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Abstract

Mitochondria evolved from a union of microbial cells belonging to distinct lineages that were 
likely anaerobic. The evolution of eukaryotes required a massive reorganization of the 2 genomes 
and eventual adaptation to aerobic environments. The nutrients and oxygen that sustain 
eukaryotic metabolism today are processed in mitochondria through coordinated expression 
of 37 mitochondrial genes and over 1000 nuclear genes. This puts mitochondria at the nexus of 
gene-by-gene (G×G) and gene-by-environment (G×E) interactions that sustain life. Here we use 
a Drosophila model of mitonuclear genetic interactions to explore the notion that mitochondria 
are environments for the nuclear genome, and vice versa. We construct factorial combinations 
of mtDNA and nuclear chromosomes to test for epistatic interactions (G×G), and expose these 
mitonuclear genotypes to altered dietary environments to examine G×E interactions. We use 
development time and genome-wide RNAseq analyses to assess the relative contributions of 
mtDNA, nuclear chromosomes, and environmental effects on these traits (mitonuclear G×G×E). 
We show that the nuclear transcriptional response to alternative mitochondrial “environments” 
(G×G) has significant overlap with the transcriptional response of mitonuclear genotypes to 
altered dietary environments. These analyses point to specific transcription factors (e.g., giant) 
that mediated these interactions, and identified coexpressed modules of genes that may account 
for the overlap in differentially expressed genes. Roughly 20% of the transcriptome includes G×G 
genes that are concordant with G×E genes, suggesting that mitonuclear interactions are part of an 
organism’s environment.

Keywords:  coevolution, epistasis, gene expression module

Genotype by environment interactions (G×E or GEI) emerge when 
different genotypes have different phenotypic responses to an en-
vironmental variable (Schmalhausen 1949, Via and Lande 1985, 
Scheiner 1993, Schlichting and Pigliucci 1998). Gene by gene 

interaction (G×G) or epistasis is when the effect of one gene on a 
phenotype is dependent on, or interacts with, the action of a dif-
ferent gene (Phillips 2008, Sackton and Hartl 2016). Biomedical 
science tends to prioritize “master genes” that cause certain traits 
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(Lewis 1992). At the same time, it is evident that most traits of evolu-
tionary and medical importance are continuous in nature and efforts 
to identify the genetic basis of this variation has focused on an addi-
tive model where many genes of small effect contribute to pheno-
types (Boyle et al. 2017). G×E and G×G effects are often relegated to 
second-order status that complicate the identification of the genetic 
basis of phenotypes (Frazer et  al. 2009). Studies that have sought 
to examine the influence of epistasis or G×E have found that these 
interaction terms can be as important as individual genes (Huang 
et  al. 2012) or can significantly improve the accuracy of genomic 
prediction approaches (Arnau-Soler et al. 2019). While quantifying 
G×E and G×G effects has a robust statistical framework, the mechan-
istic basis of these terms remains unclear. By their context-dependent 
nature, epistasis and G×E make it difficult to predict phenotypes. 
This lack of predictability is a substantial problem for personalized 
or precision medicine, as well as for advances in agriculture and 
the challenges of climate change (Mackay et  al. 2009). Moreover, 
G×E and G×G effects are commonly considered distinct phenomena, 
driven by external environmental versus internal molecular factors, 
respectively. As gene networks are increasingly understood as key 
components of the genetic architecture of complex traits (Furlong 
2013, Boyle et al. 2017), it seems possible that G×E and G×G effects 
may be associated with the same genetic loci.

To study genome-wide epistasis or environment-wide G×E ef-
fects, one needs to determine the phenotypes of all genes in the 
genome with every other gene in the genome (or with every im-
aginable environment). This is not tractable: for an organism with 
20 000 genes, 20 0002  = 4 × 108 tests are needed, a conservative 
estimate when all genes have multiple alleles in nature. To model this 
problem, we have focused on a subset of all interactions by studying 
combinations of mitochondrial and nuclear (mitonuclear) geno-
types (Rand et al. 2018, Rand and Mossman 2020). The mtDNA 
encodes 13 protein coding genes that are subunits of the electron 
transport chain, plus 22 tRNAs and 2 rRNAs that translate these 
13 mRNAs inside mitochondria. The nucleus contributes over 1000 
gene products to the mitochondrion, enabling oxidative phosphor-
ylation and ATP production, plus a variety of other metabolic and 
signaling processes (beta-oxidation of fatty acids, amino acid re-
covery, redox signaling, among others [Raimundo 2014, Shadel and 
Horvath 2015]). Mitonuclear communication involves anterograde 
(nucleus-to-mitochondria) signals and retrograde (mitochondrion-
to-nucleus) signals (Liu and Butow 2006). As the central organelle 
responsible for a wealth of metabolic processes related to nutrient 
and oxygen flux, the combined mitonuclear genome is a nexus for 
epistatic (G×G) and G×E interactions (Guarente 2008).

Here we ask the question: are mitochondria environments for 
the nuclear genome? Using the Drosophila model, we pair alterna-
tive mtDNAs with alternative nuclear genotypes and expose these 
mitonuclear genotypes to alternative environments in factorial de-
signs. Previous studies have identified mitonuclear G×E and G×G×E 
effects using various designs (Zhu et  al. 2014, Aw et  al. 2016, 
Mossman et  al. 2016, Nagarajan-Radha et  al. 2019). While these 
kinds of experiments have used pairings of mitochondrial and nu-
clear genomes that may be unlikely in nature (e.g., between allo-
patric populations or different species), they do model admixture 
events that might also be rare in nature (long distance dispersal, 
hybrid zones between differentiated forms, or admixture events 
such as human-Neandertal or -Denisovan). In addition, the experi-
ments provide a test of the mitochondrial coadaptation hypothesis. 
In general terms, both of these kinds of scenarios predict that the 
degree of phenotypic effect of a mtDNA scales with the degree of 

nucleotide substitution between different mtDNAs. MtDNAs that 
commonly pair with nuclear genes are expected to provide a “na-
tive” genetic environment, while “foreign” mtDNAs that have never 
encountered a nuclear genome could generate some kind of incom-
patibility or novel phenotypic effect (Blier et al. 2001, Rand et al. 
2004, Dowling et al. 2008, Sloan et al. 2017, Havird et al. 2019). We 
present new transcriptomic analyses of mitonuclear genotypes to ad-
dress the question of whether G×G is independent of, or overlapping 
with, G×E effects. We compare these new analyses, that use a dietary 
switch as an environmental variable, with our recent results exam-
ining the effect of mitonuclear interactions on transcription under 
altered hypoxic conditions or nutrient signaling pathways associated 
with the target of rapamycin (TOR) complex. These analyses ex-
plore the hypothesis that mitochondria function as integrators of the 
pathways regulating both the internal genetic, and external physical, 
environments (Rand et al. 2018).

