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The insular cortex has been linked to a multitude of functions. In contrast, the
nearby claustrum is a densely connected subcortical region with unclear function.
To view the insula-claustrum region from the molecular perspective we analyzed
the transcriptomic profile of these areas in six adult and four fetal human brains.
We identified marker genes with specific expression and performed transcriptome-
wide tests for enrichment of biological processes, molecular functions, and cellular
components. In addition, specific insular and claustral expression of genes pertaining
to diseases, addiction, and depression was tested. At the anatomical level, we used
brain-wide analyses to determine the specificity of our results and to determine the
transcriptomic similarity of the insula-claustrum region. We found UCMA to be the most
significantly enriched gene in the insular cortex and confirmed specific expression of
NR4A2, NTNG2, and LXN in the claustrum. Furthermore, the insula was found to have
enriched expression of genes associated with mood disorders, learning, cardiac muscle
contraction, oxygen transport, glutamate and dopamine signaling. Specific expression
in the claustrum was enriched for genes pertaining to human immunodeficiency virus
(HIV), severe intellectual disability, epileptic encephalopathy, intracellular transport, spine
development, and macroautophagy. We tested for enrichment of genes related to
addiction and depression, but they were generally not highly specific to the insula-
claustrum region. Exceptions include high insular expression of genes linked to cocaine
abuse and genes associated with ever smoking in the claustrum. Brain-wide, we find
that markers of the adult claustrum are most specifically expressed in the fetal and
adult insula. Altogether, our results provide a novel molecular perspective on the unique
properties of the insula and claustrum.
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INTRODUCTION

The insular cortex (IC), part of the cerebral cortex, is commonly
divided into anterior and posterior parts which differ in
functional connectivity, as well as in cytoarchitecture (Mesulam
and Mufson, 1982; Deen et al., 2011; Kelly et al., 2012).
It is also subdivided into subregions known as granular,
dysgranular, and agranular (Paxinos and Watson, 1986). The
former terminology is commonly used when referring to the
human IC, while the latter is used in rodents. The insula as
a whole has major bidirectional connections to several regions
such as the anterior cingulate cortex, orbitofrontal cortex,
supplementary motor areas, amygdala, etc. (Augustine, 1996;
Flynn, 1999). Along with these connections, the IC has a
multitude of functions, most notably its involvement in conscious
urges, homeostasis, interoception, decision making, anxiety and
cognition (Craig, 2002; Paulus and Stein, 2006; Chang et al., 2013;
Droutman et al., 2015a).

The claustrum, whose name means “hidden away,” is a thin
bilateral brain region made of gray matter that is embedded in
the white matter beneath the IC and above the putamen (Crick
and Koch, 2005). By volume, it is the most heavily connected
structure in the brain (Torgerson et al., 2015). Mouse tract tracing
studies have found that it is connected to almost every region
in the cortex (Wang et al., 2017). However, due to its small size
and location, its functional roles are not entirely understood. It
has been postulated that the claustrum is an integral area for
bringing together information within and across sensory and
motor modalities to form one joint experience in consciousness
(Crick and Koch, 2005).

The establishment of atlases that assay genome-wide gene
expression in the human brain by the Allen Institute for
Brain Science and their collaborators allows for in-depth
analysis of over 200 regions. These comprehensive atlases
include the long and short insular gyrus (i.e., posterior and
anterior IC, respectively) and the claustrum (Hawrylycz et al.,
2012; Miller et al., 2014a). To date, gene expression studies
in these regions have been limited in the number of genes
investigated and to rodent brains (D’Souza et al., 2008; Mathur
et al., 2009; Dillingham et al., 2017; Wang et al., 2017). An
exception is a four-gene study that examined the monkey
claustrum to find neocortical similarities (Watakabe et al., 2014).
A detailed analysis of the transcriptomic profile of the insula
and claustrum in the human brain would be of value to
further solidify what is known of these areas, as well as to
provide new insights.

In this study, using human transcriptomic data, we identified
genes with specific expression in the adult and fetal IC and
claustrum. In addition, we also tested if genes associated with
particular functions and diseases are uniquely expressed in these
neighboring regions. Given past associations of these regions,
we undertook addiction and depression focused analyses (Naqvi
and Bechara, 2010; Sliz and Hayley, 2012; Bernstein et al.,
2016; Gogolla, 2017). Due to the neurodevelopmental links of
these adjacent regions, we compared their transcriptomic profiles
to determine overlapping patterns (Puelles, 2014; Watson and
Puelles, 2017; Binks et al., 2019).

MATERIALS AND METHODS

Broady, we extended methods that have been previously used for
the characterization of the habenula (Le Foll and French, 2018).

