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Background: Colorectal cancer (CRC) is a heterogeneous disease, and current
classification systems are insufficient for stratifying patients with different risks. This
study aims to develop a generalized, individualized prognostic consensus molecular
subtype (CMS)-transcription factors (TFs)-based signature that can predict the prognosis
of CRC.

Methods: We obtained differentially expressed TF signature and target genes between
the CMS4 and other CMS subtypes of CRC from The Cancer Genome Atlas (TCGA)
database. A multi-dimensional network inference integrative analysis was conducted to
identify the master genes and establish a CMS4-TFs-based signature. For validation, an
in-house clinical cohort (n = 351) and another independent public CRC cohort (n = 565)
were applied. Gene set enrichment analysis (GSEA) and prediction of immune cell
infiltration were performed to interpret the biological significance of the model.

Results: A CMS4-TFs-based signature termed TF-9 that includes nine TF master genes
was developed. Patients in the TF-9 high-risk group have significantly worse survival,
regardless of clinical characteristics. The TF-9 achieved the highest mean C-index (0.65)
compared to all other signatures reported (0.51 to 0.57). Immune infiltration revealed that
the microenvironment in the high-risk group was highly immune suppressed, as
evidenced by the overexpression of TIM3, CD39, and CD40, suggesting that high-risk
patients may not directly benefit from the immune checkpoint inhibitors.

Conclusions: The TF-9 signature allows a more precise categorization of patients with
relevant clinical and biological implications, which may be a valuable tool for improving the
tailoring of therapeutic interventions in CRC patients.
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INTRODUCTION

Colorectal cancer (CRC) is the third most prevalent malignancy
worldwide and the second leading cause of cancer-related
mortality (1). Even though surgical techniques and
perioperative chemotherapy regimens have been vastly
improved, the prognosis for patients with CRC remains
dismal. The current American Joint Committee on Cancer
(AJCC) Tumor, Nodal Involvement, Metastasis (TNM)
Staging System (the Eighth Edition) has demonstrated useful
but insufficient prediction for prognosis and estimation for
different subsets of CRC patients. TNM staging can only
describe the anatomical characteristics of the tumor, and it is
difficult to reflect the tumor’s inherent heterogeneity and
metastatic potential. CRC is a heterogeneous disease with
significant differences in survival even among patients with
similar clinical characteristics and treatment regimens,
indicating that the current classification systems and clinical
features are insufficient to stratify patients with different risks
effectively. Increasing evidence suggests that the development
and application of effective molecular biomarkers could
facilitate the prognostic assessment and identification of
potential cancer patients at high-risk (2–4). With the
advancement of sequencing technology and the availability of
large-scale public cohorts with gene expression data, a more
generalized biological background-based prognostic signature
can be identified.

Cancer initiation and progression have been associated with
transcription factors (TFs) (5, 6). TFs are proteins that bind to
DNA-regulatory sequences (enhancers and silencers), which
could potentially regulate gene expression and protein
synthesis. In other words, the function of TFs is to activate or
inhibit the transcription of specific genes, thus being the primary
determinant of the gene function at a given time.

