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Abstract: Interleukin 5 (IL-5) is a major cytokine responsible for eosinophil proliferation, migration
and degranulation. Eosinophils play a considerable role in the manifestation of type 2 asthma, and
therefore this makes IL-5 a unique and clinically important target for therapeutic intervention. Due
to the critical role that IL-5 plays in all areas of eosinophil activity, it has been identified and targeted
by three therapeutics, Mepolizumab, Benralizumab and Reslizumab. This review describes the
IL-5 pathway and presents the clinical trial history of the three IL-5 inhibitors, to provide insight
into the role of IL-5 in clinical asthma presentation. Additionally, this review aims to foster further
investigation into the IL-5 pathway by describing current novel therapeutic discovery strategies with
monoclonal antibodies.
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1. Introduction

Over the last two decades, research into the pathophysiological mechanisms of chronic
asthma has revealed the role of eosinophilic inflammation in the manifestation of symptoms.
These advancements in our understanding have created a new field of immunobiological
treatments targeting eosinophils for the relief of asthmatic symptoms. Interleukin 5 (IL-5) is
a key mediatory signalling cytokine in eosinophil proliferation, migration and action [1,2].
Due to the narrow cellular targets of IL-5 and the key role it plays in all areas of eosinophil
biology, IL-5 represents a unique area for therapeutic intervention to alleviate chronic
asthma [3,4].

Patients who present with severe asthma often also present high eosinophil counts,
expressing what is commonly termed the type 2 phenotype [5]. This phenotypic response
is critically mediated and propagated by eosinophils, which, in turn, are influenced by
IL-5 [6]. There have been two therapeutic monoclonal antibodies developed to target IL-5
to prevent eosinophilic inflammation, Mepolizumab and Reslizumab. The IL-5 receptor,
IL-5R« has also been therapeutically targeted by the monoclonal antibody Benralizumab.
Whilst the efficacy of these treatments is varied, the inhibition of the IL-5 pathway has
demonstrated to prevent signalling and induce cell lysis, rapidly clearing eosinophils and
effectively alleviating symptoms.

This review will provide a comprehensive overview of the IL-5 signalling pathway
and its relationship to asthma, whilst the second part of this review will focus on the
three monoclonal antibody therapies currently approved or undergoing trials, provid-
ing a critical analysis and comparison between the three. The final part of this review
will discuss immunotherapeutic discovery methods with recommendations for future
therapeutic development.
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2. IL-5 in Asthma

Eosinophils have been linked to allergy inflammation for more than 100 years, with
high eosinophil numbers in airway sputum being a hallmark biomarker of T2 phenotypic
asthma [7]. Eosinophils develop in the bone marrow, where they are originally CD34*
haematopoietic stem cells but terminally differentiated. The process of eosinophil differ-
entiation is regulated by the GATA-1 transcription factor, which is mediated by IL-3, IL-5
and Granulocyte Macrophage Colony-Stimulating-Factor (GM-CSF) signalling. Following
maturation, eosinophils migrate to the bloodstream, wherein they have a half-life of 25 h
under normal homeostatic conditions [8]. When type 2 inflammatory responses are initi-
ated, circulating eosinophils migrate from the bloodstream to the localised tissue, maturing
into tissue eosinophilia [9].

T helper 2 (Th2) lymphocytes are the main IL-5 producing cells and responsible for
driving eosinophilic inflammation [10]. Th2 cells release IL-5 in response to a complex
signalling pathway with dendritic cells in response to allergens [11]. In addition to dendritic
signalling, IL-4, another pro inflammatory cytokine, must also be present to allow for Th2
cell commitment via the activation of transcription factors STAT6 and GATA3. The IL-4
pathway is a key mechanism behind other allergic diseases, which is thoroughly discussed
in the following review [12].

