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Abstract
Predicting ligand binding sites (LBSs) on protein structures, which are obtained either from

experimental or computational methods, is a useful first step in functional annotation or

structure-based drug design for the protein structures. In this work, the structure-based

machine learning algorithm ISMBLab-LIG was developed to predict LBSs on protein sur-

faces with input attributes derived from the three-dimensional probability density maps of

interacting atoms, which were reconstructed on the query protein surfaces and were rela-

tively insensitive to local conformational variations of the tentative ligand binding sites. The

prediction accuracy of the ISMBLab-LIG predictors is comparable to that of the best LBS

predictors benchmarked on several well-established testing datasets. More importantly, the

ISMBLab-LIG algorithm has substantial tolerance to the prediction uncertainties of compu-

tationally derived protein structure models. As such, the method is particularly useful for pre-

dicting LBSs not only on experimental protein structures without known LBS templates in

the database but also on computationally predicted model protein structures with structural

uncertainties in the tentative ligand binding sites.

Introduction
One essential step in predicting the function of an unannotated protein and in identifying key
residues involving the protein’s biological role is to predict the ligand binding site (LBS) based
on the protein’s sequence and structure. One important application is to use the predicted LBS
in connection with the protein’s structure, derived with experimental or computational meth-
ods, for structure-based development of pharmacological compounds binding to the tentative
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LBS. As more than three quarters of proteins with less than 1000 residues in human proteome
can be modeled with sufficient accuracy with contemporary structure prediction methods [1],
computational LBS prediction approaches exploiting ever-increasing sequence and structural
information on human proteome can now aim at structure-based drug development for target
proteins with insufficient experimental information on the structures and functions of the
proteins.

The essence of protein LBSs resides in the geometry of the binding site and chemical com-
position lining the ligand-contact surface. The LBS geometries are diverse but not unlimited in
variations, represented by around 1000 pocket shapes. However, similar pockets could accom-
modate very different ligand scaffolds, and similar ligands could bind to pockets with very dif-
ferent geometries [2]. The complexity in the chemical composition of the LBS linings is not less
daunting: statistical propensities for amino acids are not strikingly different between the LBS
linings and the general protein surfaces exposed to solvent, although amino acid side chains,
especially Trp, Tyr, Arg, are slightly statistically abundant in binding to ligands [3]. Together,
the conclusions of the analyses on protein LBSs have emerged to suggest that amino acid resi-
due compositions and pocket shapes are necessary, if not sufficient, attributes in identifying
LBSs on protein surfaces [3].

Many protein LBS prediction algorithms have been developed, as summarized in the
reviews [4–8]. The classical heuristic approach is based on evolutionary methods that exploit
the propensity of conserved residues in the binding site [9, 10]. In contrast to the evolutionary
methods, the structure-based methods predict LBSs on protein surfaces by analyzing geometri-
cal features like cleft or cavity [11–16]. To overcome the limitations of geometry-based meth-
ods, energy-based approaches have been developed to predict the binding sites on proteins
using interaction energy calculations [17–20]. Template-based methods utilize interaction
information from template proteins to infer the binding information on the query proteins at
global and/or local level [21–25]. As different methods have different strengths and weak-
nesses, combinations of more than one established methods have been developed to improve
the prediction accuracy [26–30]. The use of residue conservation information further improves
the binding site prediction [11, 31, 32].

The applicability of protein LBS predictions for protein function annotation and computa-
tional drug design remains to be further improved. Based on the recent CASP assessment, the
most accurate protein LBS prediction methods were largely dependent on finding template
protein structures with LBSs defined through high resolution experimental methods [33]. But
these template-based approaches have had limitation, as revealed in the analysis that less than
25% of protein pairs with highly similar structures but moderate sequence identity in the twi-
light zone share common LBSs [34]. Moreover, holo protein structures are relatively scarce in
the protein databank (PDB) because of the associated experimental difficulties, leading to the
further limitation that only about a quarter of human proteome can be inferred in ligand bind-
ing information from protein-ligand complexes in PDB [1]. The fact that large structural varia-
tions among distantly related proteins binding to similar or identical ligands frequently occur
in nature [35] further complicates the prediction algorithms based on inferences of known
template structures. Hence LBS prediction methods that are not dependent on trivial templates
of known structures need to be further developed [33].

In this work, a protein structure-based LBS prediction method (ISMBLab-LIG) was devel-
oped to predict LBSs with geometry features and physicochemical properties of protein surface
atoms without inferred information from template structures. To exploit rapidly expanding
volume of computationally modeled protein structures, the LBS prediction method was devel-
oped with applicability extending to protein models with imperfect accuracy to an extent.
Unlike the LBS predictors summarized above, the ISMBLab-LIG algorithm predicts the
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likelihood of a protein surface atom to be involved in a LBS with one of the 30 artificial neural
network (ANN) models trained separately for each of the 30 protein atom types. Each of the
ANNmodels has input of 54 attributes, derived from 53 three-dimensional probability density
maps (PDMs) describing the distributions of 53 interacting atom types around the protein sur-
face atom plus one geometry attribute describing the protein surface atom’s local geometry
[36–38]. The outputs of the ANNmodels are normalized into prediction confidence levels
ranging from 0 to 1; the LBSs are predicted by integrating the protein surface atoms into
patches based on the normalized prediction confidence levels for the protein surface atoms.
The predicted LBS confidence level is linearly correlated with prediction accuracy, which was
benchmarked with Matthews correlation coefficient (MCC), as suggested for LBS predictor
development in a recent CASP assessment [33]. 10-fold cross validation of the training set con-
taining more than 5000 known protein-ligand complexes yielded overall MCC of 0.50 at the
residue-based predictions. The ISMBLab-LIG predictors were further validated with well-
established independent test datasets (protein structures with bound or unbound ligands) and
CAMEO-LB targets [39]. The independent tests indicate that the ISMBLab-LIG prediction
accuracy for protein LBSs is comparable to the most notable benchmarks published. When
modeled protein structures were used for LBS predictions, LBS structural variation of less than
5 Å could be routinely tolerated in reproducing reasonably accurate predictions, and in many
cases, structural variation of more than 10 Å in the LBSs did not result in substantial shift of
the LBS predictions in the model structures. The prediction benchmarks indicate that the ISM-
BLab-LIG is useful in LBS prediction as first step in structure-based drug design or functional
annotation for proteins of unknown function with structures derived from experimental or
computational methods.

Results

Atom-based LBS predictions with ISMBLab-LIG
ISMBLab-LIG is a structure-based LBS prediction algorithm based on artificial neural network.
As described in the Methods and the S1 Text, the ISMBLab-LIG contains 30 ANN_BAGGING
neural network models, each of which uses 54 attributes (see Methods and Eqs 2–4 in S1 Text)
as input and one node to output prediction activity. The ANN_BAGGING artificial neural net-
work algorithm (S1 Text) was chosen among several machine learning algorithms based on the
prediction performances shown in previous works [37, 38]. 10-fold cross validation of the ISM-
BLab-LIG predictors with the S5010 dataset indicated the overall Matthews correlation coeffi-
cient (MCC) of the predictions is 0.44 at atom-based level (Fig 1a). In each of the 10-fold cross
validations, 80% of the protein surface atoms in the S5010 dataset were used as the training set;
10% of the remaining protein surface atoms in the S5010 dataset were used as the validation set
to determine the prediction activity thresholds for positive predictions, and the remaining 10%
of the dataset were used as the testing set. The accuracy of the prediction results was evaluated
with MCC (Eq 6 in Methods), where the true positives (TPs) are the atoms predicted to be pos-
itive (above an optimized activity threshold) and are within 4.5 Å of any heavy atom on the
bound ligand. Fig 1a shows the prediction accuracies for the 30 predictors and the averaged
prediction accuracy.

The accuracy of the predictions for each of the 30 predictors depends on the completeness
of the input attributes. For all the 30 predictors, predictions using only the attributes from
interacting protein atom types (ID number from 1 to 30 in Table 1) or only the attributes from
interacting ligand atom types (ID number from 32 to 53 in Table 1) had MCCs about one quar-
ter inferior to the corresponding MCC of the predictions using the full set of 54 attributes (Fig
1a). Moreover, the information encoded in the attributes of water (ID number 31 in Table 1)
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Fig 1. Ligand binding site predictions at atom-based level. (a) The prediction accuracies for the 30
ANN_BAGGINGmodels (x-axis) trained with different subsets of the 54 attributes (Table 1) are evaluated
with MCCs (y-axis). For each of the ANN_BAGGINGmodels, 8 different combinations of the 54 attributes
were used as input sets for machine learning algorithm: PLWG-attributes 1~54; PLW-attributes 1~53; PWG-
attributes 1~31 and 54; LWG-attributes 31~54; LW- attributes 31~53; LG-attributes 32~54; L-attributes
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and geometry (the 54th attribute) contributed substantial prediction accuracy (Fig 1a). The
results shown in Fig 1a suggest that all the 54 attributes provide non-redundant information
for the LBS predictions.

Prediction activity (output from ANN_BAGGINGmodels) with value ranging from 0 to 1
was normalized to prediction confidence level so that the prediction results from the 30 predic-
tors of ISMBLab-LIG can be compared on a leveled ground, allowing the prediction results to
be integrated into ligand binding patches (Methods) [37, 38]. Fig 1b shows the linear correla-
tion (R2 = 0.89) of the normalized prediction confidence level (x-axis) and the shortest distance
of the query protein surface atom to the corresponding ligand (y-axis, right-hand side) in the
S5010 dataset–the query protein surface atoms with higher normalized prediction confidence
levels are closer to the corresponding ligand binding sites on average. The result shown in Fig
1b indicates that the normalized prediction confidence level from the 30 ISMBLab-LIG predic-
tors reasonably reflects the LBS prediction accuracy.