Recently, the consensus molecular subtypes (CMSs) groups
were considered the most reliable classification system available
for CRC (7). This classification system divides CRC into four
subtypes with distinguishing characteristics. CMS4 is the
mesenchymal type characterized by the prominent activation
of transforming growth factor-b, stromal invasion, and
angiogenesis (7). Notably, among the four CMSs, CMS4 has
the lowest survival rate. Previous studies on breast cancer have
demonstrated that subtype-specific prognostic signatures can
significantly improve risk stratification, which may lead to
more precise treatment for patients (3). Consequently,
present studies are more focusing on the most invasive CMS4
Abbreviations: CMS, consensus molecular subtype; TFs, Transcription factors;
CRC, Colorectal cancer; AJCC, American Joint Committee on Cancer; TF-9, Nine
transcription factor related genes’ signature; TCGA, The Cancer Genome Atlas;
GEO, Gene Expression Omnibus; MRA, Master regulator analysis; GSEA, Gene
set enrichment analysis; OS, Overall survival; RFS, Recurrence-free survival; TF
genes, Transcription factor-related genes; C-index, concordance index; D-index,
robust hazard ratio; EMT, Epithelial-mesenchymal transition; ROC, Receiver-
operating characteristic; FDR, False discovery rate; MSI, microsatellite instability;
ICI, immune checkpoint inhibitor; PD1, programmed cell death protein 1; PD-L1,
programmed cell death protein 1 ligand; dMMR, mismatch repair deficiency; MSI-
H, microsatellite instability-high; TILs, tumor-infiltrating lymphocytes; TNF,
tumor necrosis factor.
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subtype and conducting network inference by integrating the
differentially expressed TF signature and target genes between
the CMS4 and other CMS subtypes.

This study analyzed the genomic data of more than 1000
CRC patients from three cohorts. Through multi-dimensional
network analysis, we identified the dominant TF signature that
regulates the most aggressive CRC subtype, CMS4. TF-9, a
nine-gene signature, was developed and validated in two
additional validation cohorts. According to our study, TF-9 is
identified as a potential risk stratification classifier and may
serve as a predictor of the response to chemotherapy and
immune checkpoint immunotherapy.
MATERIALS AND METHODS

Public Data Source
A total of 1537 CRC patients from three independent cohorts
were included in the current study. We obtained 351 CRC
samples from our in-house database and 1186 samples from
two publicly available datasets. The TCGA dataset (n = 621) (8)
was set as the training cohort. GSE39582 (n = 565) (9) and the
in-house cohort (n = 351) were used as validation cohorts.
TCGA datasets were downloaded by the “TCGAbiolinks”
package (version 2.18.0) (10). The normalized expression
profiling and corresponding clinical data of GSE39582 were
collected from the Gene Expression Omnibus (GEO) by using
the “GEOquery” package (version 2.56.0) (11). The clinical
characteristics of the patients included in the current study are
summarized in Supplementary Table S1.

In-House Clinical Cohort
The in-house cohort is one of the colorectal cancer subprojects of
the International Cancer Genome Consortium-Accelerate
Research in Genomic Oncology (ICGC-ARGO) project
(https://www.icgc-argo.org/). The normalized RNA expression
matrix and clinical data for this cohort were obtained from our
center. This study was approved by the Medical Ethics
Committee of the Sixth Affiliated Hospital of Sun Yat-
sen University.

Integrated Network Analysis
The procedure is depicted schematically in Supplementary
Figure S1. In brief, 1589 transcription factor (TF) signature
genes were retrieved from Lambert’s (5). Univariate Cox was
applied to identify TF genes linked to overall survival (OS). The
TF genes measured across all datasets were evaluated. By
integrating the differentially expressed molecular modalities
and TF genes within the CMS4 subtype, we inferred the
relationship between TF signals and potential target genes. The
limma package (version 3.42.2) (12) in R was utilized to analyze
the differential expression of TF genes and potential target genes
between the CMS4 and other CMSs. Differentially expressed TF
genes were identified when log2FC > 0.5 and adjusted P < 0.05.
Target genes were identified as differentially expressed when
log2FC > 1.25 and adjusted P < 0.05. Using the TCGA cohort as
June 2022 | Volume 12 | Article 902974
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training data, the RTN package (version 2.10.0) (13) was used to
conduct network inference analysis. More specifically, the
network analysis incorporates three steps: firstly, compute
mutual information between a TF gene and all potential
targets, removing non-significant associations by permutation
analysis ; secondly, remove unstable interactions by
bootstrapping; and finally, apply the ARACNE (Algorithm for
the Reconstruction of Accurate Cellular Networks) (14)
algorithm to reduce redundant indirect regulations. Master
regulator analysis (MRA) was performed to examine the
overrepresentation of the CMS4 signature in the regulation of
each TF gene by hypergeometric testing.