Materials and Methods

Drosophila Strains
Experimental mitonuclear genotypes were constructed by com-
bining distinct mtDNAs from different female lines with dis-
tinct nuclear chromosomal complements from male lines. Details 
on the construction of these lines have been reported elsewhere 
(Mossman et  al. 2016). The complete set of strains involved 6 
mtDNAs paired with 12 nuclear genomes (nucDNA) from the 
Drosophila Genetic Reference Panel (DGRP; (Mackay et al. 2012, 
Huang et  al. 2014)). The mtDNAs were derived from 3 wild 
strains of D.  melanogaster (Oregon R [as “OreR”], Zimbabwe 
53 [as Zim53], and AustriaW132 [as “Aut”]) and 3 wild lines of 
D. simulans (siI, siII [as sm21], and siIII [as “ma1”]). The “ma1” 
mtDNA is derived from D.  mauritiana haplotype “mau12” that 
differs from D. simulans siIII by one base pair as a consequence 
of historical introgression between D. simulans and D. mauritiana 
(Ballard 2000, Ballard 2000, Montooth et al. 2010). The nuclear 
genomes were DGRP lines 304, 313, 315, 358, 375, 517, 707, 712, 
714, 765, 786, 820 (see Figure 1A). Initial chromosomal replace-
ments were done with balancer chromosome extractions onto each 
cytoplasmic background, followed by several generations of male 
backcrossing from the original DGRP line resulting in 6 × 12 = 72 
mitonuclear genotypes (see Figure 1A). Wolbachia was removed 
from each female line prior to mitonuclear genotype construction. 
The notation for these genotypes is mtDNA;nucDNA, for example 
OreR;315 or sm21;820. These genotypes were scored for devel-
opment time on 4 different diets (Mossman et al. 2016). We also 
report results from a different pair of mitonuclear genotypes where 
the OreR and sm21 mtDNAs are each placed on the OreR nuclear 
chromosomes using a similar balancer cross and backcross scheme 
OreR;OreR and sm21;OreR (Montooth et al. 2010, Villa-Cuesta 
et al. 2014, Santiago et al. 2021).

Diet Environments
The standard Lab Food contains 1.8 g agar, 5 g SAF yeast, 10.4 g 
yellow cornmeal, 22 g sucrose, 0.9 g tegosept in 4.5 ml 95% ethanol, 
cooked in 200 mL of distilled water (larger batches scaled up these 
ratios accordingly). Isocaloric diets were prepared from reciprocal 
mixtures of yeast extract and sucrose in a standard Drosophila food 
medium. The High Protein:Low Carbohydrate (High P:C), Equal 
P:C, and Low P:C diets have 32, 20, and 8 g of SAF yeast, and 3, 
8, 20, and 32 g of sucrose, respectively (Mossman et al. 2016). All 
remaining ingredients are the same in each diet (1 g agar, 9 g yellow 
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cornmeal, 0.45  g tegosept in 4.5  mL of 95% ethanol, cooked in 
200 mL of distilled water). Development time was scored with de-
velopment from egg to adult on each diet of these 4 diets (see Figure 
2). The transcriptome analyses were conducted on a specific subset 
of mitonuclear genotypes raised on standard Lab Food to age 3- to 
4-day-old adults, and switched to the High P:C or Low P:C diets for 
defined time periods of 0 hours (Control), 60 and 120 minutes as 
described below.

Diet-Switch Experiments
Results are presented from 2 experiments: a new RNAseq analysis of 
a diet-switch experiment, and a specific RNAseq finding we reported 
in a recent publication focusing on mtDNA effects on the inhibition 
of TOR signaling using rapamycin. For the diet-switch experiment, 
flies were allowed to develop on Lab Food at controlled density and 
when adults reached age 3–4 days posteclosion, males and females 
of each genotype were sorted into 3 or 4 replicate single sex vials of 

Figure 1. (A) Experimental design for the construction of mitonuclear genotypes from different mtDNAs paired with specific DGRP nuclear genotypes. Three 
mtDNAs from geographic samples of D. melanogaster (OreR, Zim53, Aut) and 3 mtDNAs from the 3 distinct mtDNA haplotypes in D. simulans (siI, siII, siIII 
represented by “ma1”) were placed on each of 12 DGRP nuclear genomic backgrounds. The top 3 rows of the grid represent “Home Team” mitonuclear 
combinations, of D. melanogaster mtDNAs on D. melanogaster nuclear backgrounds (blue mtDNAs with blue nuclear chromosomes); the bottom 3 rows represent 
“Away Team” mitonuclear combinations of foreign D. simulans mtDNAs on D. melanogaster nuclear backgrounds (red mtDNAs with blue chromosomes). The 
phylogeny at the left shows the number of amino acid changes between the various lineages of the phylogeny. A prediction of the mitonuclear coadaptation 
hypothesis is that the Away Team combinations would show greater dysfunction due to mitonuclear incompatibilities resulting from ~2.5 million years of 
independent mutation in the respective genomes. (B) Experimental treatment showing the subset of mitonuclear genotypes used in the diet exposure and 
RNAseq experiment. The 4 mitonuclear genotypes developed from egg to adult on Lab Food. At age 4 days, replicate cultures of 30 single sex adults were 
transferred to fresh Lab Food for 2 days. At time = 0, replicates were frozen as controls, and remaining replicates were transferred to each of 2 alternative diets 
for 60 and for 120 min: Y = High P:C and to S = Low P:C for Yeast and Sugar respectively, and then frozen for later RNA extraction.

