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Abstract
Spinal muscular atrophy (SMA) is a heritable, autosomal recessive neuromuscular disorder characterized by a loss of the 
survival of motor neurons (SMN) protein, which leads to degeneration of lower motor neurons, and muscle atrophy. Despite 
SMA being nosographically classified as a motor neuron disease, recent advances indicate that peripheral alterations at the 
level of the neuromuscular junction (NMJ), involving the muscle, and axons of the sensory-motor system, occur early, and 
may even precede motor neuron loss. In the present study, we used a mouse model of slow progressive (type III) SMA, 
whereby the absence of the mouse SMN protein is compensated by the expression of two human genes (heterozygous 
SMN1A2G, and SMN2). This leads to late disease onset and prolonged survival, which allows for dissecting slow degen-
erative steps operating early in SMA pathogenesis. In this purely morphological study carried out at transmission electron 
microscopy, we extend the examination of motor neurons and proximal axons towards peripheral components, including 
distal axons, muscle fibers, and also muscle spindles. We document remarkable ultrastructural alterations being consistent 
with early peripheral denervation in SMA, which may shift the ultimate anatomical target in neuromuscular disease from 
the spinal cord towards the muscle. This concerns mostly mitochondrial alterations within distal axons and muscle, which 
are quantified here through ultrastructural morphometry. The present study is expected to provide a deeper knowledge of 
early pathogenic mechanisms in SMA.

Keywords  Neuromuscular disease · Muscle denervation · Muscle spindle · SMN · Transmission electron microscopy · 
Mitochondria

Introduction

Spinal muscular atrophy (SMA) is a heritable, autoso-
mal recessive neuromuscular disorder, which encom-
passes a broader group of disease subtypes all sharing Federica Fulceri, Francesca Biagioni and Fiona Limanaqi equally 
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loss-of-function mutations/conversion or deletion in the 
survival of motor neurons 1 (SMN1) gene (Lefebvre et al. 
1995; Arnold et al. 2015). These homozygous disruptions 
lead to a deficit in the ubiquitous SMN protein, which is 
known to regulate RNA processing, mostly small nuclear 
ribonucleoprotein (snRNP) biogenesis and pre-mRNA 
splicing (Li et al. 2014). This occurs mostly during neu-
ronal development when SMN protein localizes predomi-
nantly in the nucleus within “gems” or Cajal bodies (Liu 
and Dreyfuss 1996; Hebert et al. 2001; Navascues et al. 
2004). During neuronal maturation, a progressive shift in 
SMN localization from the nucleus towards the cytoplasm 
and axoplasm occurs (Giavazzi et al. 2006). SMN localiza-
tion within dendrites and axons of motor neurons, and also 
in peripheral components (e.g. muscle), suggested additional 
roles aside from its canonical functions in the spliceosome 
(Pagliardini et al. 2000; Rajendra et al. 2007). As recently 
reviewed, SMN plays a more general housekeeping role by 
intermingling with various, ubiquitous cell processes. These 
include RNA translation, cytoskeletal dynamics and endo-
cytosis, autophagy and ubiquitin–proteasome cell-clearing 
pathways, as well as mitochondrial activity and bioenerget-
ics (Chaytow et al. 2018).

The loss of SMN protein due to homozygous disrup-
tions of SMN1 leads to progressive degeneration of lower 
motor neurons (MNs) associated with muscle atrophy and 
paralysis. However, the age of onset, clinical phenotype, 
and degree of severity vary among four different (type I-IV) 
SMA subtypes (Zerres and Rudnik-Schoneborn 1995; Lunn 
and Wang 2008; Arnold et al. 2015). Type I, also known 
as Werdnig-Hoffmann disease, is a very severe form with 
very early onset before the age of 6 months, rep-resenting 
an overall 45% of SMA cases, and the most common genetic 
cause of infant mortality within 2 years of life (Zerres and 
Rudnik-Schoneborn 1995; Lunn and Wang 2008; Arnold 
et al. 2015). Type II, or Dubowitz disease, is an intermediate 
SMA form, with onset between 7 and 18 months. Gener-
ally, the ability to stay seated independently is preserved 
and survival is into adulthood, except for cases in which 
respiratory compromise due to restrictive lung disease 
may occur (Zerres and Rudnik-Schoneborn 1995; Lunn 
and Wang 2008; Arnold et al. 2015). Type III SMA, also 
known as Kugelberg and Welander syndrome, is a slowly 
progressing form with onset after 30 months of life, with 
patients typically having normal milestones in the first year 
of life. Generally, ambulation is preserved over many years, 
and the prognosis is good (Zerres and Rudnik-Schoneborn 
1995; Lunn and Wang 2008; Arnold et al. 2015). Finally, 
type IV SMA, which may occur an as autosomal dominant 
disorder, is the less severe subtype, with an onset between 
10 and 30 years (Monani 2005). Despite a limb-girdle phe-
notype, it allows patients to have a normal lifespan (Mercuri 
et al. 2012; Arnold et al. 2015). The milder (type II-IV) 

SMA phenotypes are in part associated with an increase in 
the (dosage) copy number of the SMN2 gene, which codes 
for a centromeric analog copy of SMN1 protein (Campbell 
et al. 1997; Farrar and Kiernan 2015). In fact, even the small 
amount of full-length transcript generated by SMN2 may 
partly compensate for the loss of SMN1-produced protein, 
with SMN1 dosage which correlates inversely with disease 
severity (Monani et al. 2000a; Arnold et al. 2015), which 
is in line with the piooner study of Lefebvre et al. (1997).