Adult Human Brain Gene Expression
Data
Transcriptomic data that comprehensively assays the adult
human brain was obtained from the Allen Human Brain Atlas
(Hawrylycz et al., 2012). All six brains assayed in the Atlas
contained insular gyri and claustrum samples (five males one
female; aged 24 to 57 years old). As documented by the Allen
Institute, postmortem blood was tested for the presence of
therapeutic drugs and drugs with abuse potential. Caffeine (all 6
donors), theobromine (3 donors), atropine (3 donors), lidocaine
(1 donor), monoethylglycinexylidide (1 donor), and ibuprofen
(1 donor) were detected at levels that are not considered
toxicologically significant. The Allen Institute also assayed RNA
integrity (RIN), which, across the six brains, ranged from 6.3 to
7.5 in the frontal poles, 5.8–7.1 occipital poles, 6.9–8.6 in the
cerebellum, and 5.6–7.3 in the brainstem. In total, 3,702 spatially
resolved gene expression profiles were used, providing expression
information for 232 unique named brain regions. The 58,692
microarray probes were filtered to the 48,170 that mapped to
the 20,778 gene symbols in the Allen annotations. Details of the
procedures used by the Allen Institute researchers to annotate
and normalize the data are available at the Allen Human Brain
Atlas website1.

Prenatal Human Gene Expression Data
We additionally used the transcriptomic atlas for the normal
mid-gestational human brain that was created by the BrainSpan
consortium (Miller et al., 2014a). As noted by Brainspan
Consortium, RIN values averaged 6.3. The dorsal claustrum,
dysgranular and granular IC were acquired in all four of the
prenatal specimens used for this atlas (15–21 postconception
weeks, 3 females and one male). The ventral claustrum was
assayed in three of the specimens (1 male and 2 females).
The specimens passed several exclusion criteria and no
neuropathological defects were found by the consortium. Data
from the four specimens contained 1,203 spatially resolved gene
expression samples, providing transcriptomic data for 516 unique
named brain regions. The same custom microarrays that were
used for the adult atlas were used to profile expression. Details
of the procedures used by the Allen Institute researchers are
available at the BrainSpan website2.

Region-Specific Expression Analysis
Mirroring our previous work that targeted the habenula (Le
Foll and French, 2018), we used the limma software package
to detect probes that are specifically expressed in the claustrum
and insula (Ritchie et al., 2015). In the adult data, those regions
are: claustrum, short insular gyri, and long insular gyri. In the
fetal brain, we used data from the agranular IC (area Iag),

1http://help.brain-map.org/display/humanbrain/Documentation
2http://help.brain-map.org/display/devhumanbrain/Documentation
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dysgranular IC, granular IC, dorsal claustrum, and ventral
claustrum. Data from the dorsal and ventral claustrum were
combined to form a single claustrum grouping for comparison
with the adult data. Two samples from the agranular IC (area
Iag) were grouped with the dysgranular IC to simplify analysis.
Unlike the adult dataset, the fetal data has fine dissections of
cortical zones and layers. We grouped these finer samples into
their enclosing cortical regions. This grouping reduces the 516
unique named brain regions in the fetal data to 283. For each
microarray probe, linear models were fit with coefficients for
donor and region of interest. In other words, expression of a
given probe across the expression measurements (adult:3,702,
fetal:1,203) was modeled with variables indicating the donor and
if the sampled region was the specific region of interest or not.
Separate analyses were undertaken for each region of interest
instead of fitting a linear model with coefficients for every brain
region. The empirical Bayes moderation method implemented
in limma was used to calculate moderated t statistics and
corresponding p-values (Ritchie et al., 2015). We used the
Benjamini-Hochberg false discovery rate (FDR) procedure to
correct for the many tested probes (Benjamini and Hochberg,
1995). To summarize the probe level statistics, we used the probe
to gene mappings provided by the Allen Institute for the fetal
data (Hawrylycz et al., 2012; Miller et al., 2014b). For a given
gene, we summarized the region-specific expression results by
choosing the probe with the lowest p-value to represent the gene.
The threshold for significance was set to pFDR < 0.05 at the
probe level and then applied to the minimum p-values at the
gene level.

Gene Set Enrichment Analysis
For a given region of interest, p-values were combined with the
direction of effect for the 20,778 genes (signed p-values). The
resulting ranking starts with the gene with the most significant
specific expression to the gene with the most significant depleted
expression in the region. This ranking allowed us to test if
the genes that were specifically expressed in the claustrum or
insula are enriched for a given gene set using the area under the
receiver operator curve (AUROC) statistic. The AUROC for a set
of genes is equivalent to the probability that a gene associated
with that set will be found first in the genome-wide ranking
compared to all other genes. In this context, AUROC > 0.5 for
a gene set means that these genes are more likely to have higher
expression in a region of interest. In contrast, an AUROC < 0.5
marks a bias toward lower expression. Given our focus on
up-regulation, we only tested for AUROC values above 0.5.
AUROC values were calculated with the tmod analysis package
in R (Weiner and Domaszewska, 2016). The Mann–Whitney U
test was used to determine statistical significance (one-sided).
We again used the FDR procedure to adjust for the many
tested gene sets.

We also use specificity tests to determine if the enriched gene
sets are not representing broad differences that are up-regulated
in many other brain regions. For example, insula specific gene
sets may simply represent neocortex specific expression. To
assess specificity, we ran the region-specific expression and gene
set enrichment procedures for 283 fetal and 232 named brain

regions in the expression datasets. For each gene set, we counted
the number of regions with an AUROC value higher than the
region of interest. Gene sets that have the highest specificity were
considered to characterize the region of interest uniquely.