Development and Evaluation of the TF
Signature for CRC
After the hypergeometric tests resulted for all TF genes, adjusted p-
values were calculated using the Benjamini-Hochberg
procedure. Nine TF genes were identified as master regulatory
factors and were significantly upregulated in CMS4. The TF-9
prognostic signature was developed using the multivariable Cox
regression model in the TCGA cohort with these nine signature
genes. The risk score formula was constructed based on a linear
combination of the expression levels weighted with the regression
coefficients: TF-9 = (-0.1582×MEIS3) + (0.131×SNAI1) +
(0.0253×KLF17) + (0.0841×BARX1) + (-0.031×ZNF532)
+ (0.3504×HEYL) + (0.0872×FOXL2) + (-0.0267×LHX6) +
(0.0789×MEIS2). Risk scores were calculated for all patients in
the TCGA cohort and the two validation cohorts. Based on the
median score of each cohort, patients were divided into high-risk
and low-risk subgroups. The prognostic relevance of TF-9 was
further evaluated using Kaplan-Meier survival analysis on two
independent validation datasets.

Gene Set Enrichment Analysis (GSEA) and
Immune Cell Infiltration Prediction
by CIBERSORT
GSEA was performed using the HTSanalyzeR package (version
2.3.5) (15). Gene sets data were downloaded from the Molecular
Signatures Database (MSigDB, https://www.gsea-msigdb.org/
gsea/msigdb/) (16). To evaluate the immunobiological
difference between the high-risk and low-risk groups,
CIBERSORT was used to characterize 22 types of immune
cells’ abundance for each sample. Specifically, standardized
gene expression series were uploaded to the CIBERSORT
portal (http://cibersort.stanford.edu/) with 1,000 permutations.

Survival Analysis
Using the Kaplan-Meier method, the OS and recurrence-free
survival (RFS) rates were calculated for all three cohorts. The log-
rank test was utilized to compare the survival curves of the
patients in the high- and low-risk groups.

Comparison With Existing Classifiers
We calculated the signature scores of Lee’s (17), Ren’s (18), and
Ye’s (19) by re-building multivariable Cox proportional-hazards
models using the TCGA and ICGC-ARGO datasets with the
Frontiers in Oncology | www.frontiersin.org 3
published classifier genes, respectively. We calculated the
concordance index (C-index) and the robust hazard ratio (D-
index) for the three previous classifiers and TF-9 using TCGA
and ICGC-ARGO cohorts by the survcomp package (version
1.42.0) (20).

Statistical Analysis
Statistical analyses were performed with the R program (version
3.6.1, R Foundation for Statistical Computing, Vienna, Austria.
http://www.R-project.org/). A Univariate COX proportional
hazards model was used to investigate the prognostic value of
the selected TF signature. Univariate and multivariate Cox
regression analyses were done to identify the independent
prognostic effect of TF-9. The Student’s t-test was applied to
assess the nine TF signature genes and risk score distribution in
different conditions. The Pearson correlation was performed to
reveal correlations between the TF-9 scores with epithelial-
mesenchymal transition (EMT) signature genes. The receiver-
operating characteristic (ROC) analysis was performed to
evaluate the specificity and sensitivity of TF-9 in identifying
the CMS4 subtype. The Kaplan-Meier method was used to
analyze survival. The Benjamini–Hochberg procedure was
applied to control the false discovery rate (FDR). Unless
otherwise specified, a two-sided P-value < 0.05 was considered
statistically significant.
RESULTS