Figure 2. G×G×E for development time in mitonuclear genotypes. The upper left depicts the 6×12, mito × nuclear genotypes placed on 4 different diets. The larger 
graph plots the development time for each mitonuclear genotype x diet combination, color coded by diet type. The insets show development times for mtDNAs 
on 2 specific nuclear backgrounds (DGRP-315 and DGRP-714) on each of the 4 diets.
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30 flies and allowed to recover for 2 days on Lab Food. Replicate 
vials of flies for the diet-switch treatment were then transferred to 
either High P:C (labeled Y for high Yeast) or Low P:C (labeled S for 
high Sugar) diets for 60 or 120 min, and then flash frozen in liquid 
N2. Control flies (labeled C) were from replicate vials that that were 
frozen at time 0 without any exposure to novel food. Each vial of 
30 adult flies of one sex was the unit of replication for genotype, 
diet exposure, and RNA extraction. Figure 1B illustrates the proced-
ures for this RNAseq diet-switch experiment that was performed on 
4 mitonuclear genotypes. The transcriptional changes that are due 
to mito × nuclear G×G effects are inferred from factorial contrasts 
of mtDNAs and nuclear genotypes, pooling across all diet environ-
ments and time points. The transcriptional changes that are due to 
mitonuclear genotype × environment effects (G×E) are inferred from 
factorial contrasts of the 4 mitonuclear genotypes on standard Lab 
Food versus one alternative isocaloric diet (e.g., either High or Low 
P:C diets).

The results of this diet-switch experiment were compared with 
those from a distinct time-course transcriptome analysis using the 
OreR;OreR and sm21;OreR mitonuclear genotypes. The goal of the 
latter experiment was to assess the effects of rapamycin, an inhibitor 
of the TOR protein complex that regulates nutrient signaling, on 
gene expression in a diet and mtDNA-dependent manner (Santiago 
et al. 2021). Flies were raised on normal Lab Food, and adult males 
were separated into replicate vials of 30 flies at 3–4 days posteclosion 
to be used in a time-course experiment of joint rapamycin and 
refeeding. The intention of using rapamycin was to examine the ef-
fect of inhibiting the TOR complex that regulates nutrient signaling. 
All flies were starved on agar-water food overnight and one set of 
replicate vials were frozen in liquid N2. The remaining replicates 
were split between a treatment of rapamycin (200 µM in EtOH) or 
control (EtOH vehicle only) agar for 30 min. After 30 min, all flies 
were moved to normal Lab Food and frozen in liquid N2 as cohorts 
at 1, 2 , and 4 h poststarvation. This placed alternative mtDNA geno-
types on or off rapamycin followed by refeeding. Additional details 
of this experiment are reported in a separate publication (Santiago 
et al. 2021).

RNAseq Analyses
Total RNA was extracted from 30 flies from each replicate vial using 
the Qiagen RNAeasy kit. RNA sequencing libraries were prepared 
by GeneWiz (South Plainfield, NJ) with a target size of 300 bp, and 
single-end reads were generated on an IIllumina HiSeq 2500 instru-
ment, resulting in >20 million reads per sample. Fastq files were 
examined for quality using FastQC and libraries were filtered using 
the FASTX toolkit (v2.6) Reads were mapped to the dm3 reference 
genome of D. melanogaster obtained from the UCSC Browser using 
TopHat (v2.0.12) and Bowtie2 (v2.2.3). BAM files were converted 
to SAM files using samtools (v0.1.19), and read counts for annotated 
genome features were obtained using htseq-count in the HTSeq pro-
gram (Anders et al. 2015). Details of parameters for these packages 
were reported previously (Mossman et al. 2019).

Statistical Analyses of RNAseq Results
Quantification and statistical analyses of genotype and diet effects 
on transcript levels were done using edgeR (Robinson et al. 2010) 
based on read-count data obtained as described above. In some 
cases, a replicate was dropped from the analysis if the RNAseq 
data did not pass filter or if that sample was a clear outlier in initial 
principle component and multidimensional scaling analyses. Four 

mitonuclear genotype were examined on different diets in the High 
P:C/Low P:C experiment: Zim53;DGRP-315, sm21;DGRP-315, 
Zim53;DGRP-820, sm21;DGRP-820 (Figure 1B). To determine the 
effects of mitonuclear genotype on nuclear gene expression, a full 
model of the fit was performed using the dispersion parameters for 
Common, Trended, and Tagwise conditions sequentially. To iden-
tify transcripts that were sensitive to mito × nuclear epistatic inter-
actions, edgeR contrasts of the Zim53 versus sm21 mtDNA in the 
DGRP-315 background were contrasted against the Zim53-sm21 
contrast in the DGRP-820 background separately in each sex, and 
diet treatment. For each diet and sex combination, we evaluated 3 
different statistical models using the filtered read-count table for the 
libraries that pertain to the specific sex and diet treatments (Models 
1, 2, and 3; see Figure 3A). Each model produces lists of genes for 
each term (e.g., mtDNA, nuclear, and mtDNA × nuclear), which can 
be ranked by P-value. We are interested in the overlap of the inter-
action term of Model 1 (a G×G list) with that of Model 2 (a G×E 
list). In the current analyses, we compare these models for the con-
trol food versus one specific alternative food (e.g., control vs. High 
P:C, or Control vs. Low P:C). Model 1 uses mtDNA and nuclear 
DNA each as factors with 2 levels and averages across the libraries 
for those genotypes exposed to different diets. Model 2 treats the 
combined mitonuclear genotypes as a “Genotype” factor with 2 × 
2  =  4 levels while the “Environment” term is a factor that parti-
tions the libraries between 2 levels: those from the control Lab Food 
treatment, and those from an alternative diet (e.g., High or Low P:C 
food). In each of Models 1 and 2, the same data set is used, but 
the data are partitioned differently. The same comparison can be 
done using Model 3, where the gene list from the mtDNA × nu-
clear (G×G) interaction term is compared with the gene list from 
the 3-way mtDNA × nuclear × diet (G×G×E) interaction term (see 
Figure 3A). These “overlap tests” are done for each sex and diet com-
bination, for both the Models 1 versus 2 and the Model 3 contrast 
of 2-way versus 3-way interaction terms. Thus, with 2 sexes, 2 diet 
contrasts and 2 types of model contrasts, 8 possible “overlap tests” 
could be performed (see Supplementary Table S1). Each of these ana-
lyses identified nuclear transcripts with significant 2-way and 3-way 
interactions terms.