Gene Ontology Gene Sets
The Gene Ontology (GO) consortium annotates genes to
biological processes, molecular functions, and cellular
locations to formally model biological systems using
controlled vocabularies (Ashburner et al., 2000). The GO
database was accessed through the GO.db and org.Hs.eg.db
packages in R (Carlson, 2017a,b). Annotations were dated
October 10, 2018. We limited our tests to GO groups
containing between 10 and 200 genes, after filtering for
genes contained in the Allen microarray data (7,089 GO groups
annotating 15,017 genes).

Estimation of Cell-Type Proportions
The markerGeneProfile R package was used to estimate cell
type proportions from the transcriptomic data (Ogan et al.,
2017). This method uses the first principal component obtained
from a set of cell-type specific markers to estimate the relative
abundance of a cell type. For cell-type markers, we used
genes from a study of healthy human temporal cortex tissue
(Darmanis et al., 2015). This study provided the top 21
most enriched genes for astrocytes, neurons, oligodendrocytes,
oligodendrocyte precursors, microglia and endothelial cell-
types [Supplementary Table S3; (Darmanis et al., 2015)].
The default parameters for the mgpEstimate function were
used. Proportions were estimated separately for each donor
brain. Within a brain, proportions were mean averaged across
multiple samples for each brain region. Regional proportions
for each cell-type were then scaled and then mean averaged
across the brains. Ranks were then computed across all
regions for each cell-type to provide relative rankings of
estimated proportions.

Disease-Associated Gene Sets
Human disease-associated gene sets were obtained from the
DisGeNET database, which integrates disease-gene links from
several sources (Piñero et al., 2017). The curated gene-disease
association file was downloaded in May 2018. Similar to the GO
sets, we used disease-associated gene sets with 10 to 200 genes
(1,848 disease-associated gene sets covering 5,865 unique genes).
The gene set named “severe mental retardation (I.Q. 20–34)” was
renamed to “severe intellectual disability (I.Q. 20–34)” to reflect
newer terminology.

To complement the heterogeneous data that is used to
build the DisGeNET, we used genes from large genetic studies
focused on addiction or depression. For lifetime cannabis use
associations, we used the seven genes harboring the genome-
wide significant loci from Table 1 in Pasman et al. (2018). Nine
genes near the 14 genome-wide loci associated with alcohol
consumption were obtained from Clarke et al. (2017). Genes
associated with several smoking-related measures were identified
in Minicã et al. (2017). Four genes linked to substance use
disorder and five associated with opioid use disorder were
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obtained from a review of genetic studies by Jensen (2016). For
depression, we used the 70 genes that neighbor the 44 significant
loci identified in the largest genetic study of major depression to
date [Table 2 in Wray et al. (2018)]. We also used a more recent
list of 269 genes from a large study of depression [Supplementary
Table S9 in Howard et al. (2019)].

Transcriptomic Similarities Between the
Claustral and Insular Regions
Complete expression profiles (58,692 probes) were clustered
into two dimensional space with the Uniform Manifold
Approximation and Projection (UMAP) method (McInnes
et al., 2018). This general-purpose dimensionality reduction
method is built from principles in Riemannian geometry and
algebraic topology. The R implementation was used with default
configuration parameters.

We computed the transcriptional similarity between the adult
claustrum and all other regions using the AUROC method. To
provide a finer resolution, we did not collapse the developing
cortical zones. Instead of all genome-wide significant genes, only
the top 20 genes for the claustrum were used to provide a
specific signal.

RESULTS

Insular Cortex
Long Insular Gyri and Granular Insular Cortex
We first investigated up-regulated expression in the long insular
gyri in adult Atlas. In total, there were 48,165 tested microarray
probes, which mapped to 20,778 genes. Of these genes, 1,273
were significantly up-regulated in the 22 long insular gyri samples
in comparison to the rest of the brain (pFDR < 0.05). The
top 20 genes are presented in Table 1, and the full probe
level results are in Supplementary Table S1. We also tested
the human fetal brain and found 733 significantly enriched
genes in the 19 granular IC samples. At this mid-gestational
stage, corticogenesis is well underway as nine zones can be
delineated in the developing neocortex (Bystron et al., 2008;
Miller et al., 2014a). Overlap was observed between the adult
and fetal results with 160 intersecting genes (hypergeometric test,
p < 10−46). However, no overlap was found between the top
20 lists, but we note that the majority of genes are driven by
more than one probe.

Short Insular Gyri and Dysgranular Insular Cortex
With regards to the 22 adult short insular gyri samples, 2,697
genes were significantly up-regulated (pFDR < 0.05). The top 20
genes are shown in Table 2 (probe level results in Supplementary
Table S2). In the fetal brain data, there were 881 enriched genes
in the 22 dysgranular IC samples. Between the two, there were
407 intersecting genes (hypergeometric test, p < 10−134) and two
genes overlap within the top 20 lists (TFAP2D and SLN).