Despite recent advances, in-depth knowledge of the 
molecular mechanisms and fine neuropathology of SMA 
is still lacking. Since obstacles still exist with obtaining 
human specimens from either biopsy or post-mortem sam-
ples, research efforts aimed at validating appropriate SMA 
animal models are key. In 1997, the first SMA model fea-
turing SMN knockout (KO) was generated by intercross-
ing (Smn+/−) mice. In this model, death occurs early at 
embryonic stages due to a failure to progress to the blas-
tocyst stage (Schrank et al. 1997). Three years later, it was 
demonstrated that introducing the human SMN2 gene in 
variable amount increases the life span in SMN-KO mice 
(Hsieh-Li et al. 2000; Monani et al. 2000b). Being reminis-
cent of what occurs in SMA patients, who carry at least one 
or more copies of the SMN2 gene, these mice express, with 
high variability, motor deficit and spinal cord pathology, 
which is characterized by degenerating MNs and muscle 
denervation (Hsieh-Li et al. 2000; Monani et al. 2000b). 
Increasing SMN2 dosage further attenuates the motor neuron 
disorder and prolongs survival, allowing post-natal life in 
such a model (Monani et al. 2000a, b). Still, the disease has 
an early onset with severe motor impairment and a short life-
span, which led to propose this model as reminiscent of type 
I human SMA (Monani et al. 2000b). Nonetheless, the lack 
of a sufficient time window, which could instead allow for 
dissecting potential degenerative phenomena operating early 
in SMA pathogenesis, added a further level of complexity in 
animal SMA research. In an effort to obtain animal models 
with longer survival and slower disease progression, which 
could better mimic type III human SMA, a novel SMN-KO 
(Smn−/−) mouse model was generated featuring a human 
SMN1 mutation (SMN1A2G), along with human SMN2 
(Monani et al. 2003). Contrarily to homozygous SMN1A2G 
mice, which do not feature motor alterations, heterozygous 
SMN1A2G mice develop a slow-progressive motor neuron 
loss, which is reminiscent of human SMA III (Monani et al. 
2003; Gavrilina et al. 2008). In fact, in the present model, the 
absence of the mouse SMN protein is compensated by the 
expression of two human genes (heterozygous SMN1A2G, 
and SMN2), which leads to late disease onset and prolonged 
survival. This renders such a model quite different from most 
experimental models characterized by early and massive 
MN loss, which progresses rapidly in condensed time inter-
vals. In fact, the short time window (a few weeks) of motor 
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deterioration occurring in most SMA I models is likely to 
recruit molecular mechanisms that differ from those occur-
ring during slowly progressive degeneration (lasting more 
than a year). This also applies to the occurrence of compen-
satory mechanisms (Monani et al. 2003; Fulceri et al. 2012).

In our previous studies, we used this knockout double 
transgenic (SMN2+/+; Smn−/− ; SMN1A2G+/−) SMA 
III mouse model to characterize the spinal cord pathology 
along with motor deficit at prolonged survival times (up to 
535 days) (Fulceri et al. 2012; Biagioni et al. 2017). In par-
ticular, MN loss was quantified along with size variations of 
spared MNs, as well the occurrence of heterotopic MNs and 
radial glia within the white matter. This allowed to detail, 
for the first time, SMA III neuropathology at stereological 
level, which was carried out at long time intervals corre-
sponding to almost 18 months. At this time point, a rough 
40% of MNs loss was documented at a steady-state, when 
the deficit in motor activity did not progress any further. 
This consisted of a reduction in hind limb extension reflex 
and paw grip endurance, which started at 200 and 85 days, 
respectively, and reached a plateau at nearly 300 days of 
disease progression. Instead, the rota-rod and stride-length 
test outcomes were not altered at any time points (Fulceri 
et al. 2012; Biagioni et al. 2017). Such a dissociation in time 
and severity concerning MN loss and motor impairment sug-
gests that other biological phenomena are involved in SMA 
pathogenesis, among which peripheral changes are taking 
center stage.

In fact, recent advances in SMA experimental research and 
clinics indicate that peripheral alterations at the level of the 
neuromuscular junction (NMJ), involving the muscle and dis-
tal axons, including sensory fibers, occur early, and may even 
precede MNs loss (Mentis et al. 2011; Bowerman et al. 2012; 
Wadman et al. 2012; Fayzullina and Martin 2014; Edens et al. 
2015; Boido and Vercelli 2016; Fletcher et al. 2017; Vukojicic 
et al. 2019; Lefebvre and Sarret 2020). This is reminiscent of 
what is quite well-confirmed in other neuromuscular disorders 
such as Amyotrophic Lateral Sclerosis (ALS) and Spinal Bul-
bar Muscular Atrophy (SBMA) or Kennedy’s disease (Dupuis 
and Echaniz-Laguna 2010; Natale et al. 2015; Lalancette-
Hebert et al. 2016; Limanaqi et al. 2017, 2020). Indeed, the 
role of NMJs in the pathogenesis of neuromuscular disorders 
is anything but peripheral, since early alterations involving 
components of the sensory-motor system, including the mus-
cular endplate, muscle spindle, and proprioceptive fibers, may 
critically contribute to disease onset through muscle denerva-
tion and altered MNs excitability, up to MNs loss (Kararizou 
et al. 2006; Rajendra et al. 2007; Mentis et al. 2011; Boido and 
Vercelli 2016; Fletcher et al. 2017; Vukojicic et al. 2019). This 
is bound to (1) the lack of SMN protein, which besides MNs, 
is critical for the homeostasis of NMJ synapses, sensory and 
motor axons, and muscles, and (2) impairment of retrograde 

signals or transport mechanisms coming from NMJs (Rajendra 
et al. 2007; Bottai and Adami 2013; Boido and Vercelli 2016).

These data prompted us to extend the examination of motor 
neurons and proximal axons towards peripheral components, 
to unravel any potential ultrastructural alterations occurring 
in slowly progressive SMA. In the present study, we add to 
our previous observations in the SMN-KO double transgenic 
mouse model (SMN2+/+; Smn−/−; SMN1A2G+/−) by char-
acterizing at ultrastructural level, the peripheral muscular den-
ervation which is supposed to occur early in neuromuscular 
disorders, including SMA. In this purely morphological study 
carried out at transmission electron microscopy (TEM), we 
dissect the fine ultrastructure of muscles and distal axons in 
WT and SMA III mice, further extending our analysis to the 
muscle spindles. To our knowledge, this is the first report com-
prehensively documenting ultrastructural alterations within the 
muscle, muscle spindles, and distal axons in SMA III mice 
models. Remarkably, despite a 40% MNs loss and motor 
alterations characterizing these very same SMA mice, as 
assessed in our previous studies (Fulceri et al. 2012; Biagioni 
et al. 2017), the ultrastructure of surviving MNs and proxi-
mal axons is largely preserved. Instead, subcellular pathology 
within the muscle, distal axons, and muscle spindles appears 
mostly severe, with SMA muscles featuring a markedly dis-
arranged sarcomere architecture, which is recapitulated by 
the severe alterations of intrafusal fibers occurring within the 
muscle spindle. Again, distal axons feature remarkable altera-
tions in myelin sheath and clogging of axoplasm by abnor-
mal, amorphous structures. These include intrusions of the 
myelin sheath itself, and electron-dense, amorphous material, 
including abnormal mitochondria with fragmentation and dis-
appearance of cristae and ridges. In this frame, ultrastructural 
morphometry was applied to assess mitochondrial alterations, 
which turned out to be dramatic within the muscle and distal 
axons of SMA mice.