To test the null hypothesis that the G×G list is independent of the 
G×E list, we performed G-tests of heterogeneity using a 5% value 
for the null overlap, compared with the observed overlap of genes on 
these 2 lists. A 10% null was also used in addition, recognizing that 
equating a P-value of 5% in a typical statistical test may not equate 
with a 5% overlap of gene lists in the current context. In addition, 
we compared the G×G list to the G×G×E list from the full 3-way 
model to test the null overlap model. Details of this approach are de-
scribed in (Rand et al. 2018) for a distinct experiment using hypoxia 
rather than diet as the environmental variable.

For the time course of the 2 OreR mitonuclear genotypes, we 
sought to identify transcripts that had distinct time-course profiles 
in the 2 genotypes exposed to the rapamycin versus control food. 
This was done using the R package impulseDE2 (Fischer et al. 2018) 
available in the Bioconductor suite of packages. Details of these ana-
lyses are reported in Santiago et al. (2021).

Functional annotation of the differentially expressed (DE) genes 
was inferred using the Gene Ontology enRIchment anaLysis and visu-
aLizAtion tool (GOrilla) package (Eden et al. 2009). Identification 
of coexpressed modules of genes was done using weighted gene 
coexpression network analysis (WGCNA) (Langfelder and Horvath 
2008) using all libraries in the experiment detailed in Figure 3. To 
test for associations between the genes identified in coexpressed 
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modules from WGCNA and those identified as “overlap” genes, 
we used a hypergeometric test to ask whether the identity of these 
genes is expected by chance as draws from all genes identified in the 
RNAseq analyses.

Results

Diet Environment Alters Mitonuclear Epistasis
Previously, we reported the development times for 72 mitonuclear 
genotypes built from 6 mtDNAs each placed on 12 different nuclear 
genomes of the DGRP. Three mtDNAs are from D.  melanogaster 
(Dmel) and 3 mtDNAs from D.  simulans (Dsim). The Dmel 
mtDNAs are OreR, Zimbabwe, and Aut, differing by ~8–10 amino 
acid changes across the ~3700 codons of the protein coding genes. 
The Dsim mtDNAs are siI, siII=sm21, siIII=ma1, differing by 10–40 
amino acid positions. The divergence between Dmel and Dsim 
mtDNAs is ~100 amino acid positions (Ballard 2000). We have 
quantified development time for these 72 genotypes on 3 isocaloric 
Protein:Carbohydrate (P:C) diets, plus standard lab food (with lower 
P and C levels). This design allows direct partitioning of mtDNA, nu-
clear, and diet main effects, “mitonuclear” interaction (G×G) effects, 
genotype × environment (G×E) effects, and environmental modifi-
cation of epistatic interaction (G×G×E) effects. Figure 2, showing 

all 72 genotypes × 4 diets = 288 combinations, reveals considerable 
G×E and G×G effects of this experiment. A high P:C diet accelerates 
development (Figure 2: yellow squares and lines), and low P:C diets 
delay development (Figure 2: red and white squares or red and black 
lines), but there are considerable changes of rank-order of the 72 
genotypes across diets. These “crossing reaction norms” demonstrate 
G×G×E interactions, which can contribute as much to phenotypic 
variation as main effects (Mossman et al. 2016).

The line plot insets in Figure 2 show development time changes 
across 6 mtDNAs in 2 nuclear backgrounds (DGRP-315 and DGRP-
714) and 4 diets. Comparable changes in the mtDNA “reaction norm” 
in each diet and nuclear background is evident for other nuclear back-
grounds, and is supported statistically by a significant Mito × Nuclear 
× Diet (G×G×E) term in the ANOVA (Mossman et al. 2016). The add-
itional insight provided by these figures—that yellow lines are “flatter” 
than black lines and that line patterns change between nuclear back-
grounds—is that mitonuclear epistatic interactions are modified by diet.

Nuclear Transcripts Show Overlapping Mitonuclear 
G×G and G×E Effects
The pattern of development time G×G×E effects presented in Figure 
2 reveals that a mitonuclear epistatic interactions can be modified 

Figure 3. Transcripts affected by mitonuclear G×G overlap with G×E transcripts.(A) Statistical models for assessing G×G and G×E effects on nuclear transcripts 
as a function of mtDNA (Mito), nuclearDNA (Nuclear), and Environment (Enviro). The interaction terms in red represent the focal statistic for comparing G×G and 
G×E effects. (B) Heatmap of coexpressed transcripts: rows are transcripts, columns are nuclear, mtDNA and diet and time treatments, as specified in the column 
headers. The C, Y, and S columns refer to Control Lab Food (C), or food with high Yeast or high Sugar, equivalent to High P:C or Low P:C food, respectively. The 
Time column headers refer to Control Food (0), or 1 (1) or 2 (2) h on the alternative food. (C) Venn diagrams showing overlap of G×G and G×E for females on the 
High P:C diet (top) or Low P:C diet (bottom), relative to lab food. (D) Permutation tests showing that observed data show greater enrichment of overlap (colored 
curves) compared to a randomization of the G×G and G×E gene lists. Data from 4 data partitions are shown: Females on High P:C and Low P:C and Males on 
High P:C and Low P:C diets, compared to Lab Food. The Venn diagram for males is in Supplementary Figure S1.
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by diet environment. The question arises whether the mitonuclear 
genetic interactions that alter development time are related to the 
genetic basis of diet sensitivity. Given the role that mitochondria play 
in both catabolic and anabolic nutrient processing, we chose to asses 
this association at the transcriptional level. To test this hypothesis, 
we have performed transcriptional profiling of mitonuclear geno-
types under different environmental conditions. In a previous report, 
we showed that the transcripts most influenced by joint mitonuclear 
genetic effects (G×G) had significant overlap with transcripts influ-
enced by joint mitonuclear genotype × hypoxia environment (Rand 
et al. 2018). We sought to verify this result by conducting an inde-
pendent experiment with different mitonuclear genotypes, and a dis-
tinct environmental variable (diet, rather than hypoxia).