Genes Upregulated Across the Insular Cortex
In the adult data, many genes had high expression in both the
long and short insular gyri. Of the significantly up-regulated

TABLE 1 | Top 20 enriched genes in the adult long insular gyri.

Gene Name Significant p-value
Symbol probes

UCMA Upper zone of growth plate and
cartilage matrix associated

2 4.63E-45

NAA11 N(alpha)-acetyltransferase 11, NatA
catalytic subunit

1 9.89E-17

MMP3 Matrix metallopeptidase 3 2 1.2E-16

MUC19 Mucin 19, oligomeric 1 3.27E-09

NTNG2 Netrin G2 3 3.44E-09

DCSTAMP Dendrocyte expressed seven
transmembrane protein

1 4.99E-09

LAIR2 Leukocyte associated immunoglobulin
like receptor 2

2 5.28E-09

PGA3 Pepsinogen 3, group I (pepsinogen A) 2 1.44E-08

SMIM32 Small integral membrane protein 32 2 1.68E-08

GYPE Glycophorin E (MNS blood group) 1 3.42E-08

LOC100129291 Chromosome X open reading frame 49
pseudogene

2 4.32E-08

DUSP13 Dual specificity phosphatase 13 2 6.67E-08

TMEM233 Transmembrane protein 233 2 7.01E-08

OLFML2B Olfactomedin like 2B 1 9.83E-08

NPPA Natriuretic peptide A 2 9.83E-08

LYZL4 Lysozyme like 4 2 9.86E-08

FAM217A Family with sequence similarity 217
member A

1 1.55E-07

HABP2 Hyaluronan binding protein 2 1 1.8E-07

TEPP Testis, prostate and placenta expressed 2 2.19E-07

ANXA8 Annexin A8 1 2.31E-07

genes, 766 intersected between the two subregions of the IC
(hypergeometric test, p < 10−50). Within the top 20 gene lists,
8 genes were in common (UCMA, NTNG2, DCSTAMP, LAIR2,
PGA3, GYPE, DUSP13, and LYZL4; p < 10−19). UCMA was the
most significantly enriched gene in both regions (Figure 1). In the
fetal data, there were 213 genes that are significantly up-regulated
in both the granular and dysgranular IC (hypergeometric test,
p < 10−50). Of these, 11 genes were found in both of the top 20
lists (MIR133A1, KIF16B, TMEM244, NR4A2, C1orf115, BHMT,
TIPARP, PTPRK, RSPO2, RASGEF1C, and GRP; p < 10−29).

Gene Ontology Enrichment
In the adult data, after correcting for multiple comparisons, 252
GO groups were found to be significantly enriched in the long
insular gyri and 216 in the short insular gyri (full results in
Supplementary Tables S3, S4). With regards to the fetal data, 293
groups were significantly enriched in the dysgranular IC and 90
groups in the granular IC.

We further filtered the results to only include groups that have
a higher AUROC statistic in one or no other regions of the 232
tested brain-wide (specificity rank of ≤1). With this criterion, 26
GO groups remained in the adult long insular gyri, 7 in the adult
short insular gyri, 88 in the fetal dysgranular IC and 4 in the fetal
granular IC. Of the 26 groups in the adult long insular gyri that
survived the cutoff, 15 are also significantly up-regulated in the
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TABLE 2 | Top 20 enriched genes in the adult short insular gyri.

Gene Name Significant p-value
Symbol probes

UCMA Upper zone of growth plate and
cartilage matrix associated

2 3.12E-33

KRT1 Keratin 1 1 3.14E-17

LAIR2 Leukocyte associated immunoglobulin
like receptor 2

2 8.18E-16

GSG1 Germ cell associated 1 1 2.1E-14

LYZL4 Lysozyme like 4 2 3.27E-14

MS4A8 Membrane spanning 4-domains A8 1 2.59E-13

DUSP13 Dual specificity phosphatase 13 2 3.19E-13

TFAP2D Transcription factor AP-2 delta 2 4.56E-13

GYPE Glycophorin E (MNS blood group) 1 3.22E-12

PGA3 Pepsinogen 3, group I (pepsinogen A) 2 6.13E-12

SMYD1 SET and MYND domain containing 1 2 2.89E-11

SCARA5 Scavenger receptor class A member 5 1 3.27E-11

DCSTAMP Dendrocyte expressed seven
transmembrane protein

2 3.92E-11

KLK5 Kallikrein related peptidase 5 2 4.35E-11

GYPB Glycophorin B (MNS blood group) 1 4.73E-11

FREM3 FRAS1 related extracellular matrix 3 2 5.69E-11

TWIST2 Twist family bHLH transcription factor 2 1 6.21E-11

SLN Sarcolipin 2 6.73E-11

NTNG2 Netrin G2 3 7.29E-11

RS1 Retinoschisin 1 2 1.13E-10

fetal granular IC (puncorrected < 0.05). These GO groups mainly
pertain to glutamate activity and oxygen transport (Table 3 and
Figure 2). Of the seven groups that survived the cutoff filter in the
adult short insular gyri, “dopamine receptor signaling pathway”
and “nucleotide-sugar metabolic process” are enriched in the fetal
dysgranular IC (puncorrected < 0.05) (Table 4).