Among the 54 attributes, the attribute values from ligand carbon atoms and the attribute
value derived from the query protein atom’s local geometry are more correlated to the actual
ligand binding, and thus contributed more to their prediction confidence levels. Associated
with each protein surface atoms are 54 attribute values, prediction confidence level for the
atom to involve in LBS, and the LBS assignment of 1 (positive assignment) or 0 (negative
assignment) determined by the threshold of 4.5 Å to any heavy atom on the corresponding
ligand. The interacting atom type’s attribute values are correlated with the prediction confi-
dence levels or with the LBS assignments to different extent. Higher correlation between the
attribute values and the prediction confidence levels should imply higher correlation to the
LBS assignments as well, and the interacting atom types with higher correlations among the
attribute values, prediction confidence levels, and LBS assignments are expected to contribute
more weights to the prediction accuracies. Fig 1c plots one set of Pearson’s correlation coeffi-
cients (PCC) versus the other set: the PCCs shown in the x-axis are the correlation coefficients
between the attribute values of the interacting atom types (as indicated next to the data points)
and the LBS assignment; the PCCs shown in the y-axis are the correlation coefficients between
the attribute values of the interacting atom types (as indicated next to the data points) and the
prediction confidence levels. Indeed, the linear correlation (R2 = 0.93) in the plot suggests that
attribute values correlate better to the assignment of actual ligand binding (higher PCC shown
in x-axis) should also correlate better with prediction confidence level (higher PCC shown
in y-axis), indicating that attribute values of different interacting atom types contribute differ-
ently in predicting actual ligand binding and that the attributes with higher correlations with

32~53; P-attributes 1~30. (b) The correlation of the normalized prediction confidence level of protein surface
atoms (x-axis) to the average distance (organ squares with standard deviations) from the protein surface
atoms to the corresponding ligands (right-hand side y-axis) is shown by the linear fitting of the data points
(R2 = 0.89). The blue histogram shows the distributions of the protein surface atoms in log10 scale (left-hand
side y-axis) for each prediction confidence level range. (c) The Pearson’s correlation coefficients (PCCs)
between attribute values and prediction confidence levels are shown in the y-axis. The PCCs between
attribute values and LBS assignments are shown in the x-axis. The interacting protein atom types are labelled
in black; the interacting ligand atom types are labelled in red; the interacting water atom type is labelled in
purple; and the geometry attribute is labelled in blue. See text for discussion. (d) Distribution of protein atom
types (x-axis) in the predicted atom-based ligand binding sites in proteins is shown by the histogram. The
percentage Pi (shown in the y-axis) for the atom type i is calculated by the equation below: Pi ¼ piP30

j¼1
pj
, where

pi ¼ ni
Ni
Ni is the total number of atom type i in the dataset, while ni is the number of atom type i with prediction

confidence level greater than 10%. The dashed line in the figure represents the baseline (Pi = 1/30) for
random predictions. The data shown in the panels (a) to (d) were calculated with the predictions in the 10-fold
cross validation on the S5010 dataset.

doi:10.1371/journal.pone.0160315.g001
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Table 1. The definition of protein and ligand atom types.

IDNo. AtomType Radius(Å) Description

1 NH1 1.65 Backbone NH

2 C 1.76 Backbone C

3 CH1E 1.87 Backbone CA(exc. Gly)

4 O 1.40 Backbone O

5 CH0 1.76 Arg CZ, Asn CG, Asp CG, Gln CD, Glu CD

6 CH1S 1.87 Side chain CH1:Ile CB, Leu CG, Thr CB, Val CB

7 CH2E 1.87 Tetrahedral CH2(except CH2P,CH2G) All CB

8 CH3E 1.87 Tetrahedral CH3

9 CR1E 1.76 Aromatic CH(except CR1W,CRHH,CR1H)

10 OH1 1.40 Alcohol OH(Ser OG, Thr OG1,Tyr OH)

11 OC 1.40 CarboxylO(Asp OD1,OD2,Glu OE1,OE2)

12 OS 1.40 Side chain O: Asn OD1,Gln OE1

13 CH2G 1.87 Gly CA

14 CH2P 1.87 Pro CB,CG,CD

15 NH1S 1.65 Side chain NH: Arg NE, His ND1,NE1,Trp NE1

16 NC2 1.65 Arg NH1,NH2

17 NH2 1.65 Asn ND2,Gln NE2

18 CR1W 1.76 Trp CZ2,CH2

19 CY2 1.76 Tyr CZ

20 SC 1.85 Cys S

21 CF 1.76 Phe CG

22 SM 1.85 Met S

23 CY 1.76 Tyr CG

24 CW 1.76 Trp CD2,CE2

25 CRHH 1.76 His CE1

26 NH3 1.50 Lys NZ

27 CR1H 1.76 His CD2

28 C5 1.76 His CG

29 N 1.65 Pro N

30 C5W 1.76 Trp CG

31 HOH 1.40 Water

32 C.3 1.91 sp3 carbon

33 C.2 1.91 sp2 carbon

34 C.1 1.91 sp carbon

35 C.ar 1.91 aromatic carbon

36 C.cat 1.91 carbocation used only in a guadinium group

37 O.3 1.68 sp3 oxygen

38 O.2 1.66 sp2 oxygen

39 O.co2 1.66 oxygen in carboxylate or phosphate group

40 N.4 1.82 sp3 positively charged nitrogen

41 N.3 1.82 sp3 nitrogen

42 N.2 1.82 sp2 nitrogen

43 N.1 1.82 sp nitrogen

44 N.ar 1.82 aromatic nitrogen

45 N.pl3 1.82 trigonal planar nitrogen

46 N.am 1.82 amide nitrogen

47 P.3 2.10 sp3 phosphorous

(Continued)
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prediction confidence levels contribute more statistical weights in predicting the actual ligand
binding sites. These determinant attributes are mostly derived from the interacting ligand
atom types (labelled in red characters in Fig 1c), especially C.2, C.3, C.ar, and to lesser extent,
N.4, S.3, and S.2 (Fig 1c and Table 1). The results shown in Fig 1c indicate that ligand atom
type attributes provide directly correlated connection between the query atom and the ligand
atom types it could interact–higher ligand atom type attributes indicate higher predicted confi-
dence level for the query protein atom to involve in a ligand binding site. The determinants of
the ligand atom type attributes are originated from the information encoded in the attributes
from the database recording the atomistic pairwise interactions between organic ligands and
the protein surface atoms similar to the query atom. The geometry attribute, which is nega-
tively correlated to both prediction confidence level and the LBS assignment, is also expected
to contribute substantially to the prediction capabilities. The result shown in Fig 1c suggests
that the ISMBLab-LIG predictors identify LBS by mostly recognizing concave pockets on pro-
tein surface with higher distribution density of the ligand atoms (in particularly, the ligand car-
bon atoms C.2, C.3, and C.ar).

The protein-ligand binding sites predicted with the ISMBLab-LIG predictors are distin-
guishable in atom type distributions comparing with average protein surfaces. Fig 1d shows the
distribution of the protein atom types in predicted LBSs from the S5010 dataset. The distribu-
tion is normalized by the distribution of protein surface atoms, so that the distribution ratio of
1/30 for all protein atom types indicates the binding site atom type has the distribution ratio
indistinguishable from the average protein surfaces (shown by the dashed line in Fig 1d). The
result of Fig 1d shows that protein surface atoms with LBS prediction confidence level greater
than 10% are mostly composed of aromatic carbons, cysteine/methionine sulfur, glycine Cα’s,
and to a lesser extent, arginine and histidine sidechain atoms and hydroxyl groups on polar
sidechains. This result is in general agreement with the statistical surveys of preferred protein
amino acid types in protein-ligand interaction sites [3].

Performance benchmarks for the residue-based LBS predictions with
ISMBLab-LIG
The prediction performance of the ISMBLab-LIG was further benchmarked at residue-based
level with previously published datasets as described in the Methods section, allowing com-
parisons of prediction performances with other LBS prediction methods. The residue-based
LBS prediction output method is described in the Methods section. The residue-based predic-
tion accuracy, precision, sensitivity, specificity, F-score, and MCC are defined in Eqs 1–6
respectively. The averaged benchmarking results for the training set (S5010) and the testing
sets are summarized in Table 2. The detailed prediction benchmarks for each of the structures

Table 1. (Continued)

IDNo. AtomType Radius(Å) Description

48 S.3 2.00 sp3 sulfur

49 S.2 2.00 sp2 sulfur

50 S.O2 2.00 Sulfone sulfur

51 F 1.75 F fluorine

52 Cl 1.95 Cl chlorine

53 Br 2.22 Br bromine

The protein atom types (1–31) have been previously defined.

doi:10.1371/journal.pone.0160315.t001
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in the testing datasets (S48b, S48ub, S210, S198, and S523) are shown in S1–S5 Tables
respectively.

The prediction performance comparisons indicate that the prediction capability of ISM-
BLab-LIG has been generalized beyond the training dataset. The predictor performances as
measured with residue-based MCC (see Methods) on the 10-fold cross validation training/test-
ing set S5010 are generally reproducible in the 5 testing sets, as shown in Fig 2a, where the
MCC distributions have similar trends among the datasets, especially for the datasets with
large number of testing cases (S523, S198, and S210). This result indicates that the ISMBLab-
LIG predictors, trained with the S5010 data set, are generalizable to protein structures that
have not been included in the training set (S5010) and to proteins structures without the
bound ligands (S48b vs. S48ub).

Fig 2b indicates that the prediction MCCs have generally similar dependence on the amino
acid types among the benchmark datasets. This result further support the generalizability of
the ISMBLab-LIG predictors to protein structures unseen in the training dataset. Moreover,
the amino acid types with higher prediction MCC (Fig 2b) are consistent with the protein atom
types that are more abundant in the LBSs (Fig 1d): these amino acid types, including His, Asp,
Trp, Tyr, Gly, and Cys, are also consistent in general with the surveys indicating the abundance
of these amino acid types in LBSs [3]. These results suggest that the machine learning of ISM-
BLab-LIG has better generalizability to the protein atom types with more positive training
cases.

To challenge the possibility that the prediction benchmarks (Table 2 and Fig 2a and 2b)
could be originated from the evolutionary relationships between the training proteins and the
testing proteins, we retrained the ISMBLab-LIG predictors with subsets of the training proteins
in S5010. 5 subsets containing proteins increasingly distant from all the testing proteins in the
5 testing sets were derived from the original training set S5010: S3665 (3666 training proteins),
S2953 (2953 training proteins), S1995 (1995 training proteins), S782 (782 training proteins),
S156 (156 training proteins) contain training proteins that are not related to any of the testing
proteins in all the 5 testing sets by more than 50%, 30%, 25%, 20% and 10% sequence ID
respectively. The performance of the ISMBLab-LIG predictors benchmarked with the 5 testing
sets deteriorated substantially only when the predictors were trained with the S782 and S156
training set respectively (Fig 2c), perhaps due to insufficient training cases to generalize the
predictor models. The results indicate that the ISMBLab-LIG predictors are generalizable to
the testing proteins that share no more than 25% sequence ID with the training proteins; the
generalizability could extend to even lower sequence ID threshold if enough training proteins

Table 2. ISMBLab-LIG residue-based prediction performances benchmarked with published datasets.