Figure 1B illustrates the design of the diet-switch RNAseq experi-
ment. Figure 3B shows an example of a module of coexpressed genes 
that illustrate 3-way G×G×E effects and what common G×G and 
G×E genes can look like at the transcript level. In the DGRP-315 nu-
clear background, the 2 alternative mtDNAs (Dsim sm21 and Dmel 
Zim53) have no general differences, but each transcript is sensitive 
to diet (Figure 3B, heat map: rows are genes, Y and S at column 
headers specify high Yeast or high Sugar diets; High P:C and Low 
P:C, respectively). However, in the DGRP-820 nuclear background, 
the 2 alternative mtDNAs have dramatic effects on these transcripts: 
the sm21 mtDNA increases expression but is less responsive to diet, 
and Zim53 has reduced expression but is responsive to diet shifts.

If G×G and G×E effects are distinct processes, or are independent, 
these lists of transcript levels ranked by P-values should identify few 
overlapping genes among the highest-ranking transcripts (e.g., 5% by 
chance). If there are common factors to G×G and G×E, the overlap of 
these gene lists should be greater than random. The data reveal a sig-
nificant enrichment for common genes: about 20% of transcripts are 
shared in these analyses: Figure 3C shows Venn diagrams based on the 
top 500 transcripts ranked by P-value for females experiencing a diet 
switch from Control food to either High P:C (Y) or Low P:C (S) food. 
Permutation tests reveal that the enrichment of these “overlap genes” is 
not an artifact compared to a randomized list (Figure 3D). To test the 
significance of this overlap, G-tests of heterogeneity were performed 
on the observed versus the 5% expected number of shared transcripts 
among the top-ranked genes, and observed overlap is significantly 
greater than that expected by chance (from Figure 3: Observed of 
407:93 vs. a 5% expected overlap of 475:25: χ 2 = 43.13, P << 0.0001; 
using a 10% Expected of 450:50 gives χ 2 = 14.4, P < 0.00015; see 
Supplementary Table S1). Results of these overlap tests for males, and 
those using the Model 3 analyses are presented in Supplementary Figure 
S1. The results presented here are consistent with an earlier experiment 
with hypoxia. These 2 experiments used independent combinations of 
mtDNAs and nuclear genotypes and different environmental stressors 
(hypoxia or diet), and the ~20% “overlap” of G×G and G×E genes is 
repeatable (18–34% overlap for hypoxia; Rand et al. 2018).

Inferring Functional Associations of Overlap Genes
We examined the functional aspects of these “overlap genes” using 
the gene ontology (GO) platform GOrilla (Eden et  al. 2009). GO 
analyses identified recurring themes that differed between the dif-
ferent statistical models and different food types. In the Model 1 
versus 2 analyses (G×G vs. G×E), chitin and cuticle development was 
enriched as a “Process” and a “Function, while carbohydrate or lipid 
metabolism were enriched to varying degrees in either the High P:C 
or Low P:C diets. In the Model 3 analyses (G×G vs. G×G×E), im-
mune or defense response and eggshell or vitelline membrane were 
common themes (see Figure 3 and Supplementary Figure S1 and 

Supplementary Tables S1 and S2). We note that the terms reported in 
Supplementary Table S1 have significant P-values, but some do not 
pass the false discovery rate threshold of 5%, and are provided for 
comparison only. Chitin metabolism, extracellular matrix, immune 
defense, and metabolism of lipids and carbohydrates are recurring 
terms in these analyses.

We further examined the association of these overlap genes with 
modules of coexpressed genes that were identified using WGCNA. 
The genes in the “steel blue” and “light cyan” modules identified in 
the WGCNA (see Supplementary Table S3) were significantly asso-
ciated with the 93 overlap genes for females on High P:C (Y) food 
from models 1 vs. 2 (see Figure 3; P < 8.1e-07 for “lightcyan” and 
<4.1e-4 for “steelblue”). The genes in these 2 modules were also sig-
nificantly associated with the 121 overlap genes in females on Low 
P:C (S) food (P  < 1.2e-15 and < 2.6e-15, respectively, for these 2 
modules; a Bonferroni threshold was set at 0.05/66 = 7.575e-4 based 
on tests of 66 WGCNA modules). These WGCNA modules are en-
riched for functions associated with carbohydrate metabolism and 
egg development, respectively (Supplementary Table S2); the “steel 
blue” module is shown in Figure 3B.

Mitochondrial Genotype Alters the Impact of TOR 
Signaling and Diet on Nuclear Gene Expression
The apparent overlap of G×G and G×E effects on nuclear expres-
sion under altered diets raises the question of how these effects are 
mediated. The TOR pathway regulates a broad set of interconnected 
pathways affecting nutrient signaling, autophagy, mitochondrial bio-
genesis among many other cellular activities (Saxton and Sabatini, 
2017) . The drug rapamycin targets the TOR protein altering its kinase 
activity and multiple downstream effects. We have used rapamycin 
to explore whether alternative mitonuclear genotypes could modify 
the effects of rapamycin on gene expression during dietary supple-
mentation. Previously we showed that mtDNA genotypes alter the 
impact of rapamycin’s effect on mitochondrial respiration and me-
tabolite profiles (Villa-Cuesta et  al. 2014). More recently, we have 
examined the effects of alternative mtDNAs and rapamycin on the 
transcriptional response to refeeding after starvation (Santiago et al. 
2021). We compared the “home team” Dmel OreR strain carrying its 
own mtDNA (OreR;OreR) to an “away team” mitonuclear genotype 
carrying the Dsim sm21 mtDNA on the OreR nuclear background 
(sim21;OreR). Flies were starved overnight, then allowed to feed on 
control food, or food containing rapamycin, for 4 time points (0, 1, 
2, 4 h). RNAseq analyses uncovered coexpressed modules of genes 
where the sm21 mtDNA inverts the temporal pattern of gene expres-
sion in response to rapamycin (Figure 4A: X-axis shows timepoints, 
genotypes, and control vs. rapamycin diet; significance inferred with 
Bioconductor package ImpulseDE2 [Fischer et al. 2018]). The module 
of coexpressed genes shown in Figure 4A is enriched for oxidative 
phosphorylation, carbohydrate and nucleotide metabolism, and sev-
eral other metabolic processes (Santiago et al. 2021). While the use 
of 2 mtDNAs on one nuclear background precludes an epistatic G×G 
analysis, these analyses, using a distinct environmental exposure (diet 
+ rapamycin), support the hypothesis that mitochondrial genotype is 
a modifier of the nutrient signaling effects of the TOR pathway and 
further demonstrate a strong G×E effect for mitonuclear genotypes.