Disease Associated Gene Set Enrichment
We first tested for enrichment across all 1,848 disease associated
gene lists from the DisGeNET database (full results in
Supplementary Tables S5, S6). Genes annotated to cocaine-
related disorders was the top result in both regions (Figure 3).
For the long insular gyri this was the only disease associated set
that survives multiple test correction (90 genes, pFDR = 0.014,
AUROC = 0.63). For this result, five regions have a higher
AUROC value for this set (specificity rank = 5). As detailed above,
these genes are not enriched in the fetal granular IC but are in
both the short insular gyri and the fetal dysgranular IC (Table 5).
Genes associated with mood disorders were also significantly
enriched in the short insular gyri. No other disease gene
sets were significant after correcting for multiple comparisons
in the adult data.

Addiction Focused Gene Set Enrichment
Given past associations between the insula and addiction, we
searched disease terms pertaining to addiction. As described
above, cocaine-related disorders was the most significantly
up-regulated disease association in both the long and short

insular gyri. This was also significant in the fetal dysgranular
IC (90 genes, puncorrected < 0.032, AUROC = 0.56, specificity
rank = 73 out of 283 regions). Genes linked to amphetamine-
related disorders were expressed at above average levels in the
adult long and short insular gyri (74 genes, puncorrected < 0.020,
AUROC > 0.56, specificity rank < 7), as well as in the fetal
granular IC (puncorrected < 0.022, AUROC > 0.56, specificity
rank = 37). Substance-related disorders were also expressed
at higher levels in the adult long insular gyri and fetal
granular and dysgranular IC (111 genes, puncorrected < 0.040,
AUROC > 0.54, specificity rank < 36). Substance withdrawal
syndrome associated genes were enriched in the adult long and
short insular gyri (53 genes, puncorrected < 10−3, AUROC > 0.62,
specificity rank < 12). Beyond the cocaine-associated genes,
these findings would not survive correction for the 1,848 disease
associated gene lists tested and enrichment was not found for
terms relating to marijuana, alcohol, or tobacco.

We also examined GO terms pertaining to drugs of abuse.
Both the adult long and short insular gyri and the fetal
dysgranular and granular IC had enriched expression of
genes annotated to the behavioral response to cocaine term
(19 genes, puncorrected < 0.018, AUROC > 0.63, specificity
rank < 39). “Response to cocaine” was also enriched in the
fetal granular IC (51 genes, puncorrected < 0.026, AUROC = 0.58,
specificity rank = 22). In the adult data, “response to
morphine” was enriched (32 genes, puncorrected < 0.0074,
AUROC > 0.62, specificity rank < 15) in the long and short
insular gyri. This enrichment was significant in the short insular
gyri when correcting for the number of GO groups tested
(pFDR < 0.02). In the fetal data, “secondary alcohol biosynthetic
process” was enriched in the dysgranular and granular IC
(69 genes, puncorrected < 0.032, AUROC > 0.56, specificity
rank < 45). “Alcohol binding” was also enriched in the fetal
dysgranular IC (79 genes, puncorrected < 0.029, AUROC = 0.56,
specificity rank = 28). No enrichment was found for nicotine
associated gene sets.

Next, we tested genes from genome-wide association studies
of addiction. These included studies relating to opioids, smoking,
alcohol, and cannabis. None were significantly enriched, except
for seven genes that are nearby genetic variants that have
been associated with cannabis use. These seven are significantly
enriched in both the fetal granular (puncorrected < 0.02,
AUROC = 0.73, specificity rank = 14) and dysgranular IC
(puncorrected < 0.01, AUROC = 0.77, specificity rank = 6) but not
in the adult insula.

Depression Focused Gene Set Enrichment
In the DisGeNET database, no gene sets relating to depression
were significantly enriched in the adult data nor the fetal data.
However, genes associated with seasonal affective disorder were
enriched in the adult long and short insular gyri (16 genes,
puncorrected < 0.041, AUROC > 0.62, specificity rank < 33).
The adult long insular gyri was also enriched for higher
expression of genes linked to major affective disorder (21 genes,
puncorrected < 0.024, AUROC = 0.63, specificity rank = 3) and
anhedonia (27 genes, puncorrected < 0.0041, AUROC = 0.65,
specificity rank = 7). We also tested genes from genome-wide
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FIGURE 1 | Plots of UCMA expression in the adult (A) and fetal (B) brains. Expression (log2 intensity) is plotted on the y-axis for each of the two probes for UCMA.
Donor identification numbers are marked on the x-axis. Expression in the short insular gyri and dysgranular insular cortex is marked in black with orange marking the
long and granular divisions. Expression across the remaining brain regions is shown in blue violin plots.

association studies of depression. In the adult data, 53 genes
associated with major depressive disorder were up-regulated
(puncorrected < 0.037, AUROC > 0.57). The 257 genes from the
gene based genetic analyses of depression were also enriched
in the long insular gyri (puncorrected < 0.030, AUROC = 0.53).
However, we note that this finding was not specific, as over
41 regions had higher AUROC values. In the fetal data, the
53 genes genetically associated with major depressive disorder
were specifically enriched in the fetal dysgranular IC (53 genes,

puncorrected < 0.003, AUROC = 0.61, specificity rank = 3). Overall,
we do not observe a clear enrichment of expression for genes
associated with depression in the insular region.