Our findings are consistent with a wide stream of evi-
dence indicating peripheral denervation as a key event in the 
pathogenesis of neuromuscular disorders, which may shift 
the ultimate anatomical target in slow progressive SMA from 
the MNs within the spinal cord towards the muscle. This is 
expected to provide a platform for future experimental stud-
ies aimed at providing a deeper knowledge on the pathogenic 
mechanisms operating early in SMA, which could be key 
to fostering novel molecular targets and disease-modifying 
strategies.

Materials and methods

Animals

We used the KO, double transgenic mouse model (N = 10) 
carrying the genotype Smn−/−; SMN1A2G±; SMN2+/+ 
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(SMA III mice) generated by the Jackson Laboratories (Bar 
Harbor, Maine, USA, Stock No. 5026). As control mice 
(N = 10) the FVB/NJ strain was used (Jackson Labora-
tory, Stock No. 1800), which corresponds to the Wild type 
(WT) for the KO double transgenic Smn-/-; SMN1A2G ±; 
SMN2+/+ mouse. This heterozygous mouse for the 
SMN1A2G gene owns barely detectable SMN protein lev-
els compared with the homozygous strain (Monani et al. 
2003), which was also confirmed by our previous studies 
(Fulceri et al. 2012). All experimental procedures were car-
ried out according to the Guidelines of the European Council 
(86/609/EEC) for the use and care of laboratory animals. 
The experimental protocol was approved by the local Ethical 
Committee, and by the Ministry of Health.

Animals received food and water ad libitum and were 
housed under controlled conditions in 12 h light/dark cycle, 
and at 21 °C room temperature. Both WT and KO double 
transgenic (Smn−/−; SMN1A2G±; SMN2+/+) mice were 
killed at 18 months of age in order (1) to assess ultras-
tructural changes consistent with peripheral denervation 
in such a slowly progressive motor neuron disorder, and 
(2) not to risk further the occurrence of accidental deaths 
(cage deaths), which in longer time may have reduced mice 
number and/or bias the experimental findings. In fact, these 
experiments require an average of 2 years, making it difficult 
to replicate motor tests if the mice number is reduced. Motor 
tests and stereological motor neuron counts in these mice 
were previously performed and published by our group (Ful-
ceri et al. 2012; Biagioni et al. 2017). For the present analy-
sis, stored replicates from these previous studies (N = 10 
mice per group) were selected.

Tissue dissection and processing for transmission 
electron microscopy

Mice were deeply anesthetized with chloral hydrate and 
perfused trans-cardially with saline solution (0.9% NaCl) 
and the fixing solution 2% paraformaldehyde/0.1% glutar-
aldehyde in 0.1 M phosphate-buffered saline, pH = 7.4. The 
spinal cord and gastrocnemius muscle were dissected and 
moved overnight at 4 °C in the same fixing solution (2.0% 
paraformaldehyde and 0.1% glutaraldehyde in 0.1 M PBS, 
pH = 7.4). The lumbar tract of the spinal cord and gastrocne-
mius muscle were surgically dissected, with muscles being 
gently stretched for 10 s, and spinal cords being gently 
removed to avoid any abnormal pressure. Specimens were 
then immersed for 1 h and 30 min in the fixing solution used 
for perfusion. Afterward, specimens were post-fixed in a 
1% OsO4 buffered solution for 1 h and 30 min at 4 °C, and 
then dehydrated in increasing ethanol solutions, and finally 
embedded in epoxy resin.

For each spinal cord sample, two tissue blocks (volume 
of 5 mm3) were cut to obtain an average of 20 grids, each 
one including at least 5 cells, which were analyzed along 
non-serial sections. Motor neurons were selected based on 
classic morphological features (multipolar cells with dis-
persed nuclear chromatin and prominent nucleoli). In order 
to improve the selection of motor neurons, we also applied 
a size exclusion criterion which is validated by several pre-
vious studies adjusted to various mouse strains (Morrison 
et al. 1998; Martin et al. 2007; Fornai et al. 2008a, b; Fer-
rucci et al. 2010; Fulceri et al. 2012; Fornai et al. 2014; 
Natale et al. 2015). This consists of excluding those lamina 
IX neurons measuring less than 30 μm of maximum diam-
eter, which limits the analysis to phasic alpha-motor neurons 
(α-MNs). Despite ruling out gamma motoneurons (γ-MNs) 
and most tonic α-MNs, this allows to rule out type I Golgi 
projecting neurons.

As far as it concerns muscle samples, we cut little blocks 
(each measuring a volume of 5 mm3) in the central part of 
the belly at the level of the wider muscle size in order to 
achieve a homogeneous analysis of the same muscle area 
in each mouse. Since variations in muscle fibers orientation 
may lead to different structural perspectives and different 
measurements, each block was cut following the same longi-
tudinal orientation. This procedure allows keeping constant 
the reference points while following the course of peripheral 
nerve fibers within muscle length, thus reducing experimen-
tal bias as much as possible. Analysis at TEM was oriented 
by a previous light microscopy observation of 1–2 μm-thick 
serial semi-thin sections, which were cut using an ultrami-
crotome (Porter Blum MT-1 Reichert-Jung). These slices 
were stained with 1% toluidine blue and 1% methylene blue 
in 1% sodium tetraborate, and they were analyzed concern-
ing the homogeneity of muscle segments and nerve fiber 
tracts. Ultrathin sections were stained with uranyl acetate 
and lead citrate. For TEM analysis, 90 nm-thick sections 
from both spinal cord and muscle specimens were cut with 
an ultramicrotome and stained with uranyl acetate and lead 
citrate. Grids were examined at JEOL JEM-100SX transmis-
sion electron microscope (JEOL, Tokyo, Japan) at magnifi-
cation ranging from 3000× up to 10000×.

Morphometric analysis of mitochondrial alterations

Mitochondria were defined as altered according to criteria 
being validated by previous morphological studies (Fornai 
et al. 2008a, b; Natale et al. 2015) as follows: (1) signifi-
cantly decreased electron density of the matrix (dilution, 
vacuolization, cavitation); (2) fragmented and ballooned 
cristae (intracristal swelling); (3) partial or complete sepa-
ration of the outer and inner membranes; (4) mitochondrial 
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swelling. Accordingly, the following data were calculated: 
(1) density of mitochondria in muscle and distal axon of 
WT and SMA mice; (2) percentage of altered mitochon-
dria in the muscle and distal axon of WT and SMA mice; 
(3) mitochondrial swelling, assessed by measuring the 
maximum and minimum mitochondrial diameter in both 
muscle and distal axons of WT and SMA mice. In order 
to extend the characterization and the quantification of 
abnormal mitochondria, we analyzed the occurrence of 
paracrystalline inclusions (PCIs) within altered mitochon-
dria within the muscle. Mitochondrial PCIs were defined 
as rigid rectangular crystals which fill most of the mito-
chondrial volume (Hammersen et  al. 1980; Ghadially 
1988; Vincent et al. 2016). These electron-dense regular 
bodies consist of stacked sheets (each one name crystal or 
filament) with a reciprocal placement which may be either 
oblique or parallel. The number of mitochondria contain-
ing these specific inclusions as ultrastructural disease 
hallmarks was quantified and expressed as a percentage 
of total muscle mitochondria of both WT and SMA mice.