Due to its key role in eosinophil development, release and recruitment to tissues, IL-5
has been identified as alongside IL-4 and IL-13 as key cytokines behind the pathophysiology
of T2 asthma. The close link between IL-5 and eosinophilic asthma has been clearly
demonstrated through mice studies and human clinical case studies [13,14]. In asthmatic
patients, the mechanisms of IL-5 take place both in the bone marrow and the airways,
directly driving eosinophil differentiation and recruitment. During type 2 inflammatory
reactions, eosinophils undergo a process called degranulation, where they release tissue
damaging cytotoxic proteins and over 30 cytokines [15]. Eosinophils can hold around 200
of these granules and can release them progressively over time or all at once, causing a
dramatic increase in inflammation. It is important to note that T2 asthma is not solely
driven by allergy but can also be an immune response that is driven by innate lymphoid
cells rather than IgE producing B-cells. However, eosinophils are still implicated in the
pathophysiology of asthma and both allergic and non-allergic eosinophilic asthma is driven
by IL-5.

3. IL-5 Pathway in Eosinophils

IL-5 is a 15 kDa homodimeric protein, which acts as a ligand for the IL-5 receptor
complex [16]. This receptor complex is a heterodimer made of the IL-5R« receptor chain and
the ¢ subunit, which is also shared by IL-3 and GM-CSF [17]. The alpha IL-5 receptor chain
exists in two isoforms, the transmembrane isoform and the soluble isoform. The soluble
isoform is used to remove unbound IL-5 from the extracellular space, reducing ongoing
activation, whereas the transmembrane isoform is required for the IL-5 signal transduction,
with the cytoplasmic tail containing necessary motifs for the activation of intracellular
signalling [18,19]. The regulation of the IL-5Rc is still largely unknown however, it is
known that IL-5Rx expression can be influenced by cell exposure to IL-3, IL-5, IL-9 and
GM-CSF [20]. Whilst playing a crucial role in the signalling of IL-5, IL-5R« is incapable
of activating intracellular signalling machinery on its own. It requires the common 3¢
receptor subunit.

The common (3¢ receptor chain is a crucial transmembrane protein required for IL-3,
IL-5 and GM-CSF signalling [1]. The B¢ receptor subunit carries the needed intracellular
machinery for the activation of cascading signalling pathways. Upon binding of the o
receptors to their specific ligand, the 3¢ receptor subunit is then recruited into the complex,
which then cooperates with the « receptor/ligand complex to activate specific signalling
pathways [21]. The universality of the common (3¢ receptor chain is functionally analogous
to the common yc receptor chain, which plays a similar role in the activation of the IL-2,
IL-4, IL-7, IL-9 and IL-15 cytokine/receptor complexes [22]. The overlapping functions of
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these common receptor subunit chains could explain the overlapping functions that these
cytokines can exert.

The formation of the IL-5/IL-5Ro/ 3c transmembrane complex then activates Janus
Kinase (JAK) 1 and 2, which in turn causes JAK2 to phosphorylate Signal Transducer and
Activator of Transcription (STAT) 1, 3 and 5, whilst JAK1 recruits signalling molecules
NF-kB and PI3K [23-25]. Phosphorylation of STAT1, 3 and 5 causes these molecules to
translocate to the nucleus, wherein they activate genes to stimulate eosinophil prolifer-
ation, such as pim-1 and cyclin D3. This is contrasted by the activation of JAK1 signal
transducers phosphoinositide 3 kinase (PI3K) and Nuclear factor-«B (NF-«B), which, rather
than initiating proliferation, stimulates the recruitment of eosinophils and the synthesis of
pro-inflammatory cytokines [26].

IL-5 plays a pivotal role in the proliferation, migration and release of cytokines from
eosinophils, therefore labelling it as a prime target for therapeutic intervention, specifically
for the treatment of T2-asthma patients.

4, TL-5 in Clinical Intervention

As at the time of writing of this review, three therapeutics exist that target the IL-5
pathway to neutralize its pathogenic effect. These are Mepolizumab, Benralizumab and
Reslizumab and all are capable of interfering with the formation of the IL-5/IL-5R« receptor
complex. Mepolizumab and Reslizumab intervene with the IL-5 pathway by selectively
binding to the IL-5 cytokine, inhibiting it from complexing with IL-5R« (Figure 1). In
contrast, Benralizumab targets the extracellular domain of the IL5Rx and upon binding,
alters the receptor to be rendered inactivated (Figure 1).
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Figure 1. Inhibitors of the IL-5 pathway. Created with BioRender.com (accessed on 15 August 2022).