Claustrum
Adult and Fetal Claustrum
We investigated the genes with significant up-regulation in
the adult claustrum. Of the 20,778 tested genes, over 46%
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FIGURE 2 | Euler diagram demonstrating gene overlaps between the significantly enriched GO groups in the adult long insular gyri that are also validated in the fetal
granular insular cortex.

were significantly up-regulated in the 47 claustrum samples
(9,591 genes, pFDR < 0.05). The top 20 genes are presented
in Table 6 with the full table in Supplementary Table S7.
In the seven fetal claustrum samples, only 379 genes were
significantly up-regulated (pFDR < 0.05). Between the adult
and fetal data of up-regulated genes, 261 genes intersect
(hypergeometric test, p < 10−18), 3 of these are within
the top 20 lists (NR4A2, SMIM32, and GNB4). The top-
ranked gene, NR4A2 (ranked 7th in the fetal data), is plotted
in Figure 4.

Gene Ontology Enrichment
In the adult data, 495 GO groups were significantly enriched
after correcting for multiple comparisons and 310 groups in the
fetal data (pFDR < 0.05, full results in Supplementary Table S8).
The top result in the adult claustrum was synaptic vesicle cycle
with 194 genes (pFDR < 10−8, AUROC > 0.65). For the fetal
claustrum, the top GO group was intrinsic component of synaptic
membrane (166 genes, pFDR < 10−9, AUROC > 0.66).

In addition, we filtered the results to only include groups
that have a specificity rank of ≤ 1. After this cutoff, 159 groups
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TABLE 3 | Enriched GO groups in the adult long insular gyri that are also enriched in the fetal granular insular cortex.

Name Genes AUROC Specificity rank p-valueFDR Fetal AUROC Fetal p-value

Integral component of postsynaptic membrane 117 0.712 0 1.82E-12 0.635 2.49E-07

Regulation of postsynaptic membrane potential 139 0.688 1 8.64E-12 0.625 2.03E-07

Postsynaptic density membrane 75 0.729 1 1.75E-09 0.685 1.52E-08

Learning 141 0.652 1 6.13E-08 0.543 0.0389

Ion channel regulator activity 103 0.648 1 1.53E-05 0.599 2.59E-04

Glutamate receptor activity 27 0.77 0 6.93E-05 0.674 8.76E-04

Ionotropic glutamate receptor activity 19 0.799 1 2.80E-04 0.661 0.00748

Dendrite membrane 39 0.703 1 4.68E-04 0.635 0.00177

Ionotropic glutamate receptor signaling pathway 25 0.751 0 5.37E-04 0.623 0.0163

Oxygen carrier activity 14 0.764 1 0.0157 0.793 7.34E-05

Oxygen transport 15 0.74 1 0.0246 0.788 5.64E-05

Cardiac muscle contraction 127 0.583 1 0.0253 0.571 0.00302

Voltage-gated calcium channel activity 47 0.631 1 0.0332 0.586 0.0203

Regulation of postsynaptic cytosolic calcium ion concentration 10 0.769 1 0.0481 0.719 0.00831

Dendritic spine membrane 12 0.743 1 0.0494 0.777 4.51E-04

TABLE 4 | Enriched GO groups in the adult short insular gyri that are also enriched in the fetal dysgranular insular cortex.

Name Genes AUROC Specificity rank p-valueFDR Fetal AUROC Fetal p-value

dopamine receptor signaling pathway 43 0.659 1 0.00908 0.575 0.0446

nucleotide-sugar metabolic process 37 0.665 1 0.0135 0.596 0.0217

survived in the adult claustrum and 61 groups in the fetal
claustrum. Of the 159 significant and specific GO groups in
the adult claustrum, 56 were also found in the fetal claustrum
(puncorrected < 0.05). The top 20 are presented in Table 7.

Disease Associated Gene Enrichment
Of the 1,848 disease gene sets from the DisGeNET database,
four are significantly up-regulated in the adult claustrum
(pFDR < 0.05, Table 8, full results in Supplementary Table S9).
These four are also specific with at most four regions having
a higher AUROC value (of 232 regions). Severe intellectual
disability (I.Q. 20–34) and epileptic encephalopathy were
significantly enriched in both adult and fetal data.

Addiction Focused Gene Set Enrichment
We examined disease terms relating to addiction using the
DisGeNET database. Similar to the insula analyses, in the adult
data claustrum, genes associated with “cocaine-related disorders”
were enriched (90 genes, puncorrected < 0.0072, AUROC = 0.58,
specificity rank = 79 out of 232 regions). This was also significant
in the fetal data (90 genes, puncorrected < 0.0027, AUROC = 0.59,
specificity rank = 31 out of 283 regions). Also, in the fetal data,
substance withdrawal syndrome (53 genes, puncorrected < 0.0021,
AUROC = 0.61, specificity rank = 26), amphetamine-related
disorders (74 genes, puncorrected < 0.0024, AUROC = 0.60,
specificity rank = 10), psychoses (substance-induced) (17 genes,
puncorrected < 0.013, AUROC = 0.66, specificity rank = 11) and
alcohol abuse (44 genes, puncorrected < 0.044, AUROC = 0.58,
specificity rank = 87) were enriched. No significant enrichment
was found for terms relating to marijuana or tobacco.