Post‑embedding immunoelectron microscopy

Post-embedding immunoelectron microscopy was carried 
out to test different antibodies in ultrathin sections cut 
from the same resin-embedded sample block. Ultrathin 
sections were collected on nickel grids and processed for 
protein detection after the removal of OsO4. As reported 
in our previous studies (Lenzi et al. 2016; Ferese et al., 
2020), this step is recommended for antigen unmasking, 
while maintaining a good ultrastructural detail. This, in 
turn, allows a better visualization of immuno-gold parti-
cles located within a sharp cell context, which guarantee 
the count of immuno-gold particles within specific cell 
compartments. After washing in PBS, the grids were incu-
bated in a blocking solution containing 10% goat serum 
and 0.2% saponin in PBS for 20 min at 21 °C. Grids were 
then incubated with the primary antibody solution contain-
ing mouse monoclonal anti-SMI-32 antibody (Covance, 
Emeryville, CA, USA, diluted 1:20) or mouse monoclonal 
anti-SMN antibody (BD Bioscience, San José, CA, USA, 
diluted 1:20) with 0.2% saponin and 1% goat serum in PBS 
in a humidified chamber overnight, at 4 °C. After washing 
in PBS, grids were incubated with the secondary antibody 
conjugated with gold particles (20 nm mean diameter, for 
gold particle anti-mouse, BB International, Treviso, Italy), 
diluted 1:20 in PBS containing 0.2% saponin and 1% goat 
serum for 1 h at 21 °C. Control sections were incubated 
with the secondary antibody only. After rinsing in PBS, 
grids were incubated with 1% glutaraldehyde for 3 min, 
they were washed in distilled water to remove traces of 
salts and prevent precipitation of uranyl-acetate, and 

they were counterstained with a saturated solution in dis-
tilled water of uranyl acetate and lead citrate to be finally 
observed by using a Jeol JEM SX100 electron-microscope 
(Jeol, Tokyo, Japan).

Statistical analysis

For mitochondrial morphometry, values were expressed 
either using the absolute value or as a percentage of normal 
numerical distributions. Data are reported as the mean or the 
mean percentage ± S.E.M. Inferential statistics to compare 
groups was carried out using Student’s t test (H0 probability 
was rejected when less than 5%, P ≤ 0.05).

Results

Muscle fiber architecture and sub‑cellular structures 
are altered in SMA

As shown in representative semi-thin micrographs from the 
gastrocnemius muscle of WT and SMA mice obtained at 
light microscopy (Fig. 1a, b), a severe disarrangement of 
muscle structure in SMA mice occurs compared with the 
well-aligned (parallel) and normal architecture of muscle 
fibers in WT mice. In fact, muscle from SMA mice (Fig. 1b) 
shows unparalleled and disarranged fibers and myofibrils, 
with an enlarged space among fibers. This contrasts with the 
longitudinal, regular, and parallel arrangement of aligned 
muscle fibers showing the typical banding pattern in WT 
mice, with visible nuclei at the periphery of the fibers 
(Fig. 1a). In these semi-thin sections, we could dissect the 
homogeneous segment to be analyzed under TEM (Fig. 1c, 
d).

When examined at TEM, muscle fibers from SMA mice 
(Fig. 1c) exhibit a severe loss of the normal sarcomere struc-
ture and regular sarcomeres’ alignment, to such an extent 
that muscle fibers are barely recognizable as composed of 
sarcomeric units. Instead, the increased distance between 
vestigial sarcomeres, which can be clearly appreciated by 
the naked eye in SMA compared with WT mice, is a witness 
of the severe disarrangement in SMA muscle fibers. This 
is evident in representative pictures of Fig. 1c, d, respec-
tively. In these same representative pictures, one can also 
appreciate the occurrence of a few, yet dramatically altered 
mitochondria within the muscle of SMA compared with 
WT mice. This was quantified by measuring the density of 
mitochondria along with the number of altered mitochondria 
in the muscle. Altered mitochondria were considered those 
featuring (1) significantly decreased electron density of the 
matrix (dilution, vacuolization, cavitation); (2) fragmented 
and ballooned cristae (intracristal swelling); (3) partial or 
complete separation of the outer and inner membranes; (4) 
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Fig. 1   Muscle fiber architecture and sub-cellular structures are altered 
in SMA compared with WT mice. a, b Representative pictures at 
light microscopy of methylene- and toluidine blue-stained semi-thin 
sections from gastrocnemius muscle in WT and SMA mice. WT mice 
a show a regular, longitudinal, and parallel arrangement of aligned 
muscle fibers with the typical banding pattern. Nuclei at the periph-
ery of the fibers are well visible. Muscle from SMA mice b shows 
unparalleled and disarranged fibers and myofibrils, with the space 
among fibers appearing enlarged (arrow). c, d Representative TEM 
micrographs of gastrocnemius muscle from WT and SMA mice. 
WT mice c show well-arranged myofibrils with the typical pattern 

of dark and light bands. No ultrastructural alterations are detected, 
and a geometrical alignment of sarcomeres is evident. Muscle from 
SMA mice d shows several disarranged areas with a significant 
increase in intersarcomeric area containing altered, swollen mito-
chondria (arrowhead). e, f Graphs report the amount of mitochondria 
expressed as mitochondrial density (number of mitochondria/μm2), 
and the number of altered mitochondria expressed as a percentage of 
total mitochondria in SMA and WT mice. Values are the mean num-
ber ± S.E.M. from 20 homogenous areas each measuring 6 μm2. Scale 
bar: a, b = 50 µm; c, d = 3.5 µm. *P ≤ 0.05 compared with WT.
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mitochondrial swelling. As shown in the graph of Fig. 1e, 
mitochondrial density is decreased by roughly twofold in the 
muscle of SMA compared with WT mice. Remarkably, most 
of the mitochondria (nearly 90%) detected in the muscle of 
SMA mice correspond to altered ones, as evident from the 
graph of Fig. 1f reporting the amount of altered mitochon-
dria in SMA compared with WT mice.