Multi-Dimensional Network Inference
Integrative Analysis Identified Nine TF
Genes as Key Regulators in the
CMS4 Subtype
Previously, the CMS4 subtype of CRC was characterized by the
poorest survival rate among the four CMSs (21–23). Our results
are consistent with it. The CMS4 subtype presented the worst
outcomes compared to other CMSs in TCGA (Supplementary
Figure S2). By focusing on the CMS4 subtype, we investigate the
regulatory role of TFs in CRC by multi-dimensional network
inference integrative analysis. A total of 1537 cases from three
independent datasets were enrolled in our analysis
(Supplementary Table S1). And 1589 transcription factor-
related genes (TF genes) were downloaded from Lambert’s study
(5). After univariate Cox analysis, 116 TF genes were identified to
be correlated with CRC OS. Based on the TCGA cohort, we
performed a differential analysis of TF genes and potential target
genes between the CMS4 subtype and other CMSs. As a result, 62
TF genes (log2 FC > 0.5, BH-adjusted P < 0.05) and 1693 target
genes (log2 FC > 1.25, BH-adjusted P < 0.05) were identified as
differentially expressed genes in CMS4 of CRC (Figure 1A).

With the expression profiles of these preferential TFs and
their target genes, an intricate regulatory network was developed
by calculating the mutual information between a TF signature
and its potential targets. Nine TF-related genes (MEIS3, SNAI1,
KLF17, BARX1, ZNF532, HEYL, FOXL2, LHX6, MEIS2) were
identified as core regulators for the CMS4 subtype
June 2022 | Volume 12 | Article 902974
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(Figures 1A–C, Supplementary Table S3) by master regulator
analysis (MRA). MRA demonstrated that all nine of these TF
genes were EMT genes (Figure 1B). Compared with other CMS
subtypes, these nine candidate TF genes were significantly
upregulated in the CMS4 subtype (Figure 1D, Supplementary
Figure S3). According to the microsatellite instability (MSI)
status, HEYL and SNAI1 were downregulated in MSI patients,
FOXL2 was upregulated, and the other six genes were not
significantly different (Supplementary Figure S4).

Development of the TF-9 Signature
The risk model termed TF-9 was constructed with the
coefficients generated from the multivariable Cox proportional-
hazards model. After extracting coefficients from the results, we
calculated risk scores with coefficient-weighted expression levels
of these nine TFs: risk score = (-0.1582×MEIS3) +
(0.131×SNAI1) + (0.0253×KLF17) + (0.0841×BARX1)
+ (-0.031×ZNF532) + (0.3504×HEYL) + (0.0872×FOXL2) +
(-0.0267×LHX6) + (0.0789×MEIS2). As CMS4 tumors
Frontiers in Oncology | www.frontiersin.org 4
exhibited high overexpression of genes associated with EMT
(7), correlation analysis was performed between the TF-9 risk
score and EMT score for further investigation. Unsurprisingly,
the TF-9 risk score exhibited a substantial positive correlation
with the EMT score (correlation coefficient = 0.62, P < 0.001,
Figure 1E), indicating that the EMT may be regulated by these
nine genes. These results suggest that these nine genes were the
master genes that regulated the CMS4 subtype, and the TF-9 was
highly related to EMT. Because the calculation of CMS
classification relies on the sequencing information of tumors,
its clinical translation and application are hampered.
Additionally, since these nine TF genes are the master genes
that regulate the CMS4 subtype, we wondered whether TF-9
could be a tool for identifying CMS4. Therefore, the ROC curve
was performed to examine the performance of TF-9 as a
biomarker for identifying CMS4. The result shows that the
diagnostic performance of TF-9 for distinguishing CMS4 was
satisfactory, with an AUC value of 0.83 in the TCGA cohort
(Figure 1F). The same performance was achieved in two
B

C

D E F

A

FIGURE 1 | Network inference identified nine transcription factors gene as key regulators of CMS4 subtype in colorectal cancer. (A) Volcano plot of the
differentially expressed genes in the CMS4 vs. other CMS subtype and highlighting the nine candidate transcription factors genes. (B) All these nine transcription
factor genes can regulate EMT genes. (C) Integrated network showing the relationships between the expression profile of nine transcription factor genes and
target genes. (D) Heatmap of the expression of nine candidate transcription factors-related genes in CMS4 and other CMSs. (E) Correlation analysis
demonstrated a positive correlation between the TF-9 signature risk score and EMT score (correlation coefficient = 0.62, P < 0.001). (F) TF-9 can distinguish
CMS4 from other CMS subtypes of colorectal cancer, with AUC values of 0.83.
June 2022 | Volume 12 | Article 902974
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independent validation cohorts, with AUC values of 0.86 for
GSE39582 and 0.89 for ICGC-ARGO (Supplementary
Figure S5).

