of the examples. All the examples have sym-
metrical number correlations and real density matrix elements, i.e., ρ = ∑n,m ρn,m|n〉〈m| ⊗
|n〉〈m| and ρn,m = ρ∗n,m for all n and m. These features yield strong position–position
correlation (φ1 = φ2 = 0) and momentum–momentum correlation (φ1 = φ2 = π

2 ) in
general, which are reflected in the intermodal correlation terms of the covariance matrix. In
addition, the effect of the rotation φ1 in the first mode can be canceled out by the counter-
rotation φ2 = −φ1 in the second mode because of the symmetry in the density matrix ρ,
i.e., ein̂1φ1 ein̂2φ2 ρe−in̂2φ2 e−in̂1φ1 = ∑n,m ρn,mei(n−m)(φ1+φ2)|n〉〈m| ⊗ |n〉〈m|. Therefore, it may

be natural that C{φ1,φ2}
HD (ρ) is maximized when φ1 + φ2 = 0 not only for Gaussian states but

also for some non-Gaussian states.
In Figure 3, we plot I(ρ), I+(ρ), I−(ρ), and CHD(ρ) for a CV Werner state ρ =

f |ψr〉〈ψr| + (1− f )|0〉〈0| ⊗ |0〉〈0| with r = 1. The curves in Figure 3 reveal that I−(ρ)
becomes positive for f > 0.316 and surpasses CHD(ρ) for f > 0.580. The CV Werner state is
Gaussian for f ∈ {0, 1} and non-Gaussian for 0 < f < 1. The ratio of I−(ρ) to I(ρ) has the
maximum of about 0.905 at f = 1 and the ratio of I+(ρ) to I(ρ) has the minimum of about
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1.140 at f ' 0.88. This observation also supports that I−(ρ) and I+(ρ) may generally
work better for the quantum states with weaker non-Gaussianity and larger quantum
mutual information.

0 0.5 1
f0

1

2

3

4
(nats)

Figure 3. Quantum mutual information I(ρ) (black solid line), its lower and upper bounds I−(ρ)
(red dashed line), and I+(ρ) (blue dot-dashed line), respectively, and the maximum of the classical
mutual information extractable by joint homodyne detection CHD(ρ) (purple dotted line) for the CV
Werner state ρ = f |ψr〉〈ψr|+ (1− f )|0〉〈0| ⊗ |0〉〈0| with r = 1 against the fraction f .

4. Bounds for Quantum Total Correlation

Quantum mutual information was extended to the multimode case [19,31] as follows:

T (ρ12···N) = S(ρ12···N ||ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρN)

=
N

∑
j=1

S(ρj)− S(ρ12···N), (35)

which becomes identical to Equation (1) when N = 2. We denote an N-mode global
quantum state ρ12···N as ρ for simplicity.

The upper and lower bounds on the quantum total correlation of an N-mode quantum
state ρ are given by

T+(ρ) ≡ T (ρG) +F (ρ), (36)

and

T−(ρ) ≡ T (ρG)−
N

∑
j=1
F (ρj) + max

k
F (ρk), (37)

respectively. Note that Equations (36) and (37) become Equations (10) and (11), respectively,
for N = 2.

4.1. Gaussian State

For every N-mode Gaussian state ρ, T−(ρ) is smaller than T (ρ) by (N − 1) ln(e/2),

T (ρ)− T−(ρ) = (N − 1) ln
e
2

, (38)

and T+(ρ) is greater than T (ρ) by N ln(e/2),

T+(ρ)− T (ρ) = N ln
e
2

, (39)

which reveal that T−(ρ) and T+(ρ) work well for a broad range of Gaussian states with
small differences.

4.2. Entangled Coherent State

We here investigate an entangled coherent state in the form of
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|ΨM〉 =
1√

N−(
√

Mγ)
(|γ〉1|γ〉2 · · · |γ〉M − | − γ〉1| − γ〉2 · · · | − γ〉M), (40)

where |γ〉 = exp(− |γ|
2

2 )∑∞
k=0

γk
√

k!
|k〉 denotes a coherent state with complex amplitude γ

and N±(x) = 2± 2 exp(−2|x|2) is related to the normalization factor. We set γ as real for
simplicity. The covariance matrix of |ΨM〉 is expressed as follows:

Γ|ΨM〉〈ΨM | =


X Y · · · Y
Y X · · · Y
...