In representative pictures obtained at higher magnifica-
tion (Fig. 2a, b), one can clearly appreciate the dramatic 
mitochondrial and sarcoplasmic reticulum alterations occur-
ring in the muscle of SMA mice compared with WT mice. 
In fact, contrarily to the muscle fibers of WT mice (Fig. 2a) 
containing, well-shaped, healthy mitochondria and sarco-
plasmic reticula (concerning both arrangement of the cristae/

cisternae, and matrix electron density), muscle fibers of 
SMA mice (Fig. 2b) are impressively filled with aberrant, 
extremely swollen mitochondria with enlarged cristae, and 
sarcoplasmic reticulum with swollen cisternae. In order to 
quantify pathological mitochondrial swelling, which appears 
as an increase in mitochondrial size due to a swelling of the 
mitochondrial structure, ultrastructural morphometry con-
cerning the maximum and minimum mitochondrial diameter 
was applied. As shown in the graphs of Fig. 2c, d, a dramatic 
increase in both maximum and minimum mitochondrial 
diameter was measured in the muscle of SMA compared 
with WT mice, which is a witness of pathological mitochon-
drial swelling characterizing SMA muscle.

Fig. 2   Pathological mitochondrial swelling occurs in the muscle of 
SMA mice. a, b Representative TEM micrographs at higher magni-
fication showing mitochondria in gastrocnemius muscle from WT 
and SMA mice. WT mice a show a normal pattern of mitochondria 
(arrows). SMA mice b show altered, swollen mitochondria with 

enlarged cristae (asterisk). c, d Graphs report the maximum (c) and 
minimum (d) mitochondrial diameter measured within the muscle of 
SMA compared with WT mice. Values are the mean number ± S.E.M. 
of 50 mitochondria per mouse (500 mitochondria per group). Scale 
bar: a, b = 1 µm. *P ≤ 0.05 compared with WT
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In order to extend the characterization and the quantifica-
tion of altered mitochondria within the muscle of SMA com-
pared with WT mice, we analyzed the occurrence of parac-
rystalline inclusions (PCIs). As reported in representative 
TEM micrographs (Fig. 3a–c), these mitochondrial inclu-
sions are clearly detectable in the muscle of SMA, while 
they are totally absent in the WT mice. In fact, as reported 
in the graph (Fig. 3d), contrarily to the muscle fibers of WT 
mice, where PCIs were never detected, the mitochondria of 
the muscle of SMA were all filled with mitochondrial PCIs, 
which appear as rigid rectangular crystals approximately 
500 nm long, and 120 nm wide (Fig. 3c).

Muscle spindle fibers’ architecture is altered in SMA

Compared with WT mice (Fig. 4a, c) the intrafusal muscle 
fibers from SMA mice (Fig. 4b, d) are dramatically altered 
to the condition in which myofilaments are not recogniz-
able, and the capsule appears thickened with evident areas 
where disintegration has begun. At higher-magnification 
micrographs from WT mice (Fig. 4c), one can appreciate 
well-conformed fibers receiving axon terminals which are 
surrounded by a well-organized layer of sarcoplasm. This 
organization is completely lost in SMA mice, where anoma-
lous fibers with completely disarranged surrounding sarco-
plasm appear (Fig. 4d).

Distal axons feature loss of myelin sheath 
and clogging in SMA

The ultrastructural morphometry of distal axons reveals 
remarkable alterations consisting of myelin sheath disrup-
tion and axon clogging in SMA compared with WT mice. 
Representative TEM micrographs at high magnification pro-
vide a clear perspective of both myelin sheath disruption 
axonal clogging (Figs. 5a, b). The normal axonal constitu-
ents observed in WT mice, including neurofilaments and 
healthy mitochondria (Fig. 5a), are no longer distinguishable 
within SMA mice axons (Fig. 5b). The myelin sheath also 
seems to intrude the axoplasm, aside from it being markedly 
altered. The axoplasm of distal axons from SMA mice is 
entirely jammed by abnormal, amorphous structures with 
enhanced electron-density, including neurofilaments and 
altered mitochondria. This was confirmed by mitochondrial 
morphometry indicating a dramatic reduction in the number 
of mitochondria in SMA mice, most of which correspond to 
altered mitochondria (graphs of Fig. 5c, d). This was con-
firmed when assessing mitochondrial swelling by measuring 
the maximum and minimum mitochondrial diameter, which 
is dramatically increased in SMA compared with WT mice 
(graphs of Fig. 5e, f). This witnesses for pathological mito-
chondrial alterations, which characterize both the muscle 
and distal axons of SMA mice.

The axonal inclusions observed here, while being 
largely reminiscent of what we previously described in the 
G93A mouse model of ALS, are likely to produce deleteri-
ous effects concerning the physiology of axonal transport 
(Magrané et al. 2012, 2014; Natale et al. 2015). Decreased 
mitochondrial transport associated with cytoskeletal 
changes and/or impaired removal of altered mitochondria 
(mitophagy) and biogenesis of novel ones (mitobiogenesis) 
may similarly contribute to early pathological changes in 
axons and muscles of ALS and SMA (Wen et al. 2010; 
Natale et al. 2015; Ripolone et al. 2015; Xu et al. 2016). This 
may be also due to indirect effects of SMN on mitochondrial 
function, possibly by affecting the splicing, translation, or 
mRNA transport of genes required for mitochondrial homeo-
stasis and transport (Acsadi et al. 2009; Natale et al. 2015; 
Xu et al. 2016).

Neuromuscular junction (NMJ) architecture 
is altered in SMA

The fine structure of NMJ from WT mice appeared well 
conformed and mitochondria and cytoplasmic structures 
were distinguishable (Figs. 6a, 7a). In contrast, NMJ from 
SMA mice featured ultrastructural alterations, which may 
vary from a slight derangement of cytoplasmic structures up 
to a completely loss of architecture (Figs. 6b, 7b). This, in 
turn, further substantiates the remarkable and multiple mor-
phological alterations occurring in SMA III compared with 
WT. In particular, swollen NMJ showed amorphous material 
containing vestigial mitochondria and massive neurofilament 
accumulation, as evidenced by the intense SMI-32 stain-
ing (Fig. 6b, c). Conversely, SMN immuno-gold particles 
were scarcely and randomly placed within NMJ from SMA 
mice compared with WT (Fig. 7), as expected by this double 
transgenic mouse model of SMA III, in which SMN protein 
levels are barely detectable compared with the homozygous 
strain. When detailing the ultrastructural alterations occur-
ring in NMJ of SMA mice, morphological mitochondrial 
defects were also evident. In detail, mitochondrial morpho-
metry demonstrated a severe reduction in the number of 
mitochondria in SMA mice, along with increase in the per-
centage of altered mitochondria (Fig. 8a, b), as demonstrated 
by the significant increase both in maximum and minimum 
diameter (Fig. 8c, d) compared with WT mice.