TF-9 Can Predict the Outcome
of CRC Patients
A univariate analysis was performed to evaluate the prognostic
potential of these nine TF genes. As shown in Figure 2, the
expression of these nine TF genes was implicated as
independent prognostic factors in CRC in both the TCGA and
ICGC-ARGO cohorts. To further investigate the prognostic
value of the TF-9 signature, the risk score of TF-9 was
calculated for patients in the TCGA and ICGC-ARGO
cohorts. As a result, the TF-9 showed prognostic efficiency
with an obvious higher HR in the TCGA (HR = 2.7, P <
0.001) and ICGC-ARGO (HR = 6.3, P < 0.001) cohorts
(Figure 2). Then, all patients were divided into TF-9 low- and
high-risk groups by the median risk value within each cohort
(Supplementary Table S4). Survival analysis revealed that CRC
patients with TF-9 high-risk showed significantly worse OS than
patients in the low-risk group in the training cohort (Figure 3A;
HR = 1.7, P = 1.46×10-2). Moreover, the high-risk group showed
significantly reduced OS compared with the low-risk group in
two validation cohorts (Figures 3B,C). A more significant
survival diversity was observed between the high- and low-risk
groups in the pooled validation datasets (Figure 3D). Since
tumor recurrence plays a vital role in the poor prognosis of
CRC, we also performed survival analyses focusing on RFS. As
demonstrated in Figures 3E–H, the risk score of TF-9 was also
negatively correlated with RFS. In addition, the TF-9 remains
effective at discriminating survival after adjusting to clinical
factors associated with prognosis, including gender, TNM stage,
MSI status (MSI vs. MSS), and primary tumor location (left- vs.
right-sided, Figure 4). Even when stratified by mutation of RAS
or APC, TF-9 can still stratify patients into low- and high-risk
groups with significant prognosis value (Supplementary Figure
S6). Unsurprisingly, both univariate and multivariate Cox
Frontiers in Oncology | www.frontiersin.org 5
analyses identified the TF-9 signature as an independent
prognostic factor for CRC (Supplementary Table S2).

TF-9 Shows Its Superiority in Prognostic
Prediction Compared With
Existing Models
To compare the prognostic value of the TF-9 gene signature with
existing prognostic classifiers, the C-index and D-index were
calculated with survival data from the TCGA and ICGC-ARGO
cohorts. The C-index was significantly higher in TF-9 than in the
existing Lee, Ren, and Ye prognostic systems (Meta C-index, TF-
9 vs. Lee: 0.65 vs. 0.57, P < 0.01; TF-9 vs. Ren: 0.65 vs. 0.51, P <
0.01; TF-9 vs. Ye: 0.65 vs. 0.54, P < 0.01; Figure 5A). Similar to
the C-index, the D-index of TF-9 was also significantly higher in
TF-9 than in Ren, Lee, and Ye’s prognostic systems (Meta D-
index, TF-9 vs. Lee: 2.51 vs. 1.33, P < 0.01; TF-9 vs. Ren: 2.51 vs.
1.08, P < 0.01; TF-9 vs. Ye: 2.51 vs. 1.26, P < 0.01; Figure 5B). The
above results showed the potential and robustness of TF-9 as a
prognostic prediction platform.