...
. . .

...
Y Y · · · X

, (41)

where the 2× 2 block matrice X and Y are expressed by X = diag(X11,X22) = diag( 1
2 +

γ2{coth(Mγ2) + 1}, 1
2 + γ2{coth(Mγ2) − 1}) and Y = diag(Y11,Y22) = diag(X11 −

1
2 ,X22 − 1

2 ), respectively.
For the covariance matrix in Equation (41), one of the symplectic eigenvalues is

expressed as follows:

Λ =
√
{X11 + (M− 1)Y11}{X22 + (M− 1)Y22}, (42)

and the other ones are identical to 1
2 . This result is due to the fact the entangled coherent

state can be generated from an odd cat state and M − 1 vacuum states using a beam-
splitter network [32]:

|ΨM〉 = B̂M
1√

N−(
√

Mγ)
(|
√

Mγ〉1 − | −
√

Mγ〉1)|0〉2 · · · |0〉M, (43)

where the M-mode unitary operation B̂M by a beam-splitter network transforms a coherent
state and M− 1 vacuum states as

B̂M|γ〉1|0〉2 · · · |0〉M = | 1√
M

γ〉1|
1√
M

γ〉2 · · · |
1√
M

γ〉M. (44)

The symplectic eigenvalues of the covarinace matrix Γρ of a quantum state ρ are
invariant under Gaussian unitary operations. Therefore, the symplectic eigenvalue Λ
in Equation (42) and the other ones are originated from the odd cat state and vacuum
states, respectively.

The local state for the jth mode is expressed as follows:

ρj =
1

N−(
√

Mγ)
[|γ〉〈γ|j + | − γ〉〈−γ|j − e−2(M−1)γ2

(|γ〉〈−γ|j + | − γ〉〈γ|j)], (45)

which can be recasted as follows:

ρj = f̃ |−; γ〉〈−; γ|j + (1− f̃ )|+; γ〉〈+; γ|j, (46)

where the even and odd cat states, i.e., |±; γ〉 = 1√
N±(γ)

(|γ〉± |−γ〉), form an orthonormal

basis and the fraction of the odd cat state is given by f̃ = N−(γ)N+(
√

M−1γ)

4N−(
√

Mγ)
.

The quantum total correlations of the global state ρ = |ΨM〉〈ΨM| and its Gaussian
reference ρG are obtained as follows:

T (ρ) = −M{ f̃ ln f̃ + (1− f̃ ) ln(1− f̃ )}, (47)
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and
T (ρG) = Mg(

√
X11X22)− g(Λ), (48)

respectively. Furthermore, the quantum Rényi-2 entropies for the local state for the jth
mode ρj and its Gaussian reference ρj,G are expressed as follows:

S2(ρj) = − ln{ f̃ 2 + (1− f̃ )2}, (49)

and
S2(ρj,G) = − ln(2

√
X11X22), (50)

respectively, with j ∈ {1, 2, . . . , M}.
In Figure 4, we plot T (ρ), T (ρG), T−(ρ) and T+(ρ) for M = {2, 3, 4, 5}. As the

overlap between the coherent states |γ〉 and | − γ〉, i.e., 〈γ| − γ〉 = exp(−2γ2), becomes
negligible when the coherent amplitude γ is sufficiently large, the entangled coherent state
behaves like a Greenberger–Horne–Zeilinger state, e.g., 1√

2
(|+〉1 · · · |+〉M − |−〉1 · · · |−〉M)

with 〈+|−〉 = 0. Therefore, the quantum total correlation T (ρ) converges to M ln 2 as
γ increasing. By contrast, the quantum total correlation of the reference Gaussian state
T (ρG) diverges to infinity as γ increasing. This phenomenon confirms that the quantum
total correlation does not exhibit Gaussian extremality in general [18]. Furthermore, the
maximum ratio between T (ρ) and the lower bound T−(ρ) becomes greater as the number
of modes increases. Notably, we also observe similar behaviors for an entangled coherent
state in the form of

|Ψ̃M〉 =
1√

N+(
√

Mγ)
(|γ〉1|γ〉2 · · · |γ〉M + | − γ〉1| − γ〉2 · · · | − γ〉M), (51)

which can be generated from an even cat state by using a beam-splitter network. It suggests
that the proposed lower bound can be feasible for estimating the quantum total correlation
of multimode quantum states.