The ultrastructure of motor neurons and proximal 
axons is well‑ preserved despite SMI‑32 
accumulation in SMA

Surprisingly, the ultrastructure of both motor neurons in the 
anterior horn and proximal axons from SMA mice (Fig. 9b, 
d) appears largely preserved, resembling that of WT mice 
(Fig. 9a, c). Similar to WT mice, the nucleus in the perikarya 
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Fig. 3   Representative TEM micrographs of mitochondrial paracrys-
talline inclusions (PCIs) occurring in the muscle of SMA mice. a, 
b Representative TEM micrographs showing mitochondrial parac-
rystalline inclusions (PCIs) in gastrocnemius muscle from WT and 
SMA mice. While PCIs are totally absent in the WT mouse (a), the 
mitochondria of the muscle from SMA mouse (b) were all filled with 

these rigid, rectangular, and electron-dense crystals (c). The graph 
d reports the percentage of mitochondria containing PCIs measured 
within the muscle of SMA compared with WT mice. Values are the 
mean percentage ± S.E.M. from 20 homogenous areas each measur-
ing 6 μm2. Scale bar: a, b = 1 µm; c = 0.14 µm. *P ≤ 0.05 compared 
with WT
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of SMA mice is not condensed and the nucleolus is well evi-
dent (Fig. 9a, b). At higher magnification, one can appreciate 
how the myelin sheath is well-organized and both perikar-
yon and axoplasm possess well-shaped and regularly sized 
mitochondria in both WT and SMA mice (Fig. 9c, d). This 
contrasts dramatically with the impressive loss of muscle 
structure and distal axon architectural disruption, includ-
ing mitochondrial damage, which was observed in these 
SMA mice. These findings were quite unexpected since the 
gross morphology of MNs in these same mice, as assessed 
in our previous studies, appeared largely heterotypic, often 
enlarged and hyperchromatic, with intensely basophilic 
cytoplasm and nucleus (Fulceri et al. 2012; Biagioni et al. 
2017). Instead, the well-preserved ultrastructure observed 
here seems to rule out overt pathological changes in spared 
MNs and proximal axons, contrasting markedly with the 
dramatic ultrastructural alterations which characterize the 
muscle, muscle spindle, and distal axons.

In order to check whether a peripheral clogging may gen-
erate an upstream accumulation of neurofilament proteins 
even in the absence of substantial morphological damage, 

the ultrastructure of the ventral root was analyzed. In fact, if 
a peripheral clogging exists this may block the axonal flow. 
In turn, this is expected to be slowed down even upstream, 
up to the ventral root. If this is the case, one should expect an 
accumulation of the SMI-32 protein in SMA III mice, which 
did not occur in WT. Consistently, we demonstrated that in 
SMA III mice the amount of SMI-32 protein, even upstream 
at the level of the ventral root, was higher compared with 
WT mice (Fig. 10). Of course a reduction in SMN was con-
firmed even at this level, according to the marked deficiency 
which is produced in the disease in knockout double trans-
genic SMA III mouse model (Fig. 11).

Discussion

In the present study, we provided ultrastructural evidence 
that is consistent with peripheral denervation in slow pro-
gressive SMA. This is confirmed by a disruption of muscle 
fiber architecture and distal axonal clogging, which occurs 
in the absence of overt alterations in the ultrastructure of 

Fig. 4   Representative TEM micrographs of muscle spindle from WT 
and SMA mice. a, c Representative TEM micrographs from WT 
mice showing muscle spindles with normal ultrastructure, concerning 
both intrafusal fibers with well-organized myofilaments, and regular 
capsule. At higher-magnification micrographs, one can appreciate 
well-conformed fibers receiving axon terminals (asterisk), which are 

surrounded by a well-organized layer of sarcoplasm. b, d Representa-
tive TEM micrographs from SMA mice showing dramatically altered 
muscle spindle architecture. Myofilaments are not recognizable, the 
capsule is thickened or disintegrated (arrow), and anomalous fibers 
with completely disarranged surrounding sarcoplasm appear. Scale 
bar: a, b = 18 µm; c, d = 3.5 µm
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Fig. 5   Representative electron micrographs of distal axons in WT and 
SMA mice. a Electron micrograph of cross-sections of myelinated 
axons from WT mice showing well-confirmed and organized myeli-
nated sheath with axons lacking any obstructive materials within the 
axoplasm. A well-organized cytoplasm and healthy mitochondria are 
distinguishable in the axoplasm (arrows). b Electron micrograph of 
cross-sections of myelinated axons from SMA mice. In SMA mice, 
an abnormal, disrupted myelin sheath occurs, which appears to 
intrude the axoplasm. Electron-dense, heterogeneous structures, clog-

ging the axonal lumen are present within the axoplasm of distal axons 
(asterisk), including altered mitochondria (arrow). c–f Graphs report 
the number of mitochondria in the distal axons, the percentage of 
altered mitochondria, and the maximum and minimum mitochondria 
diameter, respectively. Values are the mean number ± S.E.M. from 20 
distal axons per mouse (200 axons per group, c, d); Values are the 
mean number ± S.E.M. of 50 mitochondria per mouse (500 mitochon-
dria per group, e, f). Scale bar: a, b = 1 µm. *P ≤ 0.05 compared with 
WT
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proximal axons and motor neurons in the SMA III mouse 
model. Again, distal axons feature remarkable alterations 
in myelin sheath and clogging of axoplasm by abnormal, 
amorphous structures, including intrusions of the myelin 
sheath itself, electron-dense material as well as abnormal 
mitochondria. Based on these observation, one should 
expect an alteration of nerve conduction velocity (NCV). 
However, previous electrophysiological studies, both in 
mouse models and humans, indicate that alteration of NCV 
is not a feature of type III SMA (Ryniewicz 1977; Schwartz 
and Moosa 1977; Monani et al. 2003). In fact, as reported 
by Monani et al. (2003), there is no significant difference 
between type III SMA mice and age-matched controls when 

analyzing motor NCVs of the tibial nerve. This may be due 
to the very distal site (placed within the muscle), which are 
altered in the nerve. In fact, albeit the conduction veloc-
ity was not altered the amplitude of the electric potential 
at the level of the muscle was significantly decreased. This 
seems to be confirmed in the present study by a slight mor-
phological alteration in the proximal nerve fibers compared 
with the extensively altered axoplasm within muscle nerve 
terminals. Remarkable ultrastructural alterations also occur 
in the muscle spindles of these mice, especially concerning 
intrafusal fibers and nerve terminals, whereby the normal 
architectural organization is completely disrupted compared 
with WT mice. Our data are in line with evidence indicating 