5. Novel Antibody Discovery Methods

The therapeutics mentioned above are all monoclonal antibody based, a class of thera-
peutic molecules which has radically increased in recent decades. Monoclonal antibodies
have been developed as highly specific treatments and are quickly becoming the leading
biologic therapeutic. Alongside the increasing repertoire of therapeutic monoclonal an-
tibodies, sophisticated discovery technologies have also been developed, which will be
mentioned below.
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Hybridoma technologies (Figure 2) were first developed for antibody discovery, taking
advantage of the native development of antibodies through influencing B-cells [27]. The ex
vivo culturing of B-cells is highly demanding and difficult, hindering the identification of
target specific antibodies [28,29]. Immortalization techniques for B-cells have subsequently
been developed to address this issue, the first developed being hybridization. This is
achieved through the fusion of primary B-cells from an antigen immunized organism with
an immortal myeloma tumour cell line [30,31]. Despite being discovered almost 40 years
prior to writing of this review, this technology is still common use for the discovery of
novel monoclonal antibodies.
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Figure 2. Monoclonal Antibody production via Hybridoma Technology. Reprinted from “Monoclonal
Antibodies Production”, by BioRender, retrieved from https:/ /app.biorender.com/biorender-templates/
t-5f1095bb568b8300b1f30bc1-monoclonal-antibodies-production (accessed on 15 August 2022). Copy-
right 2022 by BioRender.

Surface display platforms are a more sophisticated class of discovery methods, which
involve the generation of a library of antibodies. The strength of these surface display
platforms is governed by four steps, which imitate the in vivo immune response: (i) the
creation of genotypic diversity in the variable regions of the antibody, (ii) the link of
genotype to the phenotype of the antibody allowing for sequencing, (iii) a selective platform
which favours the binding of antibodies to target antigens, and (iv) the ability to amplify and
expand the selected clones and mutants [32]. The first of these surface display technologies
date back nearly 30 years, to the creation of bacteriophage display and panning. This
technique was developed by George P. Smith, who discovered that bacteriophage proteins
located on the outer coat could be modified to express recombinant peptides with the
consequent genotype enclosed within the phage [33]. Phage display utilising the M13
bacteriophage has been used extensively. The phage display system is unique as the
genotypic sequence for the surface antibody is encoded within the phage DNA, allowing
for sequencing following amplification [34]. This technique was quickly adapted toward
antibody screening and has become widely used since.

Antibodies are natively used in eukaryotic immune responses therefore a eukaryotic
expression system for antibody discovery offers specific advantages over other systems.
Another dominant surface display system that makes use of a eukaryotic display system
is yeast display where a budding yeast, Saccharomyces cerevisiae, is used in screening for
antibodies [35]. Akin to the concepts of phage display, yeast display sees antibody libraries
being bound to yest cells via fusion with the N terminus of the Aga2p subunit [36]. In vitro
surface display technology holds a specific advantage over ex vivo technologies, that is the
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incorporation of protein expression tags allowing for the selection of correctly assembled
antibodies [37]. Another advantage specific to cell-based display technologies is the ability
to use flow cytometry to analyse each cell independently. This allows for real time analysis
of the display level of antibodies under controlled conditions and the quick sorting of cell
populations based on their displayed molecules through high-throughput fluorescence
activated cell sorting [38].An alternative in vitro display technology is ribosome display
(Figure 3). This method holds the highest diversity potential (10'>~10'%) and holds some
unique advantages over other cell display methods. Ribosome display utilises peptide
sequences that lack a STOP codon, thereby leaving the polypeptide attached to the ribosome
structure forming an antibody-ribosome complex. These complexes can then be panned
against targets, and only requires PCR for amplification, circumventing the need for cellular
transformation. Removing the need for cell culture to amplify panning product makes
ribosome display a cheaper and more efficient procedure [39].
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Figure 3. Ribosome display technology. Created with BioRender.com (accessed on 15 August 2022).