Dataset Accuracy Precision Sensitivity Specificity MCCa MCCb F-score

S5010 0.947 0.513 0.546 0.97 0.501 N/A 0.529

S48b 0.954 0.562 0.625 0.972 0.568 0.575 0.592

S48ub 0.955 0.521 0.545 0.975 0.509 0.5 0.533

S210 0.944 0.568 0.468 0.976 0.487 0.505 0.513

S198 0.948 0.323 0.53 0.962 0.389 0.382 0.402

S523 0.948 0.449 0.566 0.966 0.477 0.507 0.501

The datasets are described in the Methods section.
a: The MCCs were calculated with the definition of the actual LBS residues described in the Methods section.
b: The MCCs were calculated with the actual LBS residues, where each of the actual LBS residues contains at least one heavy atom within the distance of

the sum of Van der Waals radii plus the tolerance distance (0.5 Å) to any ligand heavy atom [21, 33].

doi:10.1371/journal.pone.0160315.t002
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Fig 2. Benchmarking ligand binding site prediction accuracies at residue-based level. (a) The distributions of
the prediction performances on the training set (S5010) and testing sets (S48b, S48ub, S198, S210, and S523) are
shown by the histograms with the MCC ranges shown in the x-axis. The independent tests were carried out with the
trained ISMBLab-LIG predictors showing the best prediction performance from the 10-fold cross validation on the
S5010 dataset. The curves show the cumulative percentage of the corresponding datasets predicted with the residue-
based MCC values greater than the central value of the MCC range shown in the x-axis. Detailed prediction results for
each of the testing sets are shown in S1–S5 Tables. (b) Averaged residue-based MCCs (y-axis) for each of the 20
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had been available. The result indicates that the ISMBLab-LIG predictors catch the general pro-
tein-ligand interaction features, rather than relying on closely related template LBSs in the
structural database. As such, it is expected that the ISMBLab-LIG has more tolerance of input
structural uncertainty than template-based LBS prediction methods.

About 70% of the LBS predictions from the ISMBLab-LIG predictors are highly relevant in
identifying actual LBSs. Fig 3 compares the ISMBLab-LIG predicted atom-based patches and
residue-based patches with actual ligand-binding residues for randomly selected cases with var-
ious prediction accuracy indicated by MCC. As shown in the figure, LBS predictions with
MCC above 0.3 remain substantially relevant to the actually ligand binding patches. About
70% of the cases in the datasets shown in Fig 2a have LBS prediction MCC above 0.3. This
result suggests that the ISMBLab-LIG predictions are highly relevant to the actual ligand bind-
ing sites on proteins.

Still, there are about 20% of the test cases for which the LBS predictions cannot generate
useful results (MCC<0.1, Fig 2a). Many of these LBSs are deeply buried and are not accessible
as surface patches. These binding sites cannot be predicted by ISMBLab-LIG, which requires
that LBSs are composed of protein surface atoms. Other failed cases involve LBSs that are not
the typical concave pockets, where the machine leaning models of ISMBLab-LIG fail to predict
as LBSs with high confidence. Similarly, combinations of amino acid types that are rarely
observed in the majority of ligand binding sites are frequently predicted as false negatives.

The prediction accuracy of ISMBLab-LIG is comparable to that of the best LBS predictors.
Detailed prediction results for all the cases in the testing datasets (S48b, S48ub, S210, S198,
S523) can be found in S1–S5 Tables respectively. The success rate has been defined as the frac-
tion of the prediction cases with the predicted geometry center of the top one predicted LBS
patch within 4Å of the corresponding ligand [11, 20, 27]. The comparisons of success rates for
ISMBLab-LIG with other methods are summarized in S6–S8 Tables respectively. S6 Table
compares the success rate for top 1 predicted site by ISMBLab-LIG with other methods for
S48b and S48ub sets. ISMBLab-LIG’s performance (85%) was second to that of LISE (92%) in
S48b and equal to VICE and MPK2, and was equally top with VICE (83%) in S48ub [11, 20,
27]. In the S210 testing set (S7 Table), the success rate of ISMBLab-LIG is 84%, which ranks as
the first among 9 predictors [11, 20, 27]. For S198 dataset shown in S8 Table, ISMBLab-LIG’s
performance (55%) was second to that of MPK2 (61%) and equal to MPK1 [28].

In the S523 dataset, the averaged MCC for the top one ISMBLab-LIG predictions is 0.51
(Table 2), in comparison with the MCC of 0.48 from the COFACTOR predictions using a LBS
template database of 30% or less sequence ID to the test cases [21]. Both MCCs were calculated
with the actual LBS residues, where each of the actual LBS residues contains at least one heavy
atom within the distance of the sum of van der Waals radii plus the tolerance distance (0.5 Å)
to any ligand heavy atom [21, 33].

Comparison of ISMBLab-LIG with COACH, RaptorX and COFACTOR
on LBS predictions for targets from CAMEO-LB
To compare the ISMBLab-LIG predictors with the prediction methods assessable in CAMEO-
LB webserver [39], we predicted LBSs on CAMEO-LB targets and compared the prediction
results with those from the best performers in CAMEO-LB predictions (COACH [40] and

amino acid types (x-axis) are shown for the training and testing sets. The MCCs for the training set are averaged over
the 10-fold cross validation. (c) Prediction accuracies (averaged residue-based MCCs, y-axis) for the 5 testing sets are
shown for the ISMBLab-LIG predictors trained with 6 training sets (S5010, S3665, S2953, S1995, S782, S156, see
text). The prediction accuracy is defined as MCCb in Table 2.

doi:10.1371/journal.pone.0160315.g002
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Fig 3. Examples of ligand binding site predictions in S48b testing set. Panels (a) to (e) show the
prediction examples of five proteins from S48b testing set with MCC of 0.9, 0.77, 0.64, 0.5 and 0.35,
respectively. The left-hand side structures are color-coded by atom-based prediction confidence level. The
color bar at the bottom of this column shows the color scheme for normalized prediction confidence level. The
seed atoms are colored in red of various level of depth. The protein structures of the middle column show the
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RaptorX (http://raptorx.uchicago.edu/documentation/#goto2)) and COFACTOR [25]. The
CAMEO-LB webserver released 222 target sequences between 2016/3/26 and 2016/4/25; only
22 target sequences were labelled as binding with at least one organic ligand and were non-
redundant with 90% sequence ID threshold. I-TASSER standalone package was used to build
models for these 22 target sequences with default parameters [41].

Only the top 1 predicted results from each of the 4 prediction algorithms are compared in
S1 Fig. COFACTOR in-house version (Mar/2016) was used to predict the top 1 LBSs on the 22
target models. The top 1 LBS predicted by COFACTOR is the LBS residues on the query model
determined by the template cluster with the highest confidence score (C-score) binding to an
organic ligand; the C-score is determined by the combinations of local and global structural
similarity and sequence identity between the query and the templates [25]. The 22 target
models were also submitted to COACH webserver (http://zhanglab.ccmb.med.umich.edu/
COACH/) and the sequences of the 22 targets were submitted to RaptorX webserver (http://
raptorx.uchicago.edu/BindingSite/), which does not accept protein structures as input. The top
1 LBS predicted by COACH is the LBS residues from the template cluster with the highest con-
fidence score binding to organic ligand; the COACH confidence score is derived from optimal
combination of five prediction outcomes (S-SITE, TM-SITE, FINDSITE, COFACTOR, and
ConCavity) with a linear-SVM algorithm for combination weight determination [40]. The top
1 LBS predicted by RaptorX is the LBS residues of the highest ranked pocket binding to organic
ligand; the rank is determined by pocket multiplicity representing the frequency with which
the selected pocket was found in a set of ligand-binding protein structures (http://raptorx.
uchicago.edu/documentation/#goto2). The top 1 LBS prediction results with the 4 prediction
algorithms are compared with the actual LBS residues in S10 Table.

The prediction results are compared in S1 Fig. According to the CAMEO-LB webserver,
three scoring systems were used to benchmark prediction accuracy: BDT [42] (Eqs 7 and 8 in
Methods), MCC, and AUC. The ISMBLab-LIG LBS predictions are not compatible with
AUC calculation and the AUC scores are not available for COFACTOR (in house version
2016/3) predictions. Hence, the AUC score is not used in this comparison. Three cases were
not predicted with MCC> 0 by all four predictors (panels a, f, and l in S1 Fig). For the
remaining 19 cases, COACH performed the best according to the BDT score: with 8 best pre-
diction cases, each of which has the highest BDT score among the four predictors (S1 Fig).
ISMBLab-LIG is the second with 5 best prediction cases among the four predictors, followed
by RaptorX and COFACTOR with 4 and 3 best predictions (S1 Fig). When MCC used as the
benchmark, COACH remained the best performer with 8 best predictions among the four
predictors, followed by RaptorX, COFACTOR, and ISMBLab-LIG with 6, 5, and 1 best
predictions among the four predictors respectively (S1 Fig). In summary, COACH predic-
tions based on the consensus of 5 predictors consistently out-performed the other three
predictors. ISMBLab-LIG performed better than COFACTOR and RaptorX with BDT score
as the benchmark, but performed the worst among the three predictors with MCC as the
benchmark.

residue-based ligand binding site predictions. The residues colored in red or orange represent the positive
residues of the predicted patches in the ligand binding sites. The red atoms were predicted with prediction
confidence level greater than 0.5; other atoms in the positive residues of predicted patches with prediction
confidence level less than 0.5 are colored in orange. The right-hand side structures show the surface atoms
in close contact with the ligands. The atom colored in red are within 4.5 Å distance to any heavy atom of
corresponding ligand. The PDB code name and the MCC for each of the examples are also shown. The
complete prediction benchmarks for all testing sets are available for interactive examination from the
ISMBLab web server: http://ismblab.genomics.sinica.edu.tw/>benchmark>Protein-Ligand.

doi:10.1371/journal.pone.0160315.g003
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LBS predictions with tolerance of structural uncertainties in
comparatively modeled structures
The purpose of the tests in this section is to assess the effects of inaccurate protein models on
LBS predictions with ISMBLab-LIG. Comparative modeling predicts protein structures with
various accuracy level. 305 comparatively modeled structures were predicted with MODELLER
(see Methods) for the query sequences from the S48b dataset. Selected templates, and thus
associated sequence identities (seqIDs) and alignment coverages (ACs), with diverse evolution-
ary relevance to the query sequences were used to predict modeled structures, so as to encom-
pass a range of prediction qualities of the modeled structures as shown in detail in S9 Table.
The predicted structures are divided into three groups with decreasing structural prediction
accuracy: modeled structures with template sequence alignment coverage>90% (Fig 4a); mod-
eled structures with template sequence alignment coverage between 90% and 50% (Fig 4b);
model structures with template sequence alignment coverage between 50% and 7% (Fig 4c).
The ensemble of the predicted structures with diverse prediction qualities were used to assess
the tolerance of structural variations in LBS predictions as shown in Fig 4.