0 1 2 3
γ

1

2

3

4

5

6
(nats)

(a)

0 1 2 3
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2

3

4

5
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(nats)

(b)

0 1 2 3
γ

1

2

3

4

5

6
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(c)

0 1 2 3
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2

3

4
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(d)

Figure 4. Quantum total correlation T (ρ) (black solid line), its lower and upper bounds T−(ρ) (red
dashed line), and T+(ρ) (blue dot-dashed line), respectively, and the quantum total correlation of the
reference Gaussian state T (ρG) (gray dotted line) for M-mode entangled coherent states ρ = |ΨM〉〈ΨM|
with (a) M = 2, (b) M = 3, (c) M = 4, and (d) M = 5 against the coherent amplitude γ.
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5. Bounds for Quantum Conditional Entropy

The quantum conditional entropy for a two-mode quantum state ρ is defined as follows:

S(1|2)ρ = S(ρ)− S(ρ2), (52)

which becomes non-negative for every separable state [33]. If S(1|2)ρ < 0, it witnesses that
ρ is entangled. Note that we can reformulate the quantum mutual information by using
the quantum conditional entropy as follows:

I(ρ) = S(ρ1)− S(1|2)ρ. (53)

We introduce the upper and lower bounds for the quantum conditional entropy
as follows:

S+(1|2)ρ = S(1|2)ρG , (54)

and
S−(1|2)ρ = S(1|2)ρG −F (ρ), (55)

respectively. It is known that S(1|2)ρ is upper-bounded by S+(1|2)ρ = S(1|2)ρG [14]. We
derive Equation (55) as follows:

S(1|2)ρ = S(ρ)− S(ρ2)
≥ S(ρ)− S(ρ2,G)
= {S(ρ)− S(ρG)}+ S(1|2)ρG

≥ S(1|2)ρG −F (ρ)
= S−(1|2)ρ.

(56)

We observe that S(1|2)ρ ≤ S+(1|2)ρ and S(1|2)ρ ≥ S−(1|2)ρ are sufficient but not
necessary conditions for I(ρ) ≥ I−(ρ) and I(ρ) ≤ I+(ρ), respectively. Note that we can
reformulate Equations (14) and (16) as follows:

I(ρ) = S(ρ1)− S(1|2)ρ

≤ S(ρ1)− S−(1|2)ρ

≤ S(ρ1,G)− S(1|2)ρG +F (ρ)
= I(ρG) +F (ρ)
= I+(ρ),

(57)

and
I(ρ) = S(ρ1) + S(ρ2)− S(ρ)

≥ maxj,k∈{1,2}{S(ρj)− S+(j|k 6= j)ρ}
≥ maxj,k∈{1,2}{S(ρj,G)−F (ρj)− S(j|k 6= j)ρG}
= I(ρG)−minj∈{1,2} F (ρj)

= I−(ρ),

(58)

respectively. If we attempt to derive the upper and lower bounds for the quantum condition
entropy by using S(1|2)ρ = S(ρ1) − I(ρ12) and the upper and lower bounds for the
quantum mutual information, i.e., I+(ρ12) and I−(ρ12), we only get some weaker bounds.