6. Mepolizumab

Mepolizumab (R03DX09) is a humanized IgG1 type antibody (Figure 4) targeted
towards IL-5 and was the first anti-IL-5 treatment approved for patients with severe
eosinophilic asthma [40]. Being targeted to the IL-5 cytokine, Mepolizumab binds to IL-5,
preventing its interaction with the IL-5 alpha receptor chain, effectively inhibiting the path-
way [41]. Due to the key role IL-5 plays in stimulating eosinophil proliferation, migration
and synthesis of pro-inflammatory molecules, inhibiting the IL-5 pathway cripples their
function, leading to rapid clearance and lowering population counts [42,43]. Following its
approval in 2015 for the treatment of eosinophilic asthma [40], Mepolizumab has also been
approved as a treatment for eosinophilic granulomatosis with polyangiitis and for hypere-
osinophilic syndrome [44,45]. Despite its recent success, the development of Mepolizumab
has been turbulent. Whilst Mepolizumab effectively reduce asthma biomarkers, trials
conducted in 2000 and 2007 were considered unsuccessful as to the lack of clinical effi-
cacy [46,47]. In this point of development for Mepolizumab, the lack of clinical efficacy was
deemed a result of the patient groups, as patients had been selected for the trial based on
clinical and physiological characteristics, as opposed to eosinophil counts.
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Following these revelatory studies, a larger scale clinical trial was conducted to identify
the target population that would benefit from Mepolizumab. The DREAM (Dose Ranging
Efficacy And safety with Mepolizumab; NCT01000506) trial was conducted in 2012. The
DREAM trial demonstrated Mepolizumab was effective in patients presenting with severe
asthma, high eosinophil inflammation and a history of exacerbations. Importantly, DREAM
also presented a 54% reduction in exacerbation frequency granting higher quality of life.
Following DREAM, a phase III clinical trial termed MENSA (MEpolizumab as adjunctive
therapy iN patients with Severe Asthma; NCT01691521) displayed direct relationship
between the reduction in eosinophil counts and exacerbation rate. The phase IIl MENSA
trial also demonstrated a 53% reduction in exacerbation rates, increasing patient quality
of life. This direct relationship was further demonstrated in the MUSCA (Mepolizumab
adjUnctive therapy in subjects with Severe eosinophiliC Asthma; NCT02281318) and the
SIRIUS (Sterold Reduction with mepolizUmab Study; NCT01691508). The SIRIUS trial
also demonstrated a reduced corticosteroid dosage in patients resulted in no increase in
exacerbations when combined with mepolizumab.

The final study conducted prior to the approval of Mepolizumab as a combined
treatment was REALITI-A (REAL world effectiveness of mepolizumab in paTlent care—
Asthma; NCT03562195). The REALITI-A study possessed a large population of 368 patients.
This study displayed Mepolizumab significantly decreased annual asthma exacerbations
and reduced patient reliance on corticosteroids. Additionally, no new safety concerns
were presented.

Mepolizumab, whose commercial name is “Nucala”, is delivered by subcutaneous injec-
tion with the recommended dose of 100 mg every 4 weeks [48]. The dosage of Mepolizumab
is high in comparison to the following therapies, however being delivered subcutaneously it
may be more appealing to certain patients than the following therapeutics.
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Figure 4. Clinical trial history of Mepolizumab. Created with BioRender.com (accessed on
15 August 2022) [49-65].