The y-axes of Fig 4a–4c show the consistency of the predicted LBSs on modeled structures
comparing with those on actual structures. The consistency is represented by the distance from
the geometry center of the predicted top one ligand binding patch (see Methods) on the actual
structure to the geometry center of the predicted top one ligand binding patch on the compara-
tively modeled structure. The pair of the actual structure and the modeled structure were
superimposed to optimize the root mean square deviation (RMSD) of the corresponding back-
bone Cα atoms before calculating the distance between the predicted binding centers.

The x-axes of Fig 4a–4c show the consistency of the LBS geometry between modeled struc-
tures and actual structures. The consistency is represented by the RMSD between the ligand-
neighboring atoms in the actual structure and the corresponding atoms in the modeled struc-
ture. The ligand-neighboring atoms are the atoms within 10 Å to the ligand-binding atoms,
which are within 4.5 Å to any of the heavy atom in the corresponding ligand.

Modeled structures with moderate prediction accuracy can be used to predict LBSs with rea-
sonable relevance to the LBSs on the actual structures. Fig 4a shows that when sequence ID
between the query sequence and the template> 70% and alignment coverage> 90% (green
data points in Fig 4a), the predicted LBSs on the modeled structures are quite consistent with
those on the actual structures: 64% of the cases have the predicted binding site centers on mod-
eled and actual structures within 4Å; 86% of the cases have predicted binding site centers
within 8Å. As the sequence ID decreases, the structural variation increases, but the predicted
binding site centers mostly remain within 8Å (red and black data points in Fig 4a). However,
as the quality of the modeled structure deteriorates, the predicted LBSs from the modeled
structures are increasingly inconsistent with the predicted LBSs from the actual structures (Fig
4b and 4c).

Detailed LBS predictions on the actual and modeled structures are compared for a few of
the cases with large variations in the ligand binding sites (data points labeled by A~E in Fig 4a)
are shown in Fig 5a to 5e respectively. These results indicate that the ISMBLab-LIG predictors
are applicable in LBS predictions for predicted protein structures with moderate prediction
accuracy.

Comparison of ISMBLab-LIG and COACH LBS predictions on protein
model structures
Comparison of the ISMBLab-LIG (a structure-based LBS predictor) with COACH (a consen-
sus LBS predictor combining 5 different algorithms) in prediction accuracy of LBSs on model
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Fig 4. Comparisons of LBS predictions on computationally predictedmodel structures with those on
actual protein structures. (a)Data show pairs of actual and modeled structures with template sequence
alignment coverage >90%. The y-axis shows the consistency of the predicted LBSs on modeled structures
comparing with those on actual structures. The x-axis shows the consistency of the LBS geometry between
modeled structures and actual structures. Three percentages shown in the legend after the seqID are the
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structures would provide insights into the strength and weakness of different algorithms in
terms of tolerance of structural uncertainty of the query target protein without related template
of ligand-protein complex in the structural database. Figs 4 and 5 assess the ISMBLab-LIG
with the test cases modeled with distantly homologous templates to mimic the situation of the
protein models with moderate prediction accuracy and without relevant template of ligand-
protein complex in PDB. However, similar experiments are not applicable to assess COACH,
which uses sequence information of the query structure, and thus in theory, would nevertheless
identify the test cases themselves and sequence-wise related templates in PDB. In fact, all the
test query sequences need to have actual ligand-protein complex structures in PDB so as to
compare the predicted results with the actual LBSs. Hence, it is not unexpected that COACH
would outperform ISMBLab-LIG on the test cases similar to those in Fig 4. Indeed, 81 model
structures predicted with MODELLER in default parameters with the sequence ID< 40% and
the alignment coverage> 80% between the query (from the S48b dataset) and the template
were submitted to the COACH webserver, and the LBS predictions as assessed by the BDT
score plotted versus RMSD between the modeled and actual LBSs (Fig 6a) and versus the
sequence ID between the query and the template (Fig 6b) are superior to the ISMBLab-LIG
predictions, which are also plotted in Fig 6. The performances are compared in Fig 6 in two
sets of benchmarks: (1) linear-regression benchmark: the linear regressions of the data points
(black dotted line for COACH and red dotted line for ISMBLab-LIG in Fig 6a and 6b) indicate
that the performance gap of the two methods narrows only in poorly predicted model struc-
tures; (2) pair-winner benchmark: for each subgroup of the data points divided by the vertical
blue dashed lines, the black number (number of COACH winners) versus the red number
(number of ISMBLab-LIG winner) above the data points in the figure panel (see legend of Fig
6) shows that COACH predictions are more accurate than ISMBLab-LIG predictions in all
data point groups.

The advantage of COACH was gained through sequence information of the test query
cases, for which closely related templates (and the queries themselves) can, in theory, be found
in PDB. COACHmakes use of five prediction outcomes (S-SITE, TM-SITE, FINDSITE,
COFACTOR, and ConCavity) with a linear-SVM algorithm for combination weight determi-
nation [40]. Hence it is instructive to compare the ISMBLab-LIG predictions with the predic-
tion results from each of the 5 predictors provided also by the COACH webserver (Figs 7–11):
S-SITE uses binding-specific sequence-profiles alignment to detect the possible template and
predict the LBSs; its scoring method for template match is structure-independent and thus the
performance would not be influenced by the quality of modeled structures [40]. Consequently,
the S-SITE prediction accuracy is only slightly dependent on the fidelity of the model structures
(Fig 7). S-SITE LBS predictions are far superior to those of ISMBLab-LIG as judged by both the
linear-regression lines and the pair-winner benchmarks (Fig 7). TM-SITE identifies suitable
templates with local and global structure-based alignments; the composite scoring function
for evaluating the match between query and template structure includes the sequence conser-
vation information by Jesnson-Shannon divergence score (JSD) from multiple sequence align-
ments of query sequence with other homologous sequences [10]. FINDSITE first uses the
threading method for detecting structural template with ligand and then aligns these templates
with query structure for LBS prediction [24]. Both algorithms use sequence and structural

percentages for those data points with y-axis values <4 Å, between 4 Å and 8 Å, and >8 Å respectively. (b)
Data show pairs of actual and modeled structures with template sequence alignment coverage between 90%
and 50%. Other descriptions are the same as in panel (a). (c)Data show pairs of actual and modeled
structures with template sequence alignment coverage between 50% and 7%. Other descriptions are the
same as in panel (a).

doi:10.1371/journal.pone.0160315.g004
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Fig 5. Examples of structural variation tolerance in ligand binding site predictions. The LBS predictions for the pairs of
modeled and actual structures for which the data points are marked A~E in Fig 4a are shown here in a~e respectively. The
first and 4th row show the atom-based predictions for the actual structures and the corresponding modeled structures
respectively. The second and 5th row show the residue-based ligand binding site predictions for the actual structures and the
corresponding modeled structures respectively. The third row shows the actual binding sites for ligand-bound structures.
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information to search for related template ligand-protein complexes in PDB, and hence expect-
edly, are also superior in prediction performance comparing with ISMBLab-LIG (Figs 8 and 9,
respectively). COFACTOR uses global structural search for template candidates, followed by
local LBS identification through local query motif superimpositions onto the known functional
site residues of the template proteins. The sequence conservation information from JSD score
is used to identify the evolutionary conserved residues for generating the local query motifs but
not directly used for scoring of template candidates [25]. Thus, the quality of modeled struc-
tures has more impact on the prediction accuracy for COFACTOR (Fig 10). The ISMBLab-
LIG algorithm is superior to COFACTOR in LBS predictions for the predicted protein struc-
ture models with less fidelity (Fig 10), a situation where COFACTOR cannot find relevant tem-
plates in PDB. ConCavity identifies the surface cavity with evolutionary sequence conservation
information from JSD score; the cavity or pocket search is mainly determined by the input
structure conformation [43]. The ConCavity LBS predictions are mostly inferior to those of
ISMBLab-LIG by the two sets of benchmarks (Fig 11), likely because the LBS geometry is part
of the attributes used in the ISMBLab-LIG machine learning algorithm. In summary, the
advantage of the consensus prediction implemented in COACH over ISMBLab-LIG is likely
due to the usage of the sequence information of the test cases, for which the actual protein-
ligand complex structures are stored in PDB and are accessible to COACH webserver through
sequence search; ISMBLab-LIG could be more applicable for LBS predictions with model
structures, particularly when homologous template ligand-protein complex for the query pro-
tein sequence cannot be found in the protein structural database with either sequence-based or
structure-based search methods.

ISMBLab-LIG can be accessed through the ISMBLab-LIG web server (Fig 12).

Discussion
Predicting ligand binding sites on protein structures, which are obtained either from experi-
mental or computational methods, is a useful first step in functional annotation or structure-
based drug design for the protein structures. The prediction capabilities of LBS prediction
methods based on evolutionary information or ligand binding pocket geometry have been suc-
cessful to an extent, and the template-based methods have better performance when known
template structures are available for inferring tentative ligand binding sites on the query pro-
tein. However, the template-based prediction methods could have difficulties to predict tenta-
tive LBSs on experimental structures or computationally predicted models when relevant
template structures are not available for the query structures. In this work, the structure-based
machine learning algorithm ISMBLab-LIG was developed to predict LBSs on protein surfaces
with input attributes derived from the three-dimensional probability density maps of interact-
ing atoms on the query protein surfaces. Similar to template-based prediction algorithms, the
patterns of LBSs from known structures are learned to infer tentative LBSs on query protein
structures. But unlike template structure-matching in the template-based methods, the
machine learning predictors, which use interacting atom distributions reconstructed on the
query protein surfaces as inputs, are relatively insensitive to local conformational variations.
Essentially, the machine learning predictors identify LBSs by mostly recognizing concave pock-
ets on protein surfaces with higher distribution density of the ligand atoms.