Fig. 6   Representative localization of SMI-32 in neuromuscular 
junction (NMJ) in WT and SMA mice. Electron micrograph from 
WT mouse a showing a normal, well conformed NMJ. SMI-32 
immuno-gold particles (arrows) are barely detectable within the a 
well-organized cytosol. b In SMA mouse, the normal NJM architec-
ture is completely lost and sub-cellular compartments are no longer 

distinguishable, while a strong SMI-32 immuno-gold staining is evi-
dent (arrows). The graph c reports the number of SMI-32 immuno-
gold particles in SMA and WT mice. Values are the mean num-
ber ± S.E.M. of 10 NMJ per mouse (100 NMJ per group). Scale bar: 
a, b = 0.3 µm. *P ≤ 0.05 compared with WT. M mitochondria
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that neuromuscular disorders feature an early, peripheral 
axonopathy involving sensory and/or motor fibers, whereby 
the communication between the muscle and central nervous 
system is no longer effective. The dramatic clogging of distal 
axons by aberrant mitochondria and amorphous structures 
documented here along with the remarkable mitochondrial 
alterations quantified within the muscle of SMA mice are a 
witness of potential defects in transport mechanisms, which 
are known to occur in both ALS and SMA (Wen et al. 2010; 
Natale et al. 2015; Xu et al. 2016; Limanaqi et al. 2017).

In line with our observations, a general consensus is now 
emerging that NMJ breakdown is an early event in SMA 
pathogenesis, which may contribute to muscle denervation, 
progressive MN loss, and motor symptom onset. This is 
bound to (1) the lack of SMN protein, which besides MNs, 

is critical for the homeostasis of NMJ synapses, sensory and 
motor axons, and muscles, and/or, (2) impairment of retro-
grade signals or transport mechanisms from NMJs (Rajendra 
et al. 2007; Bowerman et al. 2012; Bottai and Adami 2013; 
Boido and Vercelli 2016). Consistent with our morphologi-
cal evidence on muscle and peripheral axonal changes, sev-
eral alterations have been described at the peripheral level in 
both SMA models and patients, which can be crucial players 
of MNs alterations. In SMA animal models, earliest detecta-
ble pathological changes are observed at the NMJs and mus-
cle, which are followed, only at later time points, by motor 
neuronal loss (Mutsaers et al. 2011; Sleigh et al. 2011; Ling 
et al. 2012; Fayzullina and Martin 2014). The mechanisms 
through which NMJ defects may contribute to MNs loss 
and motor symptoms onset include a variety of phenomena. 

Fig. 7   Representative localization of SMN in neuromuscular junction 
(NMJ) in WT and SMA mice. Electron micrograph of NMJ from WT 
mouse a showing numerous SMN immuno-gold particles (arrows). b 
Only few SMN immuno-gold particles (arrows) are detected in NMJ 

from SMA mouse. c The graph reports the number of SMN immuno-
gold particles in SMA and WT mice. Values are the mean num-
ber ± S.E.M. of 10 NMJ per mouse (100 NMJ per group). Scale bar: 
a, b = 0.6 µm. *P ≤ 0.05 compared with WT. M mitochondria
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These consist of impaired release of neurotrophic factors, 
neurofilament buildup, and poor axonal sprouting, reduced 
terminal arborization, disruption in synaptic vesicle release, 
aberrant expression of synaptic proteins, delayed post-syn-
aptic maturation, muscle denervation, defects in motor neu-
ron excitability due to altered Ca2+ homeostasis, and loss of 
Schwann cells leading to defects in endplate remodeling and 
nerve-directed maturation of acetylcholine receptor (AChR) 
clustering (Cifuentes-Diaz et al. 2002; Jablonka et al. 2006, 
2007; Rajendra et al. 2007; Kariya et al. 2008; Kong et al. 
2009; Ling et al. 2010, 2012; Ruiz et al. 2010; Torres-Benito 
et al. 2011; Murray et al. 2012; Shababi et al. 2014).

Aberrant ultrastructure of NMJs and delayed matura-
tion of myotubes have also been reported in human prenatal 

specimens from SMA fetuses (Martinez-Hernandez et al. 
2009, 2013). Features of neurogenic atrophy are also evi-
dent from skeletal muscle biopsy in SMA I patient (Thiru-
navukkarasu et al. 2020). Remarkably, within muscles from 
SMA I-III patients, mitochondrial damage and impaired 
mitochondrial biogenesis have been documented (Ripolone 
et al. 2015). This is evident by the occurrence of a few, 
altered mitochondria reminiscent of our present observa-
tions. Again, SMA patient-derived muscle cells and MNs 
from induced pluripotent stem cells (iPSCs) are impaired 
to form NMJs due to AChR clustering defects (Arnold et al. 
2004; Yoshida et al. 2015). Thus, formation and mainte-
nance of NMJs and muscle may precede the occurrence of 
MN death in SMA, which suggests that the vulnerability of 

Fig. 8   Ultrastructural morphometry of mitochondria in neuromuscu-
lar junction (NMJ) in WT and SMA mice. Graphs report the number 
of mitochondria (a), the percentage of altered mitochondria (b), and 
the maximum and minimum mitochondria diameter (c, d, respec-

tively) in NMJ from WT and SMA mice. Values are the mean num-
ber ± S.E.M. from 10 NMJ per mouse (100 NMJ per group, a, c, d); 
values are the mean percentage ± S.E.M. of 10 NMJ per mouse (100 
NMJ per group, b). *P ≤ 0.05 compared with WT
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MNs is due to both autonomous cell susceptibility to various 
stresses, and even early peripheral defects contributing first 
to muscle denervation and then, a loss of MNs (Fidziańska 
and Rafalowska 2002; Fischer et al. 2004; Wadman et al. 
2012).