7. Reslizumab

Reslizumab (R03DX08) is a humanized monoclonal antibody targeting IL-5 directly
(Figure 5). Reslizumab has been indicated as an add-on treatment for asthma, to be used in
conjunction to corticosteroids. Reslizumab has a remarkably high binding affinity for IL-5
where it prevents binding to the IL-5Ra by occupying the binding site. By binding to IL-5,
theoretically this should prevent eosinophil proliferation and activity, however this is yet
to be conclusively determined.
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To date, there have been six completed clinical trials involving Reslizumab for the
treatment of asthma, with each having their own findings. The earliest trials of Reslizumab
found it was highly effective at clearing blood eosinophils for up to 16 weeks, however
there was no significant effect on asthma symptoms [46]. Following this initial phase I trial,
further studies into Reslizumab was conducted in 2011. This phase II trial was a double-
blind placebo study with 106 patients randomised to Reslizumab at 3 mg/kg or a placebo.
This trial ran over 15 weeks and found Reslizumab had a statistically significant therapeutic
effect in patients presenting with elevated eosinophil counts [66]. In this study, Reslizumab
significantly improved lung function, however had no significant effect on asthma control.
Following these results, two phase III trials were performed by the same researchers in
2015, where Reslizumab was investigated in another double blind, placebo controlled,
randomised study design, however the population in this study was vastly increased.
Across both studies, 477 patients received Reslizumab in combination to their current
asthma treatments. This study found significant improvements in asthma exacerbation rate
and lung function when used with patients prescribed with oral corticosteroids and blood
eosinophil counts higher than 400 cells/uL [67]. Following these promising results from
the two previous trials, two more phase 3 trials were conducted in 2016 termed the ANDHI
and OSTRO trials. The most recent two trials for Reslizumab looked into its efficacy for
asthma and the reduction in chronic rhinosinusitis. The ANDHI trial investigated the
effect of Reslizumab in 656 patients who suffered from uncontrolled eosinophilic asthma
focusing on exacerbation rate, lung function and associated nasal polyposis symptoms.
This trial found that patients receiving 30 mg of Reslizumab every 8 weeks reduced their
risk of asthmatic exacerbation by 49%, with significant improvements in lung function
recorded [68].

Reslizumab, also known as Cinqair/Cinqaero is delivered to patients intravenously
over 20-50, at a dosage of 0.3 mg for every kg of body weight. It is recommended the for con-
tinued effect, Reslizumab must be administered every 4 weeks [69]. Whilst possessing the
lowest required dose, Reslizumab is required to be administered over 20-30 min, whereas
Mepolizumab and the following therapeutic, Benralizumab, have no such requirement.
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Figure 5. Timeline Summary of Reslizumab Clinical Trials. Created with BioRender.com (accessed on
15 August 2022) [66,67,70-75].
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8. Benralizumab

Benralizumab is an IgG1 monoclonal antibody, which targets the IL-5Rx protein
(Figure 6). This monoclonal antibody is approved for use in the US, Europe, Japan, Canada
and Australia as an add-on therapy for the treatment of eosinophilic asthma. Benralizumab
has a rich history of clinical trials spanning from 2007 to the current day. The initial
phase 1 trials for Benralizumab were run between 2007 and 2008 and 2008 and 2012
for smaller populations, however the results for these trials are not publicly available.
There have been four completed phase 2 trials to date, three of which have available
results. The earliest phase 2 trial ran from 2008 to 2009 and the safety of Benralizumab in
25 individuals, with treatment emerging serious adverse effects recorded. Following the
aforementioned safety trial, two more phase 2 trials were conducted with much higher
populations and looking into the efficacy of Benralizumab for uncontrolled asthma and
chronic obstructive pulmonary disease. The first of these two studies, titled “Study to
Evaluate the Efficacy and Safety of MEDI-563 in Adults with Uncontrolled Asthma”,
possessed a population of 609 patients randomized to placebo or Benralizumab. This study
found no safety issues with Benralizumab, with doses of 20 mg and 200 mg providing
a reduction in asthma exacerbations within individuals who possess blood eosinophil
baseline counts of 300 cells/puL or higher [76]. The second of these studies, titled “A Study
to Evaluate the Effectiveness of MEDI-563 in Subjects with Chronic Obstructive Pulmonary
Disease (COPD)” had a smaller population of 101 patients with 3% or higher baseline
blood eosinophil counts. This study found no significant effect of Benralizumab on COPD
exacerbations; however, it warranted further study into patients displaying the eosinophilic
phenotype [77].