The last row shows the ribbon diagrams of the superimposed pairs of the modeled (green) and actual (red) structures. The
details of PDB codes for ligand-bound structures and model templates, sequence identities, alignment coverages, RMSDs
of ligand-neighboring atoms, distances between predicted binding centers for these five pairs of structures are shown in S6
Table.

doi:10.1371/journal.pone.0160315.g005
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Fig 6. Comparison of ISMBLab-LIG and COACH predictions. (a) Prediction results are compared for 81
model structures built by MODELLER with template sequence alignment coverage > 80% and sequence
ID < 40%. The query sequences are from the S48b dataset (see Methods). For each model structure, a pair
of BDT scores were calculated based on the LBS predictions with ISMBLab-LIG (red triangles) and COACH
(black dot). These BDT scores are plotted against RMSD between modeled and actual LBS (x-axis), for

Ligand Binding Site Predictions with Probability Density Maps

PLOS ONE | DOI:10.1371/journal.pone.0160315 August 11, 2016 18 / 34



The prediction accuracies of the ISMBLab-LIG predictors are comparable to those of the
best LBS predictors on several well-established testing datasets. With BDT score as the bench-
mark, the ISMBLab-LIG predictions were only inferior to the consensus prediction algorithm
COACH on 19 CAMEO-LB protein targets released recently. Although the COACH predic-
tions outperformed those of ISMBLab-LIG on the test cases with the model structures pre-
dicted with moderate accuracy, the advantage of the consensus prediction implemented in
COACH over ISMBLab-LIG is likely due to the usage of the test cases’ sequence information,
which might not be informative in situations where homologous template ligand-protein com-
plex for the query protein sequence cannot be found in the protein structural database with
either sequence-based or structure-based search methods. It has been estimated that about
three quarters of human proteome cannot be inferred in ligand binding information from pro-
tein-ligand complexes in PDB [1]. In such situation, ISMBLab-LIG could have unique useful-
ness for LBS predictions with model structures of structure prediction uncertainties. To
summarize, the method is particularly useful for predicting LBSs not only on experimental pro-
tein structures without known LBS templates in the database, but also on computationally pre-
dicted model protein structures with structural uncertainties in the tentative ligand binding
sites and without sequence-wise homologous template ligand-protein complex structures in
PDB.

Methods
ISMBLab-LIG predicts LBSs on a protein structure by identifying ligand-binding atoms on the
protein surface according to the predicted ligand-binding confidence level for each of the pro-
tein surface atoms. The general principles of the prediction method have been published previ-
ously [37, 38].

Database for non-covalent atomistic interactions
Details of the methodology is documented in S1 Text. In brief, atomistic contact interactions in
proteins of known structures were organized into a database containing non-covalent atomistic
interaction information for atom pairs involving in protein-protein, protein-ligand and pro-
tein-water interactions: The atomistic contact interactions among protein atoms were derived
from 9468 non-redundant protein structures [44]. Protein-water interaction database was con-
structed from 915 non-redundant high resolution protein structures [45].

Unique to this work is the construction of the database for organic ligand atoms interacting
with proteins. The interacting ligand atom distribution database was derived from 17023
known protein-ligand complex structures (S17023 dataset) released before Aug/2014. These
complex structures were obtained from PDB web site: http://ligand-expo.rcsb.org/dictionaries/
cc-to-pdb.tdd. 30% sequence identity threshold was used to remove structure redundancy
among structures binding to the same ligand. In addition, structures that satisfy at least one of

which the definition is the same as the x-axis of Fig 4. The red dotted line and the black dotted line are the
linear regression lines for the ISMBLab-LIG data points and COACH data points respectively; the
corresponding R2, slope (β) and P-value from F-test are calculated by SigmaPlot 12.0 and colored in red for
ISMBLab-LIG predictions and black for COACH predictions. For each pair of predictions on the same model
structure, a winner was assigned to either ISMBLab-LIG or COACH based on the BDT score. For each
subgroup of the data points divided by the vertical blue dashed lines, the black number versus the red
number above the data points in the figure panel indicates the number of winners of COACH prediction (in
black) versus the number of winners of ISMBLab-LIG prediction (in red). (b) The description is the same as in
(a), except that the data points are plotted against the sequence ID% between the query and the template
used in MODELLER comparative modeling.

doi:10.1371/journal.pone.0160315.g006

Ligand Binding Site Predictions with Probability Density Maps

PLOS ONE | DOI:10.1371/journal.pone.0160315 August 11, 2016 19 / 34

http://ligand-expo.rcsb.org/dictionaries/cc-to-pdb.tdd
http://ligand-expo.rcsb.org/dictionaries/cc-to-pdb.tdd


Fig 7. Comparison of ISMBLab-LIG and S-SITE predictions. See description in Fig 6.

doi:10.1371/journal.pone.0160315.g007
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Fig 8. Comparison of ISMBLab-LIG and TM-SITE predictions. See description in Fig 6.

doi:10.1371/journal.pone.0160315.g008
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Fig 9. Comparison of ISMBLab-LIG and FINDSITE predictions. See description in Fig 6.

doi:10.1371/journal.pone.0160315.g009

Ligand Binding Site Predictions with Probability Density Maps

PLOS ONE | DOI:10.1371/journal.pone.0160315 August 11, 2016 22 / 34



Fig 10. Comparison of ISMBLab-LIG and COFACTOR predictions. See description in Fig 6.

doi:10.1371/journal.pone.0160315.g010
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Fig 11. Comparison of ISMBLab-LIG and ConCavity predictions. See description in Fig 6.

doi:10.1371/journal.pone.0160315.g011
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the following criteria were further removed from the dataset: non X-ray method; resolution
higher than 3 Å; ATOM record (PDB format) containing DNA or RNAmolecule; only C alpha
atoms; covalent link between ligand and protein; the number of ligand atoms smaller than 10
and the number of interacting atoms smaller than 15. The formal name and description of atom
type for ligand molecules in Table 1 were adopted from Sybyl atom type model [46]. OpenBabel
package [47] was used to define the ligand atom types, as shown in Table 1 with ID number
from 32 to 53. The constructions of the database for the distributions of interacting ligand atom
types and interacting protein atom types are described in details in S1 Text [37, 38].

Constructing probability density maps (PDMs) of non-covalent
interacting atoms on protein surfaces
Details of the methodology is documented in S1 Text. In brief, a probability density map
(PDM) for an interacting atom type describes the three-dimensional distribution of likelihood

Fig 12. Input and output of the ISMBLab-LIG web server. (a) User can upload structures in PDB format or assign PDB ID with chain
identifier for prediction jobs. (b) Two types of prediction results, atom-based confidence level (left panel) and residue-based predicting
patches (right panel), are displayed separately with Jmol for interactive 3D structural view. The same color scheme described in Fig 3 is
also applied here for confidence level and predicted patches respectively. Both confidence level and patch prediction results can be
downloaded as PDB format file where B-factor field contains these information. (c) The prediction results are also shown in sequence-
based view. The color scheme is the same as in panel (b).

doi:10.1371/journal.pone.0160315.g012
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for the type of non-covalent interacting atom to appear around protein surface atoms. For each
atom in the query protein structure, the atom type, amino acid type of the parent residue and
the conformational type of the parent amino acid were combined to retrieve interacting atoms
in the database described in previous section. The distributions of the interacting atoms were
normalized and mapped to the protein surface to construct the PDMs [36].

Input of the ISMBLab-LIG predictors
One artificial neural network (ANN) machine-learning model (ANN_BAGGING) (S1 Text)
[37, 38] was trained for each of the 30 protein atom types. The input for each of the 30 ANN
models contains 54 attributes: 53 attributes encode the ligand-binding properties for each of
the protein surface atoms; one additional attribute describes the geometry around each protein
surface atom—the fraction of space not occupied by the van der Waals volume of the protein
in the 10 Å sphere centered at the protein atom [37, 38]. Each of the 53 ligand-binding prop-
erty attributes was extracted from a corresponding three-dimensional probability density map
(PDM) that describes the spatial distribution of one of the 53 interacting atom types around
the protein surface atom; the interacting atom types are listed with the ID number from 1 to 53
in Table 1. 31 PDMs for each protein surface atom were constructed using a database contain-
ing the distributions of interacting protein atom types (ID number from 1 to 30 shown in
Table 1) and water oxygen (ID number of 31 shown in Table 1) around protein atoms from
known protein structures [37, 38]; 22 PDMs were constructed using the database containing
the distributions of interacting ligand atom types (ID number from 32 to 53 shown in Table 1)
around protein atoms (see above). The derivation of the attribute values from PDMs has been
published and the details are documented in S1 Text.

Output of the ISMBLab-LIG LBS predictions at residue-based level
The outputs of the ANNmodels are normalized ligand-binding prediction confidence levels
ranging from 0 to 1, allowing the prediction results of the protein surface atoms from the 30
ANNmodels to be used on a leveled ground to synthesize the final ligand binding patches
based on a threshold of the prediction confidence level (S1 Text) [37, 38]: Seed patches were
defined as those surface atoms showing the prediction confidence level greater than 50%. All
neighboring surface atoms within 5 Å radii of these seeds and with prediction confidence level
greater than 10% were included as predicted ligand binding site. If any two seeds showing the
pairwise distance smaller than10 Å, the subset ligand patches were merged as one ligand bind-
ing patch. The predicted atom-based patch containing the highest score from the summation
of prediction confidence level by all atoms included was denoted as the top one predicted site.
To facilitate comparison of this work with previous methods predicting ligand binding sites at
the residue-based level, a heuristic procedure was used to transform the atom-based binding
site predictions into binding site predictions at the residue-based level: only the residues with
more than 30% of the surface atoms (SASA>0) included in the atom-based binding patch were
considered as positive residues of the residue-based patch. The threshold parameters for the
atom-based and residue-based prediction heuristics were optimized to maximize prediction
accuracies (MCCs) with the validation sets in the 10-fold cross validation (S1 Text).

Definition of actual LBSs at residue-based level
The actual ligand binding sites at the residue-based level for proteins with known ligands were
defined by the residues, each of which has more than 30% of the surface atoms (SASA> 0 in
the absence of ligand) on the residue within 4.5 Å to any atom of the ligand. These definitions
enabled the comparison of prediction results with actual binding sites at the residue-based
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level. The percentage parameter was optimized for residue-based prediction accuracy with the
validation sets in the 10-fold cross validation.

Training and testing datasets
S5010 dataset was used for 10-fold cross validations in training and testing of the ISMBLab-
LIG predictors. The S5010 dataset contains a subset of 5010 protein-ligand complex structures
from the S17023 dataset with pairwise sequence identity less than 90%. In addition, all the pro-
tein structures in S5010 contain only one polypeptide chain.

The following test sets were used to benchmark the ISMBLab-LIG predictors. None of the
test set structures were included in the training set S5010.

1. The S48-bound (S48b) and S48-unbound (S48ub) test sets were originally collected in the
work on LIGSITEcsc [11]; the dataset contains the cases from the works on Q-SiteFinder
[48](35 cases) and PASS [49] (19 cases). The dataset contained 48 proteins bound with
ligand (S48b) and the same protein structures determined in the absence of the correspond-
ing ligands (S48ub).

2. The S210 test set was collected in the work on LIGSITEcsc [11] and was derived from 485
cases in PLD v 1.3 database (Protein Ligand database) [50] after removing redundant
structures.