Functional Analysis Reveals the
Characteristic Pathway of CMS4
GSEA was performed to screen the differently enriched pathways
between the high- and low-risk groups according to the TF-9
signature. As a result, 131 gene sets (P < 0.01) were upregulated,
and 39 gene sets (P < 0.01) were downregulated in the high-risk
group (Supplementary Table S5). GSEA revealed that these nine
TF genes are mainly related to hallmark gene sets of EMT,
hypoxia, angiogenesis (Figure 6), and KRAS signaling up
(Supplementary Figure S7). Moreover, TF-9 high-risk groups
are enriched in KEGG pathways closely associated with clinical
treatment effects such as platinum drug resistance, focal adhesion,
TGF-beta signaling pathway (Figure 6), and Wnt signaling
pathway (Supplementary Figure S7). The functional analysis
indicates that drugs targeting the oncogenic pathway may have
different efficacy in the high- and low-risk groups. The TF-9 may
help to stratify CRC patients to explore new target regimens.
BA

FIGURE 2 | The TF-9 signature is implicated as an independent prognostic factor in CRC. (A) Both the TF-9 signature and all nine candidate transcription factors
show prognostic value in the TCGA cohort, while the TF-9 with a more significant HR (HR = 2.7, 95%CI:1.8-4.0, P < 0.001). (B) Both the TF-9 signature and all nine
candidate transcription factors show prognostic value in the ICGC-ARGO cohort, while the TF-9 with a more significant HR (HR = 6.9, 95%CI: 3.8-13.0, P < 0.001).
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B

C D

E F

A

FIGURE 4 | The prognostic value of the TF-9 in colorectal cancer is stratified by clinical characteristics. Even stratified by (A) gender, (B) stage (I&II vs. III &IV),
(C) T stage (T1&T2 vs. T3 &T4), (D) N stage (N0 vs. N1&N2), (E) MSI status (MSI vs. MSS) and (F) primary tumor location (right-sided vs. left-sided), TF-9 can
still stratify patients into low- and high- risk groups with significant prognosis value.
B C D

E F G H

A

FIGURE 3 | Prognostic value of the TF-9 for colorectal cancer. (A) Kaplan–Meier survival analysis showed that the high-risk group had worse overall survival than
the low-risk group in the training cohort (TCGA). (B, C) In the two independent validation cohorts and (D) the pooled cohorts, the high-risk group also showed a
significantly poor prognosis for overall survival. (E–H) The training cohort, the two independent validation cohorts, and the pooled validation cohort demonstrated that
the high-risk group showed a significantly poor prognosis for recurrence-free survival. P-values were calculated by log-rank tests. “OS” refers to overall survival;
“RFS” refers to recurrence-free survival.
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Genomic Omics Reveal the Immune-
Suppressed Status in the TF-9
High-Risk Group
The landscape of CRC infiltrating immune cells has not been
fully elucidated. We investigated immune infiltration of TF-9
high-risk and low-risk groups in 22 subpopulations of immune
cells using the CIBERSORT algorithm. Of note, the high-risk
group was associated with decreased densities of plasma cells and
CD4 memory-activated T cells. Low-risk patients tended to be
Frontiers in Oncology | www.frontiersin.org 7
infiltrated with fewer M2 and M0 macrophages, while no
significant difference was found within other immune cell
types (Figure 7A). Together, it revealed the immune-
suppressed status in the high-risk group. To explore the
potential mechanism of immune suppression, the expression of
various immune checkpoints was calculated in each
group. Surprisingly, in three independent cohorts, upregulated
TIM3, CD39, and CD40 were observed in the high-risk
group (Figure 7B).
FIGURE 6 | The enriched pathways are associated with the TF-9 signature. GSEA revealed that these nine transcription factor genes are mainly related to hallmark
gene sets of EMT, hypoxia, angiogenesis, Platinum drug resistance, focal adhesion, and the TGF-beta signaling pathway.
BA