As at the time of writing this review article, there have been 16 phase 3 clinical
trials involving Benralizumab, investigating its safety in larger populations but also its
interactions and efficacy with other treatments. For this review, we will focus on the three
most influential trials of Benralizumab, which has led to its approval, namely the CALIMA,
SIROCCO and ZONDA trials which solidified its efficacy as an add-on therapy.

The CALIMA trial was conducted over 56 weeks between 2013 and 2016. Of the
2508 patients enrolled, 866 were dosed with 30 mg of Benralizumab either every 4 weeks or
every 8 weeks, with the remaining patients being administered a placebo. Within this trial,
Benralizumab significantly reduced the annual rate of asthma exacerbations up to 36%,
supporting the results from the SIROCCO trial, which occurred beside CALIMA [78]. In
addition to the reduction in annual asthma exacerbations, Benralizumab demonstrated im-
proved FEV1 within patients throughout the course of treatment, however no improvement
in FEV1 was observed in patients whose base eosinophil count was below 300 cells/ L.

The SIROCCO trial was conducted between 2013 and 2016, involving 2681 patients
across 17 countries. Unlike previous trials, which investigated Benralizumab only, this
study looked into its efficacy in patients whilst taking high dose of inhaled corticosteroids
and long-acting 3, agonists, who still presented with uncontrolled asthma [79]. During this
study, Benralizumab significantly reduced patient’s annual exacerbation rates by a total of
51% after 48 weeks of continuous treatment. In addition, Benralizumab significantly im-
proved lung function, increasing FEV1 when compared with the placebo treatment. Whilst
these results are promising, it is important to note that these significant improvements were
observed within patients who had blood eosinophil counts equal to or above 300 cells/pL.
In addition, the greatest improvement in symptoms was observed within patients who
underwent treatment every 8 weeks, as opposed to every 4 weeks.

Benralizmab, whose commercial name is “Fasenra” is administered intravenously by
syringe at a dosage of 30 mg for every 4 weeks, then every 8 weeks after three doses [80]. No
adverse effects have been reported for doses up to 200 mg. Being an intravenous injection,
Benralizumab may appear more appealing to patients over the 20-50 min administration of
Reslizumab however the 30 mg dosage is untied to body weight, thereby creating a higher
dose for some individuals.
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Figure 6. Timeline Summary of Benralizumab Clinical Trials.Created with BioRender.com (accessed
on 15 August 2022) [76,81-86].

9. Conclusions

Over the last two decades, there have been great strides in the development of biologics
for asthma. The IL-5 pathway represents a unique opportunity for therapeutic intervention,
allowing for the rapid clearance of eosinophils. The clearance of eosinophils from the
airways prevents the release of inflammatory mediators and granule specific proteins,
namely major basic protein (MBP), cytokines and lipid based inflammatory mediators.
These molecules cause airway remodelling and airway hyperresponsiveness, which are
hallmark symptoms of asthma. By preventing the release of these molecules through the
clearance of eosinophils, asthma symptoms can be alleviated. Three therapeutics have
been developed so far, targeting this pathway for the treatment of asthma, with their trials
providing valuable insight into the mechanics behind eosinophilic asthma. These trials have
proved the therapeutic efficacy of anti-IL-5 and anti-IL-5Rx antibodies by reducing annual
asthma exacerbations. It is important to note however, that these anti-IL-5 treatments are
not a sole solution to asthma, rather they have been approved as an add-on therapy for
patients already taking high dosage corticosteroids. Additionally, there are other cytokines
which could be targeted for asthma, namely IL-4 and IL-13 and whilst there has been
some study in this area, only one IL-4 inhibitor has been approved for asthma treatment
(Dupilumab). Therefore, there remains scope for further research targeting the IL-5 pathway
for asthma therapeutics.
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