3. The S198 test set was original created in the work on MPK2 [28] from the DrugPort website
[51] and contains 198 protein-drug complexes. The PDB lists of the testing sets were down-
loaded from metaPocket 2.0 web site [28]:http://projects.biotec.tu-dresden.de/metapocket/
benchmark.php

4. The S523 test set was originally collected in the work on COFACTOR [21] which contains
382 natural ligand-protein complexes and 200 drug-protein complexes. The original PDB
list was downloaded by COFACTOR benchmark site: http://zhanglab.ccmb.med.umich.
edu/COFACTOR/benchmark/COFACTOR_testing_results.txt. 41 PDBs were removed
from the original list due to non-availability of ligand name in the current PDB web site. 18
cases with the redundant PDB ID and ligand name were also removed from the original list.

Benchmarking prediction performances
The machining learning performance of the ANN_BAGGINGmodels was benchmarked by
accuracy (Acc), precision (Pre), sensitivity (Sen), specificity (Spe), F-score (Fsc) and Matthews
correlation coefficient (MCC).

Acc ¼ TP þ TN
TP þ TN þ FP þ FN

� 100 ð1Þ

Pre ¼ TP
TP þ FP

� 100 ð2Þ

Sen ¼ TP
TP þ FN

� 100 ð3Þ

Spe ¼ TN
TN þ FP

� 100 ð4Þ
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Fsc ¼ 2� Pre� Sen
Pre þ Sen

ð5Þ

MCC ¼ TP � TN � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP þ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞp ð6Þ

where TP is the number of true positives; TN the number of true negatives; FP the number of
false positives; and FN the number of false negatives (S1 Text).

The BDT (Binding-site Distance Test) score [42] is defined in Eq 7:

BDT ¼

XNp

i¼1

max ðSijÞ

max ðNp;NoÞ
ð7Þ

and,

Sij ¼
1

1þ dij
do

� �2 ð8Þ

where dij is the Euclidean distance between C-alpha atoms of a predicted residue i and a LBS
residue j; d0 is a distance threshold. In this work, we followed the CAMEO-LB setting of d0 = 5
Å. Np is the number of predicted residues and No is the number of LBS residues. A java package
downloaded from the web site: http://www.reading.ac.uk/bioinf/downloads is used for the
BDT calculation.

Evaluation of the LBS prediction performance with comparatively
modeled structures
The sequences of S48b data set were used for identifying all possible similar proteins within
specific sequence identity threshold by NCBI PSI-blast search using the default parameter [52].
For each query sequence, all identified homologous proteins were classified into 15 groups
with descending sequence identities between these proteins and the query sequence. For each
of the groups, the protein showing the highest sequence identity with the query sequence was
selected as template for modeling the query sequence. Each modeled structure was created
based on a single selected template by MODELLER software using the default parameter [53].
The templates and associated data are shown in S6 Table.

Web Site
The prediction request can be submitted to this webserver: http://ismblab.genomics.sinica.edu.
tw/. (Fig 12). All the benchmark results can be accessed in interactive graphic presentations
from the same web address above.

Supporting Information
S1 Fig. Comparison of LBS predictions with actual LBSs for targets from CAMEO-LB by
ISMBLab-LIG with COACH, RaptorX and COFACTOR. Panels (a) to (v) compare the pre-
diction results of 22 proteins from CAMEO-LB with actual LBSs. In each panel, the first struc-
ture from the left shows the actual LBS residues colored in green with ligand in red. Each of the
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actual LBS residue contains at least one heavy atom within the distance of the sum of Van der
Waals radii plus the tolerance distance (0.5 Å) to any ligand heavy atom. The PDB ID and
chain ID for the target protein are shown under the target protein structure. The second to the
fifth structures from left show the top 1 predicted LBS residues (cyan) by ISMBLab-LIG,
COFACTOR, COACH and RaptorX respectively. The BDT score and MCC by the correspond-
ing predictor are shown under each structure. The highest BDT score or MCC among the four
predictors are highlighted in red. The PDB ID and chain ID of PDBhit, which is the representa-
tive protein-ligand complex structure identified in COACH result page, are also shown under
the COACH prediction result. The number in the bracket is the sequence ID% between the tar-
get protein and the representative protein.
(PDF)

S1 Table. ANN_BAGGING prediction accuracy benchmarks on the independent test set
S48b. The PDB ID, chain ID, and ligand name (columns 1~3) are downloaded from PDB; the
prediction performances shown in columns 4~13 are defined in Eqs 5–10 of S1 Text; column
14 shows the number of LBS predicted for the corresponding protein structure (see Methods in
main text); column 15 shows the number of the top one predicted LBS (see Methods in main
text) for which the geometry center is within 4Å to the corresponding ligand.
(DOCX)

S2 Table. ANN_BAGGING prediction accuracy benchmarks on the independent test set
S48ub. The PDB ID, chain ID, and ligand name (columns 1~3) are downloaded from PDB; the
prediction performances shown in columns 4~13 are defined in Eqs 5–10 of S1 Text; column
14 shows the number of LBS predicted for the corresponding protein structure (see Methods in
main text); column 15 shows the number of the top one predicted LBS (see Methods in main
text) for which the geometry center is within 4Å to the corresponding ligand.
(DOCX)

S3 Table. ANN_BAGGING prediction accuracy benchmarks on the independent test set
S210. The PDB ID, chain ID, and ligand name (columns 1~3) are downloaded from PDB; the
prediction performances shown in columns 4~13 are defined in Eqs 5–10 of S1 Text; column
14 shows the number of LBS predicted for the corresponding protein structure (see Methods in
main text); column 15 shows the number of the top one predicted LBS (see Methods in main
text) for which the geometry center is within 4Å to the corresponding ligand.
(DOCX)

S4 Table. ANN_BAGGING prediction accuracy benchmarks on the independent test set
S198. The PDB ID, chain ID, and ligand name (columns 1~3) are downloaded from PDB; the
prediction performances shown in columns 4~13 are defined in Eqs 5–10 of S1 Text; column
14 shows the number of LBS predicted for the corresponding protein structure (see Methods in
main text); column 15 shows the number of the top one predicted LBS (see Methods in main
text) for which the geometry center is within 4Å to the corresponding ligand.
(DOCX)

S5 Table. ANN_BAGGING prediction accuracy benchmarks on the independent test set
S523. The PDB ID, chain ID, and ligand name (columns 1~3) are downloaded from PDB; the
prediction performances shown in columns 4~13 are defined in Eqs 5–10 of S1 Text; column
14 shows the number of actual LBSs for the corresponding complex structure; column 15
shows the number of LBS predicted for the corresponding protein structure (see Methods in
main text);.
(DOCX)
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S6 Table. Comparison of the top 1 predicted success rates of ISMBLab-LIG with those of
various ligand binding site predictors on the S48 bound/unbound dataset.
(DOCX)

S7 Table. Comparisons of the top 1 prediction success rates of ISMBLab-LIG with those of
various ligand binding site prediction methods on the S210 dataset.
(DOCX)

S8 Table. Comparisons of the top 1 prediction success rates of ISMBLab-LIG with those of
various ligand binding site prediction methods on the S198 dataset.
(DOCX)

S9 Table. Details of model template and distances of predicted binding centers between
ligand-bound structures and modeled structures. Columns 1 and 2 show the PDB code
name and chain name respectively for the query protein sequence to be comparatively modeled
with MODELLER. Column 3 shows the PDB code name of the template structure used in the
comparative modeling. Columns 4 and 5 show the sequence ID (%) and alignment coverage
fraction between the query sequence and the template structure. Column 6 shows the root
mean square deviation (RMSD) between the ligand-neighboring atoms in the actual structure
(shown in column 1) and the corresponding atoms in the modeled structure. The ligand-neigh-
boring atoms are the atoms within 10 Å to the ligand-binding atoms, which are within 4.5 Å to
any of the heavy atom in the corresponding ligand. Column 7 shows the distance from the
geometry center of the predicted top one ligand binding patch (see Methods in the man text)
on the actual structure (column 1) to the geometry center of the predicted top one ligand bind-
ing patch on the comparatively modeled structure based on the template structure (column3).
The actual structure and the modeled structure were superimposed to optimize the RMSD of
corresponding backbone Cα before calculating the distance between the predicted binding cen-
ter. Column 8 indicates the examples (A)~(E) shown in Fig 5 of the main text.
(DOCX)

S10 Table. Prediction results of the CAMEO-LB cases by RaptorX, COACH, COFACTOR
and ISMBLab-LIG. Columns 1 and 2 from the left show the PDB code name and chain name
respectively for the query protein sequence comparatively modeled with I-TASSAR package.
Column 3 shows the residue numbers of actual LBS residues, each of which contains at least
one heavy atom within the distance of the sum of Van der Waals radii plus the tolerance dis-
tance (0.5 Å) to any ligand heavy atom. Columns 4, 5, 6 and 7 show the residue numbers of
predicted LBS residues by ISMBLab-LIG, COFACTOR, COACH and RaptorX respectively.
(DOCX)

S1 Text. Supplemental Methods.
(DOCX)

Author Contributions

Conceptualization: ASY JWJ KCT HPP CYW.

Data curation: JWJ PE CYWHPP.

Formal analysis: JWJ PE CYW TP.

Funding acquisition: ASY.

Investigation: PE JWJ CYW.

Ligand Binding Site Predictions with Probability Density Maps

PLOS ONE | DOI:10.1371/journal.pone.0160315 August 11, 2016 30 / 34

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0160315.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0160315.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0160315.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0160315.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0160315.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0160315.s012


Methodology: JWJ KCT HPP.

Project administration: ASY.

Resources: ASY.

Software: JWJ KCT JYC HPP.

Supervision: ASY.

Validation: JWJ CYW.

Visualization: JWJ CYWHPP.

Writing - original draft: ASY JWJ PE CYW TP.

Writing - review & editing: ASY JWJ CYW.

References
1. Skolnick J, Zhou H, Gao M. Are predicted protein structures of any value for binding site prediction and

virtual ligand screening? Curr Opin Struct Biol. 2013; 23(2):191–7. doi: 10.1016/j.sbi.2013.01.009
PMID: 23415854; PubMed Central PMCID: PMCPMC3659186.

2. Gao M, Skolnick J. A comprehensive survey of small-molecule binding pockets in proteins. PLoS Com-
put Biol. 2013; 9(10):e1003302. doi: 10.1371/journal.pcbi.1003302 PMID: 24204237; PubMed Central
PMCID: PMCPMC3812058.

3. Khazanov NA, Carlson HA. Exploring the composition of protein-ligand binding sites on a large scale.
PLoS Comput Biol. 2013; 9(11):e1003321. doi: 10.1371/journal.pcbi.1003321 PMID: 24277997;
PubMed Central PMCID: PMCPMC3836696.

4. Laurie ATR, Jackson RM. Methods for the prediction of protein-ligand binding sites for Structure-Based
Drug Design and virtual ligand screening. Curr Protein Pept Sc. 2006; 7(5):395–406.
ISI:000240670000003.