GO terms pertaining to drugs of abuse were also
searched. In the adult data, response to morphine (32
genes, puncorrected < 0.016, AUROC = 0.61, specificity
rank = 22), regulation of alcohol biosynthetic process (73
genes, puncorrected < 0.022, AUROC = 0.57, specificity rank = 42),
and alcohol biosynthetic process (148 genes, puncorrected < 0.041,
AUROC = 0.54, specificity rank = 70) were significantly enriched.
While in the fetal data we found behavioral response to cocaine
(19 genes, pFDR < 0.019, AUROC = 0.72, specificity rank = 3)
to be significantly enriched after multiple test correction. No
significant enrichment was found for terms relating to nicotine.

In addition, three genes genetically associated with ever
smoking were enriched in the adult claustrum (BDNF, APBB2,
and CDC27; puncorrected < 0.02, AUROC = 0.84, specificity
rank = 1). In the fetal claustrum, two genes associated with
smoking cessation also rank high (SLC25A21 and SEMA6D;
puncorrected < 0.048, AUROC = 0.84, specificity rank = 45).

Depression Focused Gene Set Enrichment
Depression associated gene sets in the DisGeNET database were
also investigated for significant enrichment in the claustrum.
In the adult data, we found seasonal affective disorder to
be enriched (16 genes, puncorrected < 0.046, AUROC = 0.62,
specificity rank = 37). This was also found in the fetal data
(puncorrected < 0.0042, AUROC = 0.69, specificity rank = 9).
In fetal data, genes annotated to “anhedonia” were significantly
enriched, with no other regions having a higher AUROC value
(27 genes, pFDR < 0.048, AUROC = 0.71, specificity rank = 0).
Also, genes associated with drug-induced depressive state (14
genes, puncorrected < 0.033, AUROC = 0.64, specificity rank = 27)
and depression (bipolar) (12 genes, puncorrected < 0.035,
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FIGURE 3 | Associations between cocaine-related disorder genes and insular specific expression. (A) ROC curves showing the proportion of cocaine-related
disorder genes that overlap (y-axis, true positive fraction) in varying lengths of the insular specific gene rankings (approximated by the x-axis, false positive fraction).
(B) Distributions of the cocaine-related disorder genes across the insular specific gene rankings with each gene representing a single colored line. Color marks the
short/dysgranular (black) and long/granular (orange) rankings. Dashed lines are used for the fetal datasets.

AUROC = 0.65, specificity rank = 58) were strongly expressed
in the fetal claustrum. Enrichment of genes identified in large
genetic studies of depression (257 genes, puncorrected < 0.0005,

AUROC = 0.56, specificity rank = 12) and major depressive
disorder (53 genes, puncorrected < 0.005, AUROC = 0.61,
specificity rank = 5) are found in the adult claustrum but
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TABLE 5 | Disease gene sets enriched in the adult short insular gyri after multiple test correction.

Name Genes AUROC Specificity Rank p-valueFDR fetal AUROC fetal P-value

Cocaine-related disorders 90 0.626 14 0.0315 0.557 0.031

Mood disorders 183 0.586 5 0.0315 0.510 0.318

not in the fetal samples. Overall, expression of depression
associated genes appear to be higher in the claustrum than the
insular regions.

Cell Type Proportions
Based on the adult transcriptomic data and marker genes,
we estimated proportions of neurons, oligodendrocytes,
oligodendrocyte precursors, microglia and endothelial cell-types
(Supplementary Table S10). Relative to all other regions,
neurons have the highest relative proportion estimates in the
insular-claustrum region. Specifically, only five other regions
have a higher estimated amount of neurons, while the short
and long insular gyri rank 11th and 28, respectively (of 232
regions). The claustrum also has a high estimated proportion
of oligodendrocytes (specificity rank of 49). For the remaining
cell-types, we do not observe notable proportion estimates
(specificity ranks < 81).

TABLE 6 | Top 20 enriched genes in the adult claustrum.