What Are the Mechanisms of Shared G×G and G×E 
for Transcription?
The impact of mitonuclear genotypes, diet, and altered TOR 
signaling on nuclear transcript levels suggests that mitochondrial 
genotype alters the cellular environment in a manner that feeds back 
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to transcriptional regulation. To explore this possibility, we use tran-
scription factor binding site enrichment analyses to identified tran-
scription factors that may be shared across the nuclear transcripts 
that are modified by mtDNA, and its interaction with nuclear and 
dietary factors. This was done for 2 independent experiments re-
ported in (Mossman et al. 2019) and (Santiago et al. 2021).

The sets of DE transcripts in the experiment reported in Figure 4 
(Santiago et al. 2021) were examined for shared transcription factor 
binding sites using the R-package RCisTarget (Aibar et  al. 2017). 
For the cluster of coexpressed genes in Figure 4, 2 of the most highly 
enriched transcription factors were Dref (DNA replication-related 
element factor), which has been associated with mTOR activity, and 
gt (giant) a transcription factor involved in early developmental pat-
terning in the Drosophila embryo. Together, Dref and gt were asso-
ciated with 185 of the 258 genes in the enriched KEGG pathways 
shared in this coexpressed module of genes (Figure 4B and C).

Using an independent set of 8 mitonuclear genotypes, we per-
formed RNAseq to identify nuclear transcripts that were DE in al-
ternative mtDNA, or joint mitonuclear, genotypes (Mossman et al. 
2019). These DE transcripts were mapped onto protein–protein 
interaction networks, and “neighborhood genes” nearby in the net-
works were also identified. Using a conservative set of transcripts 
that were shared between males and females, and 2 approaches 
for identifying gene neighborhoods in these networks, we used the 
oPOSSUM 3.0 package (Kwon et al. 2012) to identify enriched tran-
scription factor binding sites. This analysis identified giant as signifi-
cantly enriched among the DE transcripts (Figure 4B). It is notable 
that 2 different experiments, using different mitonuclear genotypes 
and experimental treatments, and different analysis pipelines and 
software packages both identified a common transcription factor as 
a possible mediator of the differential gene expression. This suggests 

that giant may be a key player in retrograde communication between 
mitochondria and nucleus.

Discussion

In this study, we have sought to use nuclear–mitochondrial inter-
actions as a general model for exploring the relationship between 
genotype by environment interactions (G×E) and gene by gene inter-
actions (G×G) or epistasis. Genetically, it is straightforward to pair 
different mtDNAs with different nuclear backgrounds, allowing 
direct tests of mitonuclear epistatic effects on phenotypes. Likewise, 
it is straightforward to expose these constructed mitonuclear geno-
types to different environmental factors to quantify G×E. The inter-
section of these approaches makes the analogy that mitochondria 
are environments for the nuclear genome, and may provide a focused 
approach to explore relationships between G×E and G×G. The re-
sults presented here include both new unpublished findings, and spe-
cific aspects of previously published studies from our lab. Together 
the results seek to address the working hypothesis that mitochondria 
are integrators of G×G interactions influencing the internal cellular 
environment, and G×E interactions from external physical factors 
influencing organismal performance.

Quantifying G×G×E Is Not Enough
Mossman et al. (2016) quantified the joint effects of mtDNA, nu-
clear genome, and diet on development time in D.  melanogaster. 
A full ANOVA model of the 72 genotypes (6 mtDNA × 12 nuclear) 
on 4 diets showed that diet had the greatest impact by far, with nu-
clear genotype having a moderate effect and mtDNA having a lesser 
effect. All interaction terms were highly significant, including the 
3-way mtDNA × Nuclear × Diet effect, which contributed a small 

Figure 4. MtDNA genotype alters the transcriptional response to refeeding in a rapamycin-dependent manner. (A) Modules of genes that show inverted time 
course of expression for the “away team” genotype sm21;OreR when exposed to rapamycin (compare Rapa time courses for OreR;OreR vs. sm21:OreR). The 
transcripts in this module are associated with oxidative phosphorylation, carbohydrate metabolism, and nucleotide metabolism as shown in the heat maps 
below the time-course plots. (B) Cartoon showing that 2 distinct mitonuclear expression experiments both point to the transcription factor giant as a shared 
regulator of gene expression. (C) Network diagram illustrating the association between the giant transcription factor (left, red node) and the Dref transcription 
factor (right, blue node) and the respective transcripts that are associated with these transcription factors. Purple nodes are transcripts where analyses infer 
transcriptional modification from both giant and Dref.
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proportion of the overall variance (see Mossman et al. 2016, Table 1; 
Rand and Mossman 2018, Figure 2). The interaction plots shown in 
Figure 2 of this article illustrate the nature of the G×G×E interactions. 
The siI mtDNA slows development in the DGRP-315 nuclear back-
ground, and the accelerating effects of higher Protein:Carbohydrate 
diets cannot remove this mtDNA effect. But in the DGRP-714 nu-
clear background, the siI mtDNA developmental delay seen in the 
Lab Food is eliminated by a High P:C diet. Thus, the mitonuclear epi-
static effect on development is altered by the diet environment. This 
can be quantified as a general pattern, implying that G×G and G×E 
have some functional connection, but the mechanisms underlying 
these effects cannot be inferred by further partitioning of the vari-
ance. Comparisons of the inferred phenotypic effect of amino acid 
substitutions in the various mtDNAs used identified mutations at 
position 313 in the ND2 protein and position 65 in the ND5 protein 
as impactful (Mossman et  al. 2016, Supplementary Figure S1). 
However, these 2 positions are fixed between the D. melanogaster 
and D. simulans mtDNAs, so they cannot be assigned as uniquely 
causal for the siI-specific G×G×E effect. Because the mtDNAs and 
nuclear genomes used in the experiment are assayed as whole haplo-
types, quantifying the statistical significance or effect size of G×G×E 
effects only provides a pattern. We need additional analyses to get 
closer to mechanism underlying these complex interactions.