5. Henrich S, Salo-Ahen OMH, Huang B, Rippmann F, Cruciani G, Wade RC. Computational approaches
to identifying and characterizing protein binding sites for ligand design. Journal of Molecular Recogni-
tion. 2010; 23(2):209–19. ISI:000275678100011. doi: 10.1002/jmr.984 PMID: 19746440

6. Perot S, Sperandio O, Miteva MA, Camproux AC, Villoutreix BO. Druggable pockets and binding site
centric chemical space: a paradigm shift in drug discovery. Drug Discov Today. 2010; 15(15–16):656–
67. ISI:000281138600010. doi: 10.1016/j.drudis.2010.05.015 PMID: 20685398

7. Ghersi D, Sanchez R. Beyond structural genomics: computational approaches for the identification of
ligand binding sites in protein structures. Journal of structural and functional genomics. 2011; 12
(2):109–17. Epub 2011/05/04. doi: 10.1007/s10969-011-9110-6 PMID: 21537951; PubMed Central
PMCID: PMC3127736.

8. Xie ZR, Hwang MJ. Methods for predicting protein-ligand binding sites. Methods Mol Biol. 2015;
1215:383–98. doi: 10.1007/978-1-4939-1465-4_17 PMID: 25330972.

9. Pupko T, Bell RE, Mayrose I, Glaser F, Ben-Tal N. Rate4Site: an algorithmic tool for the identification of
functional regions in proteins by surface mapping of evolutionary determinants within their homologues.
Bioinformatics. 2002; 18 Suppl 1:S71–7. Epub 2002/08/10. PMID: 12169533.

10. Capra JA, Singh M. Predicting functionally important residues from sequence conservation. Bioinfor-
matics. 2007; 23(15):1875–82. Epub 2007/05/24. doi: 10.1093/bioinformatics/btm270 PMID:
17519246.

11. Huang B, Schroeder M. LIGSITEcsc: predicting ligand binding sites using the Connolly surface and
degree of conservation. BMC structural biology. 2006; 6:19. Epub 2006/09/26. doi: 10.1186/1472-
6807-6-19 PMID: 16995956; PubMed Central PMCID: PMC1601958.

12. Kawabata T, Go N. Detection of pockets on protein surfaces using small and large probe spheres to
find putative ligand binding sites. Proteins-Structure Function and Bioinformatics. 2007; 68(2):516–29.
doi: 10.1002/Prot.21283. ISI:000247284100008.

13. Weisel M, Proschak E, Schneider G. PocketPicker: analysis of ligand binding-sites with shape descrip-
tors. Chemistry Central journal. 2007; 1:7. Epub 2007/09/21. doi: 10.1186/1752-153X-1-7 PMID:
17880740; PubMed Central PMCID: PMC1994066.

Ligand Binding Site Predictions with Probability Density Maps

PLOS ONE | DOI:10.1371/journal.pone.0160315 August 11, 2016 31 / 34

http://dx.doi.org/10.1016/j.sbi.2013.01.009
http://www.ncbi.nlm.nih.gov/pubmed/23415854
http://dx.doi.org/10.1371/journal.pcbi.1003302
http://www.ncbi.nlm.nih.gov/pubmed/24204237
http://dx.doi.org/10.1371/journal.pcbi.1003321
http://www.ncbi.nlm.nih.gov/pubmed/24277997
http://dx.doi.org/10.1002/jmr.984
http://www.ncbi.nlm.nih.gov/pubmed/19746440
http://dx.doi.org/10.1016/j.drudis.2010.05.015
http://www.ncbi.nlm.nih.gov/pubmed/20685398
http://dx.doi.org/10.1007/s10969-011-9110-6
http://www.ncbi.nlm.nih.gov/pubmed/21537951
http://dx.doi.org/10.1007/978-1-4939-1465-4_17
http://www.ncbi.nlm.nih.gov/pubmed/25330972
http://www.ncbi.nlm.nih.gov/pubmed/12169533
http://dx.doi.org/10.1093/bioinformatics/btm270
http://www.ncbi.nlm.nih.gov/pubmed/17519246
http://dx.doi.org/10.1186/1472-6807-6-19
http://dx.doi.org/10.1186/1472-6807-6-19
http://www.ncbi.nlm.nih.gov/pubmed/16995956
http://dx.doi.org/10.1002/Prot.21283
http://dx.doi.org/10.1186/1752-153X-1-7
http://www.ncbi.nlm.nih.gov/pubmed/17880740


14. Kawabata T. Detection of multiscale pockets on protein surfaces using mathematical morphology. Pro-
teins-Structure Function and Bioinformatics. 2010; 78(5):1195–211. doi: 10.1002/Prot.22639.
ISI:000275639500010.

15. Yu J, Zhou Y, Tanaka I, Yao M. Roll: a new algorithm for the detection of protein pockets and cavities
with a rolling probe sphere. Bioinformatics. 2010; 26(1):46–52. Epub 2009/10/23. doi: 10.1093/
bioinformatics/btp599 PMID: 19846440.

16. Binkowski TA, Naghibzadeh S, Liang J. CASTp: Computed atlas of surface topography of proteins.
Nucleic Acids Research. 2003; 31(13):3352–5. doi: 10.1093/Nar/Gkg512. ISI:000183832900017.
PMID: 12824325

17. Ghersi D, Sanchez R. EasyMIFs and SiteHound: a toolkit for the identification of ligand-binding sites in
protein structures. Bioinformatics. 2009; 25(23):3185–6. doi: 10.1093/bioinformatics/btp562.
ISI:000272080800022. PMID: 19789268

18. Hernandez M, Ghersi D, Sanchez R. SITEHOUND-web: a server for ligand binding site identification in
protein structures. Nucleic Acids Research. 2009; 37:W413–W6. doi: 10.1093/Nar/Gkp281.
ISI:000267889100072. PMID: 19398430

19. Ngan CH, Hall DR, Zerbe B, Grove LE, Kozakov D, Vajda S. FTSite: high accuracy detection of ligand
binding sites on unbound protein structures. Bioinformatics. 2012; 28(2):286–7. doi: 10.1093/
bioinformatics/btr651. ISI:000299414200021. PMID: 22113084

20. Xie ZR, Hwang MJ. Ligand-binding site prediction using ligand-interacting and binding site-enriched
protein triangles. Bioinformatics. 2012; 28(12):1579–85. ISI:000305419800040. doi: 10.1093/
bioinformatics/bts182 PMID: 22495747

21. Roy A, Zhang Y. Recognizing protein-ligand binding sites by global structural alignment and local
geometry refinement. Structure. 2012; 20(6):987–97. Epub 2012/05/09. doi: 10.1016/j.str.2012.03.009
PMID: 22560732; PubMed Central PMCID: PMC3372652.

22. Wass MN, Kelley LA, Sternberg MJE. 3DLigandSite: predicting ligand-binding sites using similar struc-
tures. Nucleic Acids Research. 2010; 38:W469–W73. doi: 10.1093/Nar/Gkq406.
ISI:000284148900076. PMID: 20513649

23. Skolnick J, Brylinski M. FINDSITE: a combined evolution/structure-based approach to protein function
prediction. Briefings in Bioinformatics. 2009; 10(4):378–91. doi: 10.1093/Bib/Bbp017.
ISI:000266953900005. PMID: 19324930

24. Brylinski M, Skolnick J. A threading-based method (FINDSITE) for ligand-binding site prediction
and functional annotation. Proceedings of the National Academy of Sciences of the United States of
America. 2008; 105(1):129–34. doi: 10.1073/pnas.0707684105. ISI:000252435300027. PMID:
18165317

25. Roy A, Yang J, Zhang Y. COFACTOR: an accurate comparative algorithm for structure-based protein
function annotation. Nucleic Acids Res. 2012; 40(Web Server issue):W471–7. doi: 10.1093/nar/gks372
PMID: 22570420; PubMed Central PMCID: PMC3394312.

26. Halgren TA. Identifying and Characterizing Binding Sites and Assessing Druggability. J Chem Inf
Model. 2009; 49(2):377–89. doi: 10.1021/Ci800324m. ISI:000263658200021. PMID: 19434839

27. Huang B. MetaPocket: a meta approach to improve protein ligand binding site prediction. Omics: a jour-
nal of integrative biology. 2009; 13(4):325–30. Epub 2009/08/04. doi: 10.1089/omi.2009.0045 PMID:
19645590.

28. Zhang ZM, Li Y, Lin BY, Schroeder M, Huang BD. Identification of cavities on protein surface using mul-
tiple computational approaches for drug binding site prediction. Bioinformatics. 2011; 27(15):2083–8.
doi: 10.1093/bioinformatics/btr331. ISI:000292778700009. PMID: 21636590

29. Bray T, Chan P, Bougouffa S, Greaves R, Doig AJ, Warwicker J. SitesIdentify: a protein functional site
prediction tool. BMC Bioinformatics. 2009; 10. Artn 379 doi: 10.1186/1471-2105-10-379.
ISI:000272335300001.

30. Le Guilloux V, Schmidtke P, Tuffery P. Fpocket: an open source platform for ligand pocket detection.
BMC Bioinformatics. 2009; 10:168. Epub 2009/06/03. doi: 10.1186/1471-2105-10-168 PMID:
19486540; PubMed Central PMCID: PMC2700099.

31. Capra JA, Laskowski RA, Thornton JM, Singh M, Funkhouser TA. Predicting Protein Ligand
Binding Sites by Combining Evolutionary Sequence Conservation and 3D Structure. Plos
Computational Biology. 2009; 5(12). ARTN e1000585 doi: 10.1371/journal.pcbi.1000585.
ISI:000274229000003.

32. Glaser F, Morris RJ, Najmanovich RJ, Laskowski RA, Thornton JM. A method for localizing ligand bind-
ing pockets in protein structures. Proteins-Structure Function and Bioinformatics. 2006; 62(2):479–88.
doi: 10.1002/Prot.20769. ISI:000234438800017.