5.1. Gaussian State

For every two-mode Gaussian state ρ, S+(1|2)ρ is equal to S(1|2)ρ and S−(1|2)ρ is
smaller than S(1|2)ρ by 2 ln(e/2),

S(1|2)ρ − S−(1|2)ρ = 2 ln
e
2

, (59)

which reveal that S+(1|2)ρ and S−(1|2)ρ work well for a broad range of Gaussian states
with small differences.
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5.2. CV Werner State

For the CV Werner state introduced in Section 3.3, the quantum conditional entropy is
obtained by the following expression:

S(1|2)ρ = S(ρ)− S(ρ2), (60)

where S(ρ) and S(ρ2) are given by Equations (30) and (31), respectively. We numerically
observe that the quantum conditional entropy of the CV Werner state is always non-
positive. By constrast, if we look into a mixture of vacuum and a coherent state in the
form of ρ = f |γ1〉〈γ1| ⊗ |γ2〉〈γ2|+ (1− f )|0〉〈0| ⊗ |0〉〈0|, its quantum conditional entropy
is always non-negative. This observation clearly manifests that the two-mode squeezed
vacuum plays a dominant role in the nonclassical behaviors of the CV Werner state.

In Figure 5, we plot S(1|2)ρ, S−(1|2)ρ, S+(1|2)ρ and −S(ρ2,G) for the CV Werner state
with r = 1. We observe that S+(1|2)ρ witnesses the entaglement of the CV Werner state for
f > 0.618. Furthermore, we find that S−(1|2)ρ outperforms a simple lower bound of the
conditional entropy, i.e., −S(ρ2,G), for 0.208 < f < 0.792. The ratio of S+(1|2)ρ to S(1|2)ρ

becomes unity at f = 1 and the ratio of S−(1|2)ρ to S(1|2)ρ has the minimum of about
1.301 at f ' 0.905. This observation suggests that S+(1|2)ρ and S−(1|2)ρ may generally
work better for the quantum states with weaker non-Gaussianity and larger absolute value
of quantum conditional entropy.

0.5 1
f

-2

-1

0

(nats)

Figure 5. Quantum conditional entropy S(1|2)ρ (black solid line), its upper and lower bounds
S+(1|2)ρ (red dashed line), and S−(1|2)ρ (blue dot-dashed line), respectively, and −S(ρ2,G) (purple
dotted line) for the CV Werner state ρ = f |ψr〉〈ψr|+ (1− f )|0〉〈0| ⊗ |0〉〈0| against the fraction f .

6. Concluding Remarks

We have proposed upper and lower bounds for the quantum mutual information of CV
quantum states. The bounds are expressed by functions of the purities and the symplectic
eigenvalues of the covariance matrix, which are accessible without reconstructing the mul-
timode quantum states. In [34], quantum mutual information has been extended by using
sandwiched quantum Rényi-α relative entropy [35,36]. The sandwiched quantum Rényi-α
relative entropy of τ with respect to σ is defined as S̃α(τ||σ) = 1

α−1 ln tr[(σ
1−α
2α τσ

1−α
2α )α],

which becomes the quantum relative entropy S(τ||σ) in the limit of α → 1 and has an
ordering relation as S̃α′(ρ||σ) ≥ S̃α(ρ||σ) for α′ > α. In general, it is much more difficult to
determine the quantum Rényi-α mutual information Iα(ρ) = S̃α(ρ||ρ1 ⊗ ρ2) compared to
the quantum mutual information I(ρ). Although the quantum mutual information I(ρ)
can be repesented by a function of von Neumann entropy for local and global quantum
states as I(ρ) = S(ρ1) + S(ρ2)− S(ρ), the quantum Rényi-α mutual information Iα(ρ) with
α 6= 1 cannot be represented by a function of quantum Rényi-α entropy of local and global
quantum states, e.g., Iα(ρ) 6= Sα(ρ1) + Sα(ρ2) − Sα(ρ). Notably, the proposed bounds
I+(ρ) and I−(ρ) also work for the Rényi-α mutual information Iα(ρ) with α ≤ 1 and α ≥ 1,
respectively, because of the ordering relation.

Furthermore, we have extended our method to the quantum total correlation of
multimode CV quantum states. We also have investigated how the bounds for the quantum
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mutual information are related to the bounds for the quantum conditional entropy. Notably,
the quantum mutual information can be generalized to a multimode situation by using
another method [37,38]. In addition, several methods have been proposed to quantify the
genuine multimode correlations by information-theoretic quantities [39,40]. We hope that
our approach will be extended to such elaborate measures.
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