FIGURE 5 | Forest plot reporting of C-index and D-index of various prognostic signatures among the different cohorts. (A) The concordance indices (C-index) for
TCGA and ICGC-ARGO cohorts. Our model achieved the highest C-index compared to the three reported models (0.65 vs. 0.51-0.57). (B) The robust hazard ratio
(D-index) for TCGA and ICGC-ARGO cohorts. Our model achieves the highest D-index compared to the three reported models (2.51 vs. 1.08-0.33).
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DISCUSSION

We found nine TF genes as the key regulators affecting the
progression of the CMS4 subtype in CRC.MEIS2 andMEIS3 are
members of the MEIS family. Some studies identified the MEIS
family as oncogenes, while others recognized them as tumor
suppressor genes (24–26). It was reported that MEIS2 promotes
cell migration and invasion in CRC (27). AndMEIS3 can modify
the sensitivity to cetuximab via c-Met and Akt (28).
Overexpression of SNAI1 sustains stemness maintenance and
promotes invasion in numerous cancers, including CRC (29, 30).
KLF17 was considered a favorable prognosis biomarker since it
suppresses EMT and metastasis (31, 32). BARX1 was
hypermethylated in some patients with CRC (33), and its
expression was a predictor of relapse-free survival for
gastrointestinal stromal tumors (34). ZNF532 has been linked
to the prognosis of pancreatic ductal adenocarcinoma (35).
HEYL modulates the metastasis forming capacity of CRC (36).
FOXL2 regulates a range of target genes related to genomic
integrity and cell pathways, including cell cycle progression,
proliferation, and apoptosis (37, 38). Previous studies have
shown that LHX6 can play a tumor inhibitory role by
inhibiting the downstream genes related to cell proliferation,
cell migration, and metastasis (39).

On the basis of these nine genes, we developed a CRC
prognostic model termed TF-9. TF-9 shows strong robustness
in prognostic risk stratification, regardless of whether it is
applied to public data or in-house cohorts. Patients in the
high-risk group had a lower survival rate, regardless of OS or
RFS, and this is irrespective of clinical characteristics such as
Frontiers in Oncology | www.frontiersin.org 8
gender, stage, MSI status, and primary tumor location.
Meanwhile, the C index and D index demonstrated that TF-9
is superior to existing prognostic models. We anticipate that
TF-9 will considerably contribute to the stratification of
patients with CRC as a robust prognostic prediction model. It
is worth mentioning that the TF-9 signature may reliably
identify CMS4 based just on the expression of nine TF genes
without the need for comprehensive sequencing information.
This is of great significance for decreasing the cost of CMS
classification in clinical practice.

Moreover, through bioinformatics analysis and functional
annotation of these nine TF genes, we believe that TF-9 is also
helpful in explaining the biological behavior of high-risk CRC
and predicting drug sensitivity. It’s well known that the CMS4
is characterized as a mesenchymal phenotype with hallmark
features including EMT, angiogenesis, integrin upregulation,
and stromal infiltration (40). Consistent with it, all these nine
TF genes are significantly upregulated in CMS4 and are
positively correlated with EMT. Moreover, the dysregulated
genes of high-risk patients stratified by TF-9 risk score were
found to be enriched in tumor-related signaling pathways
such as EMT, angiogenesis, hypoxia, TGF-beta signaling, and
platinum drug resistance pathways. These results once again
confirm the mesenchymal phenotype of the CMS4 subtype
and suggest that there may be different chemotherapy
sensitivities between the high- and low-risk groups. GSEA
revealed that the high-risk group was significantly enriched in
the platinum drug resistance pathway. It is inferred that CRC
patients in the low-risk group may be more sensitive to
B