Ligand Binding Site Predictions with Probability Density Maps

PLOS ONE | DOI:10.1371/journal.pone.0160315 August 11, 2016 32 / 34

http://dx.doi.org/10.1002/Prot.22639
http://dx.doi.org/10.1093/bioinformatics/btp599
http://dx.doi.org/10.1093/bioinformatics/btp599
http://www.ncbi.nlm.nih.gov/pubmed/19846440
http://dx.doi.org/10.1093/Nar/Gkg512
http://www.ncbi.nlm.nih.gov/pubmed/12824325
http://dx.doi.org/10.1093/bioinformatics/btp562
http://www.ncbi.nlm.nih.gov/pubmed/19789268
http://dx.doi.org/10.1093/Nar/Gkp281
http://www.ncbi.nlm.nih.gov/pubmed/19398430
http://dx.doi.org/10.1093/bioinformatics/btr651
http://dx.doi.org/10.1093/bioinformatics/btr651
http://www.ncbi.nlm.nih.gov/pubmed/22113084
http://dx.doi.org/10.1093/bioinformatics/bts182
http://dx.doi.org/10.1093/bioinformatics/bts182
http://www.ncbi.nlm.nih.gov/pubmed/22495747
http://dx.doi.org/10.1016/j.str.2012.03.009
http://www.ncbi.nlm.nih.gov/pubmed/22560732
http://dx.doi.org/10.1093/Nar/Gkq406
http://www.ncbi.nlm.nih.gov/pubmed/20513649
http://dx.doi.org/10.1093/Bib/Bbp017
http://www.ncbi.nlm.nih.gov/pubmed/19324930
http://dx.doi.org/10.1073/pnas.0707684105
http://www.ncbi.nlm.nih.gov/pubmed/18165317
http://dx.doi.org/10.1093/nar/gks372
http://www.ncbi.nlm.nih.gov/pubmed/22570420
http://dx.doi.org/10.1021/Ci800324m
http://www.ncbi.nlm.nih.gov/pubmed/19434839
http://dx.doi.org/10.1089/omi.2009.0045
http://www.ncbi.nlm.nih.gov/pubmed/19645590
http://dx.doi.org/10.1093/bioinformatics/btr331
http://www.ncbi.nlm.nih.gov/pubmed/21636590
http://dx.doi.org/10.1186/1471-2105-10-379
http://dx.doi.org/10.1186/1471-2105-10-168
http://www.ncbi.nlm.nih.gov/pubmed/19486540
http://dx.doi.org/10.1371/journal.pcbi.1000585
http://dx.doi.org/10.1002/Prot.20769


33. Gallo Cassarino T, Bordoli L, Schwede T. Assessment of ligand binding site predictions in CASP10.
Proteins. 2014; 82 Suppl 2:154–63. doi: 10.1002/prot.24495 PMID: 24339001; PubMed Central
PMCID: PMCPMC4495912.

34. Brylinski M, Skolnick J. Comprehensive structural and functional characterization of the human kinome
by protein structure modeling and ligand virtual screening. J Chem Inf Model. 2010; 50(10):1839–54.
doi: 10.1021/ci100235n PMID: 20853887; PubMed Central PMCID: PMCPMC2963673.

35. Amemiya T, Koike R, Kidera A, Ota M. PSCDB: a database for protein structural change upon ligand
binding. Nucleic Acids Res. 2012; 40(Database issue):D554–8. doi: 10.1093/nar/gkr966 PMID:
22080505; PubMed Central PMCID: PMCPMC3245091.

36. Yu CM, Peng HP, Chen IC, Lee YC, Chen JB, Tsai KC, et al. Rationalization and design of the comple-
mentarity determining region sequences in an antibody-antigen recognition interface. PLoS One. 2012;
7(3):e33340. Epub 2012/03/30. doi: 10.1371/journal.pone.0033340 PMID: 22457753; PubMed Central
PMCID: PMC3310866.

37. Chen CT, Peng HP, Jian JW, Tsai KC, Chang JY, Yang EW, et al. Protein-protein interaction site pre-
dictions with three-dimensional probability distributions of interacting atoms on protein surfaces. PLoS
One. 2012; 7(6):e37706. Epub 2012/06/16. doi: 10.1371/journal.pone.0037706 PMID: 22701576;
PubMed Central PMCID: PMC3368894.

38. Tsai KC, Jian JW, Yang EW, Hsu PC, Peng HP, Chen CT, et al. Prediction of carbohydrate binding
sites on protein surfaces with 3-dimensional probability density distributions of interacting atoms. PLoS
One. 2012; 7(7):e40846. Epub 2012/08/01. doi: 10.1371/journal.pone.0040846 PMID: 22848404;
PubMed Central PMCID: PMC3405063.

39. Haas J, Roth S, Arnold K, Kiefer F, Schmidt T, Bordoli L, et al. The Protein Model Portal—a comprehen-
sive resource for protein structure and model information. Database (Oxford). 2013; 2013:bat031. Epub
2013/04/30. doi: 10.1093/database/bat031 PMID: 23624946; PubMed Central PMCID:
PMCPMC3889916.

40. Yang J, Roy A, Zhang Y. Protein-ligand binding site recognition using complementary binding-specific
substructure comparison and sequence profile alignment. Bioinformatics. 2013; 29(20):2588–95. doi:
10.1093/bioinformatics/btt447 PMID: 23975762; PubMed Central PMCID: PMCPMC3789548.

41. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER Suite: protein structure and function
prediction. Nat Methods. 2015; 12(1):7–8. Epub 2014/12/31. doi: 10.1038/nmeth.3213 PMID:
25549265; PubMed Central PMCID: PMCPMC4428668.

42. Roche DB, Tetchner SJ, McGuffin LJ. The binding site distance test score: a robust method for the
assessment of predicted protein binding sites. Bioinformatics. 2010; 26(22):2920–1. doi: 10.1093/
bioinformatics/btq543 PMID: 20861025.

43. Capra JA, Laskowski RA, Thornton JM, Singh M, Funkhouser TA. Predicting protein ligand binding
sites by combining evolutionary sequence conservation and 3D structure. PLoS Comput Biol. 2009; 5
(12):e1000585. doi: 10.1371/journal.pcbi.1000585 PMID: 19997483; PubMed Central PMCID:
PMCPMC2777313.

44. Wang G, Dunbrack RL Jr. PISCES: a protein sequence culling server. Bioinformatics. 2003; 19
(12):1589–91. PMID: 12912846.

45. Levy ED, Pereira-Leal JB, Chothia C, Teichmann SA. 3D complex: a structural classification of protein
complexes. PLoS Comput Biol. 2006; 2(11):e155. doi: 10.1371/journal.pcbi.0020155 PMID: 17112313;
PubMed Central PMCID: PMCPMC1636673.

46. Clark M, Cramer RD, Van Opdenbosch N. Validation of the general purpose tripos 5.2 force field. Jour-
nal of Computational Chemistry. 1989; 10(8):982–1012. doi: 10.1002/jcc.540100804

47. O'Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: An open
chemical toolbox. J Cheminform. 2011; 3:33. doi: 10.1186/1758-2946-3-33 PMID: 21982300; PubMed
Central PMCID: PMCPMC3198950.

48. Laurie AT, Jackson RM. Q-SiteFinder: an energy-based method for the prediction of protein-ligand
binding sites. Bioinformatics. 2005; 21(9):1908–16. Epub 2005/02/11. doi: 10.1093/bioinformatics/
bti315 PMID: 15701681.

49. Brady GP Jr, Stouten PF. Fast prediction and visualization of protein binding pockets with PASS. Jour-
nal of computer-aided molecular design. 2000; 14(4):383–401. Epub 2000/05/18. PMID: 10815774.

50. Puvanendrampillai D, Mitchell JB. L/D Protein Ligand Database (PLD): additional understanding of the
nature and specificity of protein-ligand complexes. Bioinformatics. 2003; 19(14):1856–7. PMID:
14512362.

51. Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, et al. DrugBank: a knowledgebase for
drugs, drug actions and drug targets. Nucleic Acids Research. 2008; 36:D901–D6.
ISI:000252545400158. PMID: 18048412

Ligand Binding Site Predictions with Probability Density Maps

PLOS ONE | DOI:10.1371/journal.pone.0160315 August 11, 2016 33 / 34

http://dx.doi.org/10.1002/prot.24495
http://www.ncbi.nlm.nih.gov/pubmed/24339001
http://dx.doi.org/10.1021/ci100235n
http://www.ncbi.nlm.nih.gov/pubmed/20853887
http://dx.doi.org/10.1093/nar/gkr966
http://www.ncbi.nlm.nih.gov/pubmed/22080505
http://dx.doi.org/10.1371/journal.pone.0033340
http://www.ncbi.nlm.nih.gov/pubmed/22457753
http://dx.doi.org/10.1371/journal.pone.0037706
http://www.ncbi.nlm.nih.gov/pubmed/22701576
http://dx.doi.org/10.1371/journal.pone.0040846
http://www.ncbi.nlm.nih.gov/pubmed/22848404
http://dx.doi.org/10.1093/database/bat031
http://www.ncbi.nlm.nih.gov/pubmed/23624946
http://dx.doi.org/10.1093/bioinformatics/btt447
http://www.ncbi.nlm.nih.gov/pubmed/23975762
http://dx.doi.org/10.1038/nmeth.3213
http://www.ncbi.nlm.nih.gov/pubmed/25549265
http://dx.doi.org/10.1093/bioinformatics/btq543
http://dx.doi.org/10.1093/bioinformatics/btq543
http://www.ncbi.nlm.nih.gov/pubmed/20861025
http://dx.doi.org/10.1371/journal.pcbi.1000585
http://www.ncbi.nlm.nih.gov/pubmed/19997483
http://www.ncbi.nlm.nih.gov/pubmed/12912846
http://dx.doi.org/10.1371/journal.pcbi.0020155
http://www.ncbi.nlm.nih.gov/pubmed/17112313
http://dx.doi.org/10.1002/jcc.540100804
http://dx.doi.org/10.1186/1758-2946-3-33
http://www.ncbi.nlm.nih.gov/pubmed/21982300
http://dx.doi.org/10.1093/bioinformatics/bti315
http://dx.doi.org/10.1093/bioinformatics/bti315
http://www.ncbi.nlm.nih.gov/pubmed/15701681
http://www.ncbi.nlm.nih.gov/pubmed/10815774
http://www.ncbi.nlm.nih.gov/pubmed/14512362
http://www.ncbi.nlm.nih.gov/pubmed/18048412


52. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-
BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997; 25
(17):3389–402. PMID: 9254694; PubMed Central PMCID: PMCPMC146917.

53. Eswar N, Webb B, Marti-RenomMA, Madhusudhan MS, Eramian D, Shen MY, et al. Comparative pro-
tein structure modeling using Modeller. Curr Protoc Bioinformatics. 2006; Chapter 5:Unit 5 6. doi: 10.
1002/0471250953.bi0506s15 PMID: 18428767; PubMed Central PMCID: PMCPMC4186674.

Ligand Binding Site Predictions with Probability Density Maps

PLOS ONE | DOI:10.1371/journal.pone.0160315 August 11, 2016 34 / 34

http://www.ncbi.nlm.nih.gov/pubmed/9254694
http://dx.doi.org/10.1002/0471250953.bi0506s15
http://dx.doi.org/10.1002/0471250953.bi0506s15
http://www.ncbi.nlm.nih.gov/pubmed/18428767