Using Transcriptomes to Probe Mitonuclear G×G 
and G×E Effects
The use of transcriptional variation to quantify joint G×E and G×G 
effects is attractive for several reasons. First, it provides a large 
number of quantitative traits in one analysis: a typical RNAseq ex-
periment in Drosophila can identify >12 000 traits with considerable 
accuracy given enough replication (Huang et al. 2020). Second, the 
level of a transcript from a specific gene is a quantitative trait, influ-
enced by both external environmental factors that induce expression 
and internal molecular factors such as polymorphisms that influ-
ence initiation, spicing, and degradation of transcripts or aspects of 
chromatin availability (Gilad et al. 2008, Lopez-Maury et al. 2008). 
Third, annotated databases provide information about a gene’s func-
tion, facilitating mechanistic interpretation of quantitative variation. 
Finally, the coordinated expression of nuclear and mitochondrial 
genes interrogates aspects of central metabolism. These are likely to 
have general influence on most traits that contribute to organismal 
fitness in both a physiological and evolutionary sense.

We present new RNAseq data showing that transcripts exhibiting 
genotype-specific responses to changes in the protein:carbohydrate 
(P:C) ratio (dietary G×E transcripts) are shared with transcripts 
showing mtDNA-dependent responses to changes in nuclear gen-
etic background (mitonuclear epistatic [G×G] transcripts; Figures 3 
and 4). A previous study using an independent panel of mitonuclear 
genotypes and changes in oxygen environments (normal vs. 6% O2) 
also showed a statistically significant enrichment for transcripts with 
overlapping G×G and G×E effects (Rand et  al. 2018). That study 
used 2 different mtDNAs (OreR from D. melanogaster and siI from 
D. simulans), plus different nuclear backgrounds (OreR and Austria 
from D. melanogaster). The new diet-based experiment confirms the 
general patterns of G×G and G×E overlap with entirely different 
genotypes and environments. Two observations are notable about 
the results from these 2 experiments. First, the proportions of tran-
script in the overlap set are similar between experiments, roughly 
15–25%. Second, the heat maps shown in Figure 3 of this article 
and in the hypoxia experiment (Rand and Mossman 2018, Figure 
6) show some general similarities. In both cases, the mtDNAs have 

clear impact on nuclear gene expression on one nuclear background, 
but not in the other (a G×G effect), while across the treatment condi-
tions, the transcripts show genotype-specific sensitivity to the envir-
onmental variable (diet: this study or oxygen: previous study). This 
suggests some support for the general hypothesis that mitochondria 
are integrators of signals from both the internal genetic or molecular 
environment and changes in the external environment.

The assumption of these tests is that G×E and G×G transcripts 
would be independent, and the expected overlap between lists of 
genes from these interaction effects would be ~5%. G-tests of in-
dependence or chi-square tests reject this null, and do so if a 10% 
overlap is taken as the null expectation (see Supplementary Table 
S1). This indicates that the pattern of overlap is not likely a statistical 
artifact. The structure of the these separate 2-way G×E and G×G 
models (Models 1 and 2, see Figure 3) has the condition that the 
main effect of one model is part of the error term of the other model, 
making it unlikely that top-ranked genes in one model would also be 
top ranked in the other.

To examine functional aspects of the genes in the overlap set, 
we performed GO analyses using the GOrilla web application to 
compare the overlap set with the genes detected in our analyses. GO 
analyses identified recurring themes that differed between the stat-
istical models and alternative food types. In the Model 1 versus 2 
analyses (G×G vs. G×E), chitin and cuticle development were en-
riched as a “Function,” while carbohydrate or lipid metabolism were 
enriched to varying degrees in either the High P:C or Low P:C diets. 
In the Model 3 analyses (G×G vs. G×G×E), immune or defense re-
sponse and eggshell or vitelline membrane were common themes (see 
Supplementary Table S2). Despite these differences, links between 
chitin metabolism, extracellular matrix, immune defense, and me-
tabolism of lipids and carbohydrates emerge from these analyses.

Chitin is the primary structural component of the insect cuticle, 
formed from epithelial extracellular matrix as a composite of chitin 
and a variety of proteins (Moussian et al. 2015, Pesch et al. 2016). 
As the key component of the exoskeleton, the cuticle serves as the 
primary barrier between the organism and the environment, and as 
a dynamic structure, it is important in wound healing and homeo-
stasis (Galko and Krasnow 2004). Chitin metabolism has been im-
plicated in regulation of immune and inflammatory responses (Lee 
et al. 2011, Pesch et al. 2016), which may be the source of the GO 
annotation linked to immune and defense functions. Chitin is a 
polysaccharide composed of glucose monomers with one hydroxyl 
group on each sugar replaced with an acetyl amine group. The dif-
ferent annotation ranking for chitin-related functions between the 
High versus Low P:C diets may reflect different availability of amino 
acids and sugars for remodeling cuticle composition. The chitinases 
that regulate the breakdown of chitin exist as a multigene family 
in Drosophila, several of which function inside mitochondria (Von 
Ohlen et al. 2012). Because mitochondria serve as central organelles 
in processing dietary carbohydrates, including amino acid recycling 
and fatty acid oxidation, the different mitonuclear genotypes may 
well have different flux for these pathways. In turn, the different 
mitonuclear genotypes may modulate the activities of chitinases, 
either through intramitochondrial states or altered availability of 
substrates for chitin turnover.