Similar to what was reported for ALS models, early 
abnormalities in the sensory, mostly proprioceptive cir-
cuit, play a key role in determining altered MN excitability, 
up to MN loss, and motor system defects in SMA models 
(Jablonka et al. 2006; Ling et al. 2010; Mentis et al. 2011; 
Imlach et al. 2012; Lalancette-Hebert et al. 2016; Fletcher 

et al. 2017; Limanaqi et al. 2017). In detail, MN loss in SMA 
mice follows afferent synapse loss with a precise tempo-
ral and topographical pattern (Mentis et al. 2011). At early 
disease stages, SMA motor neurons show reduced proprio-
ceptive reflexes that correlate with decreased number and 
function of synapses on motor neuron innervating proximal 
hindlimb muscles and medial motor neurons innervating 
axial muscles. At later time points, this extends to motor 
neurons innervating distal hindlimb muscles. This may be 
partly related to SMN deficiency in proprioceptive synapses, 

Fig. 9   Representative TEM micrographs of the lumbar spinal cord, 
lamina IX, from WT and SMA mice. a, c Regular ultrastructure of 
motor neurons and proximal axons in WT mice, featuring well-evi-
dent nucleolus, well-organized myelin sheath, as well as regularly 
sized and well-shaped mitochondria within the cytoplasm and axo-

plasm. b, d Preserved ultrastructure of motor neurons and proximal 
axons in SMA mice overlapping with that of WT mice, concerning 
well-organized myelin sheath, and healthy mitochondria within the 
cytoplasm and axoplasm. Scale bar: a, b = 5  µm; c, d = 0.4  µm. N 
nucleus
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though the precise molecular mechanisms remain to be elu-
cidated (Fletcher et al. 2017).

The neuromuscular reflex arc, or gamma loop, which 
integrates the proprioceptive information for muscle length 
and activity to modify motor neuron output and muscle con-
traction, is emerging as a key to understanding neuromus-
cular deficits in diseases such as ALS and SMA (Limanaqi 
et al. 2017; Vukojicic et al. 2019). The sensory portion of 
the arc is composed of proprioceptive neurons and fibers, 
which convey information from the equatorial region of 
intrafusal fibers of the muscle spindle towards α-MNs within 
the ventral horn of the spinal cord. The polar regions of 
intrafusal fibers are instead innervated by γ-MNs that regu-
late intrafusal fiber stretch so that they retain proper tension 

and sensitivity during muscle contraction or relaxation. 
This is seminal to maintain the sensitivity of propriocep-
tion during dynamic muscle activity and to prevent muscular 
damage. It is remarkable that, in contrast to γ-MNs being 
largely spared in murine models of both ALS and SMA, 
α-MNs and proprioceptive fibers seem to be mostly vulner-
able (Lalancette-Hebert et al. 2016; Powis and Gillingwater 
2016; Falgairolle and O’Donovan 2020). This is not sur-
prising if one considers that contrarily to γ-MNs, α-MNs 
receive direct, monosynaptic input from proprioceptive 
fibers, which may be early affected in neuromuscular dis-
ease. Thus, impaired proprioception is expected to reduce 
α-MN firing ability, with a compensatory increase of γ-MN 
firing, which may, in turn, contribute to deficits in muscle 

Fig. 10   Representative localization of SMI-32 in the ventral root of 
the lumbar spinal cord from WT and SMA mice. Electron micro-
graph of cross-section of the ventral root of the lumbar spinal 
cord from WT mouse a showing few SMI-32 immuno-gold par-
ticles (arrows). b A large amount of SMI-32 immuno-gold par-

ticles (arrows) are detected in the ventral root of the lumbar spinal 
cord from SMA mouse. c The graph reports the number of SMI-32 
immuno-gold particles in SMA and WT mice. Values are the mean 
number ± S.E.M. of 200 axons of the ventral root per group. Scale 
bar: a, b = 0.2 µm. *P ≤ 0.05 compared with WT
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contraction and limb movement (Fletcher et al. 2017; Lalan-
cette-Hebert et al. 2016; Limanaqi et al. 2017). At present, 
it cannot be ruled out that the marked ultrastructural altera-
tions that we observe at the distal axonal level in the SMA 
III mouse, may apply to sensory, besides motor fibers, which 
would require dedicated studies to be confirmed. However, 
this may be the case if one considers that impaired proprio-
ception is also associated with an altered muscle spindle 
morphology, which is indeed documented here for the first 
time in SMA III, confirming what previously described 
in both ALS and SMA I (Kararizou et al. 2006; Limanaqi 
et al. 2017; Kröger and Watkins 2021). Morphological and 

morphometric evidence from SMA I patients’ biopsies indi-
cates that the muscle spindle may be a critical player in the 
pathophysiology of SMA (Kararizou et al. 2006). In detail, 
the overall ultrastructure and the area of the muscle spindle, 
along with the diameter of the intrafusal fibers, and the mean 
area of nuclei of the intrafusal fibers are reduced, while the 
thickness of the capsule is increased in SMA patients com-
pared with controls (Kararizou et al. 2006). This overlaps 
with what we observed here in the SMA III mice, whereby 
intrafusal fibers are altered to the condition in which myo-
filaments are not recognizable, and the capsule appears 
thickened with evident areas of disintegration.

Fig. 11   Representative localization of SMN in the ventral root of the 
lumbar spinal cord from WT and SMA mice. Electron micrograph of 
cross-section of the ventral root of the lumbar spinal cord from WT 
mouse a showing numerous SMN immuno-gold particles (arrows). 
b Only few SMN immuno-gold particles (arrows) are detected in the 

ventral root of the lumbar spinal cord from SMA mouse. c The graph 
reports the number of SMN immuno-gold particles in SMA and WT 
mice. Values are the mean number ± S.E.M. of 200 axons of the ven-
tral root per group. Scale bar: a, b = 0.2 µm. *P ≤ 0.05 compared with 
WT
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In conclusion, our observations confirm a seminal role for 
peripheral alterations in SMA pathogenesis, shifting the ulti-
mate anatomical target in type III SMA from the spinal cord 
to the muscular endplate. Obviously, our morphological data 
call for further molecular studies which are expected to con-
firm potential triggers in SMA pathogenesis. As a future per-
spective, immunocytochemical studies investigating SMN 
occurrence in peripheral compartments besides MNs may 
be key to unravel any potential correlations between SMN 
levels and disease progression. This may apply beyond SMA 
since SMN protein levels are critical in other neuromuscular 
disorders including ALS (Veldink et al. 2005). In this frame, 
it would be interesting to investigate the disease-modifying 
effects of compounds, which are known to increase SMN 
levels while preventing both motor neuron loss, and motor 
impairment associated with mitochondriopathy and axon 
clogging in ALS and SMA models (Feng et al. 2008; For-
nai et al. 2008a, b; Harahap et al. 2012; Natale et al. 2015; 
Biagioni et al. 2017).
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