A

FIGURE 7 | Immune cell infiltration analysis of high-risk and low-risk groups. (A) The infiltration of 22 types of immune cells’ abundance for high- and low-risk
groups. The high-risk group was associated with decreased densities of plasma cells and CD4 memory-activated T cells. And low-risk patients tended to be
infiltrated with fewer M2 and M0 macrophages, while no significant difference was found within other immune cell types. (B) TIM3, CD39, and CD40 were
upregulated in the high-risk group. ***P < 0.001
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chemotherapy regimens based on platinum drugs. The FIRE3
(AIO KRK-0306) trial demonstrated that CMS4 possibly
benefits more from anti-EGFR than anti-VEGF therapy.
Within the RAS wild-type patients, OS observed in CMS4
favored FOLFIRI cetuximab over FOLFIRI bevacizumab (41).
Combined with the results of our study, CMS4 can also be
subdivided into two diverse risk subgroups. Inferring from the
differential enrichment of EMT and angiogenesis pathways in
the two risk groups, the efficacy of the two groups on anti-
EGFR therapy may be completely different. Perhaps the high-
risk group can benefit from anti-VEGF treatment, while the
low-risk group will benefit more from anti-EGFR treatment. It
is exciting and needs to be explored in further clinical trials.

Except for cytotoxic chemotherapy and targeted therapy,
immune checkpoint inhibitors (ICIs) targeting programmed
cell death protein 1 (PD-1) or PD-1 ligand (PD-L1) have
emerged as promising treatment strategies in CRC that lead to
durable antitumor activities and improved survival (42, 43).
However, not all CRCs have ICIs indications. Our analysis of
the patients ’ immune infi l tration revealed that the
microenvironment in the high-risk group presented highly
immunosuppressed characterized by TIM3, CD39, and CD40
overexpression, which indicated the patients in the high-risk
group might not benefit from traditional ICIs such as anti-PD1
therapies directly. Nevertheless, these three immunosuppressive
molecules may suggest new therapeutic targets or regimens for
patients in the high-risk group.

TIM3 is a negative immune checkpoint and makes a crucial
contribution to tumor-induced immune suppression.
Accumulating evidence shows that high levels of TIM3
expression correlate with T cell exhaustion and inferior
clinical outcomes of cancers (44–46). TIM3 expression in
patients’ lymphocytes has been implicated in resistance to
immune checkpoint blockade, representing a potential novel
target for cancer immunotherapy (47). High levels of CD39
have been associated with advanced grade or poor disease
outcomes in multiple malignancies (48–50). Existing studies
have shown inhibition of CD39 activity can restore the
sensitivity of autophagy-deficient tumors to immunogenic
chemotherapy (51). It has been reported that combining
anti-PD1/PDL1 with CD39 inhibition results in a synergistic
effect. When anti-PD1 therapy was combined with CD39
enzymatic inhibition, it demonstrated significant tumor
growth inhibition in mice with tumors refractory to
immunotherapy (52). In other words, anti-PD1 treatment
combined with CD39 inhibition may sensitize the TF-9 high-
risk CRC tumor to immune checkpoint blockade. CD40 is a
cell-surface member of the TNF (tumor necrosis factor)
receptor superfamily. Upon activation, CD40 can turn
tumors from the immune “cold” state to the immune “hot”
ones (53), sensitizing them to checkpoint inhibition. In short,
these three immunosuppressive molecules mentioned above
may all become new targets for immunotherapy in TF-9 high-
risk patients, which needs to be further investigated.

We have perceived several limitations in this study. Firstly,
although this study included an in-house cohort and
Frontiers in Oncology | www.frontiersin.org 9
independent external validations, it was difficult to avoid
missing information when data were retrospectively collected
in publicly available databases. Secondly, it is difficult to
perform original quality control on public datasets. Thirdly,
although we showed the enriched pathway and complex
immune microenvironment between high- and low-risk
groups, we lack the experiments to confirm this finding in
vivo and in vitro. Therefore, the findings of this study need to be
further verified by a well-designed, prospective, multi-
center study.
CONCLUSIONS

The TF genes are associated with the prognosis of CRC patients
and can identify the CMS4 subtype from other CMSs. The TF-9
signature allows a more precise categorization of patients with
relevant clinical and biological implications, which may be
valuable tools to improve tailored therapeutic interventions in
CRC patients.
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