Other recurring GO annotations were egg development, fatty 
acid biosynthesis, and carbohydrate metabolism. These terms were 
more common in the treatments with high sugar content in the diets 
(Low P:C). Excess sugar would certainly promote expression of 
carbohydrate genes, and excess sugar in the diet is known to stimu-
late fatty acid biosynthesis (Musselman et al. 2011). That different 
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mitonuclear genotypes would modify these processes seems likely, 
and that these processes would be further altered by shifts in diet 
seems straightforward. While the link between these functions and 
chitin metabolism is speculative, these observations point to testable 
hypotheses about how combined mitonuclear genotypes may be 
modulators of the external and internal environment for biochem-
ical pathways.

Are Coexpressed Modules of Genes the Basis for 
G×G and G×E Overlap?
Our statistical analyses of overlap between gene lists from G×G 
and G×E analyses assume independence of transcriptional control 
for each transcript. As modules of coexpressed genes are a common 
feature of gene expression profiles (Langfelder and Horvath 2008, 
Ayroles et al. 2009, van Dam et al. 2018), the assumption of inde-
pendence may not hold. We used WGCNA (Langfelder and Horvath 
2008) to identify modules of coexpressed genes in our data set 
(Figure 3; Supplementary Table S3) and then examined the correl-
ation between the lists of overlap genes and those genes represented 
in coexpressed modules. The overlap genes identified in Figure 3C 
are significantly enriched for genes in the “steel blue” (Figure 3B) 
and “light cyan” modules identified in WGCNA, which are enriched 
for carbohydrate metabolism and egg developmental functions, re-
spectively. This suggests that part of the shared expression aspects of 
mitonuclear G×G and G×E may lie in the nature of gene coexpression 
networks that regulate functions critical to mitochondrial pathways. 
G×E effects for transcription have been documented across most of 
the DGRP genotypes, and coexpressed modules of genes are largely 
preserved in the 2 thermal environments used in that study (Huang 
et al. 2020). In our mitonuclear transcription data, the magnitude 
and direction of change for each transcript is not the same in the 
G×G and the G×E analyses, but similar sets of genes respond as a 
WGCNA module. This could provide an explanation, if not a mech-
anism, for the statistical pattern of overlapping expression we have 
confirmed in these experiments.

What Are the Mitonuclear Communicators?
If mitonuclear G×G and G×E have some shared nuclear expres-
sion signal, what are the molecules that act as interorganellar 
“transcription factors?” The genetic designs of orthogonal pairing 
of mtDNAs with nuclear genomes implies that 2 criteria must be 
met: 1)  the process must be mediated in trans (mtDNA genes are 
not cis with any nuclear gene) and 2) the signals must include retro-
grade directionality (from mitochondria to nucleus). This does not 
preclude secondary cis-regulated expression networks, or simultan-
eous anterograde signals from nucleus to mitochondria, but these 
mitochondrion-specific conditions must be part of the mechanism. 
There is considerable interest in identifying “mitokines,” or mito-
chondrial signals that regulate cellular function (Merkwirth et  al. 
2016, Conte et  al. 2020). Likely candidates for signaling factors 
are small molecules such as NAD+/NADH ratios, ADP/ATP ratios 
or reactive oxygen species levels that may be linked to chromatin 
accessibility through histone deacetylases (Merkwirth et al. 2016). 
However, studies that have identified candidate mitokines are con-
ducted on models with one mtDNA genetic background, so our 
current experiments employing mtDNA “alleles” may be able to 
contribute novel progress in this area.

As illustrated in Figure 4, 2 independent studies from our lab, 
using different mitonuclear genotypes and experimental conditions 
both identified the transcription factor giant as a shared factor 

across genes that showed altered transcription levels by mtDNA 
genotype. While it is not surprising that a transcription factor would 
be found as a shared communicator, since both data sets involved 
RNAseq, this convergence on giant is striking given the very dif-
ferent genotypes, and treatment conditions used. Giant is known as 
a transcription factor influencing expression of gap genes in early 
developmental events (Eldon and Pirrotta 1991). However, it is ex-
pressed through adulthood in males and females (Graveley et  al. 
2011), but at lower levels. Giant does have genetic interactions with 
TOR, which has been associated with mitochondrial function, but 
the role of giant in mitochondrial functions specifically has not been 
explored. It remains possible that the shared G×G and G×E effects 
that point to giant reflect the latter’s role in transcriptional regu-
lation for many genes, increasing the chances or random overlap 
(Lawhorn et  al. 2018). Nevertheless, these associations have now 
provided candidate factors to examine the functional link between 
genes as environments for other genes.

In summary, the results reported here provide support for the 
general pattern that mitonuclear epistatic interactions intersect with 
genotype-specific responses to environmental cues (Rand et al. 2018). 
The new data presented seek to determine the generality of this pat-
tern and identify possible mechanisms underlying the pattern. The 
examination of GO categories enriched among the genes in the set of 
overlapping transcripts, and evidence that co-expressed modules of 
genes are part of this gene set, provides a possible functional explan-
ation for the statistical pattern of overlap between G×G and G×E 
genes. If a module of coexpressed genes shows altered expression in 
response to any form of stress, the overlap of G×G and G×E gene 
lists may be a functional necessity. Further evidence that a common 
transcription factor is part of this expression network motivates 
future experiments to help clarify these mechanisms. Details aside, 
mitochondrial metabolism is likely to be a nexus for integrating epi-
static and environmental factors of “stressors.” We characterize a 
G×E gene as a gene that is altered by the external environment, and 
a G×G gene as one that is altered by the action of another gene in the 
genome, or the internal environment. The boundary between the ex-
ternal and internal environments is blurred when one considers gene 
expression because all external signals must be processed through 
some internal pathways. Identifying these shared pathways is a key 
goal of integrating genotype with phenotype. Over 70  years ago, 
Fisher (1941) sought to characterize the components of genetic and 
environmental factors that contribute to effect sizes of gene substitu-
tions, and placed all factors other than additive genetic effects, into 
a broad “environmental” term. Dominance, epistatic interactions, 
the environment, representing both biotic and abiotic effects, are all 
modifiers of the expression of a gene according to this model. While 
epistasis and G×E are commonly taught as different phenomena, 
there are solid quantitative and functional reasons why they may 
be shared factors. Mitochondria really are an environment for the 
nucleus, which has probably been true for more than a billion years 
before Fisher published his model.
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