Gene Name Significant p-value
probes

NR4A2 Nuclear receptor subfamily 4 group A
member 2

3 4.98E-209

SLC17A8 Solute carrier family 17 member 8 3 1.65E-205

ANXA1 Annexin A1 1 8.45E-187

NTNG2 Netrin G2 3 2.85E-180

RGS12 Regulator of G protein signaling 12 3 2.01E-179

UCMA Upper zone of growth plate and cartilage
matrix associated

2 3.46E-179

SMIM32 Small integral membrane protein 32 2 1.66E-160

STT3B STT3B, catalytic subunit of the
oligosaccharyltransferase complex

2 1.45E-157

GNB4 G protein subunit beta 4 4 5.54E-155

DCSTAMP Dendrocyte expressed seven
transmembrane protein

2 4.52E-152

L1TD1 LINE1 type transposase domain containing
1

2 2.94E-148

GPD2 Glycerol-3-phosphate dehydrogenase 2 2 7.76E-137

SMYD1 SET and MYND domain containing 1 2 1.61E-129

SPATA19 Spermatogenesis associated 19 2 2.21E-129

TPMT Thiopurine S-methyltransferase 3 1.62E-125

THTPA Thiamine triphosphatase 2 3.07E-121

C1QL4 Complement C1q like 4 1 2.40E-120

STK32B Serine/threonine kinase 32B 2 2.47E-120

LAIR2 Leukocyte associated immunoglobulin like
receptor 2

2 5.60E-119

PLA2G4A Phospholipase A2 group IVA 3 4.89E-117

Transcriptomic Similarities Between the
Claustral and Insular Regions
We reduced the dimension of the adult claustral and insular
samples to obtain a transcriptome-wide visualization of the
similarities between the regions. Using the complete expression
profiles, we observe that the claustral samples can be separated
from the insular profiles (Figure 5). Within the insula, we do
not see a clear grouping of samples from the long and short gyri.
While the claustral samples are central in the fetal data, we did not
find apparent regional clustering (Supplementary Figure S1).

We next computed the transcriptional similarity between the
adult claustrum and all other regions. We calculated which adult
and fetal brain regions have enriched expression of the 20 most
specific genes in the adult claustrum to determine which brain
regions strongly express the adult claustrum markers (Table 9).
Brain-wide, insular regions have the highest expression of the
adult claustrum marker genes. Of the 232 adult regions tested,
38 are significantly enriched for the marker genes (pFDR < 0.05,
AUROC > 0.5). Of those, 36 are neocortical regions, and
the remaining two are the piriform cortex (paleocortex) and
parahippocampal gyrus bank of the cos (transitionary). Across
all regions, the neocortex is enriched for these marker genes (80
regions, mean AUROC = 0.642). In the adult data, the short gyri
is more similar than the long insular gyri. Interestingly, in the
fetal results, the claustrum is ranked lower than samples from
the insular cortex. The lower absolute AUROC values in the
fetal data are likely due to global expression differences between
the fetal and adult data. Of the six zones assayed in the insular
cortex, the intermediate zone, which is the deepest, has the most
specific expression of the 20 claustral markers. We also note
that the three-layered piriform cortex has high expression of the
markers in both the adult and fetal data. Taken together, we
found that the expression of claustral markers is highest in the
insula and neocortex.

DISCUSSION

In this study, we defined the adult and fetal insular cortex
and claustrum at the molecular level. We identified gene
expression enrichment in these areas concerning diseases,
addiction, depression, and function. With regards to the insula,
we found genes associated with addiction, most notably cocaine,
as well as depression, mood disorders, glutamate and dopamine
signaling, learning, memory, cardiac muscle contraction, and
oxygen transport. In the claustrum, we found that genes
associated with addiction, depression, human immunodeficiency
virus (HIV), severe intellectual disability, seizures, epilepsy,
intracellular transport, spine development, and macroautophagy
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FIGURE 4 | Plots of NR4A2 expression in the adult (A) and fetal (B) brains. Expression (log2 intensity) is plotted on the y-axis for each of the three probes for
NR4A2. Donor identification numbers are marked on the x-axis. Expression in the claustrum is marked in black, expression across the remaining brain regions is
shown in blue violin plots.

had enriched expression. Across the brain, we found that the
insula has the highest transcriptomic similarity to the claustrum.

Top Ranked Genes
In terms of individual genes, we found UCMA to be the most
significantly enriched gene in the adult long and short insular
gyri. It was also present in the adult claustrum (ranked 6th).
While its function in the brain is unknown, the UCMA gene
has been shown to mark a specific transcriptomic type of layer
5 neurons in a study of the mouse visual and motor cortices
(Tasic et al., 2016).

Previous studies have identified specific claustral expression
of NR4A2, NTNG2, GNG2, OPRK1, CUX2, and LXN in rodents
and primates (Peckys and Landwehrmeyer, 1999; Mathur et al.,
2009; Pirone et al., 2012; Watakabe et al., 2014). NR4A2, NTNG2,
and LXN are in our top 20 lists and together, these six genes are
strongly enriched in the adult and fetal claustrum (p < 0.0005,
AUROC > 0.92). NR4A2 and NTNG2 were also present in the

insula’s top 20 lists. NR4A2, also known as NURR1, is essential
for the differentiation of dopaminergic neurons (Zetterström
et al., 1997; Saucedo-Cardenas et al., 1998). It regulates gene
expression of numerous factors that are important to the
dopamine system; among these are dopamine transporter and
tyrosine hydroxylase (Sakurada et al., 1999; Sacchetti et al., 2001).
NR4A2 has been implicated in drug addiction (Bannon et al.,
2002; Horvath et al., 2007), Parkinson’s disease (Jankovic et al.,
2005; Le et al., 2008; Zhang et al., 2012), schizophrenia and
bipolar disorder (Buervenich et al., 2000; Xing et al., 2006). This
is in line with the enrichments we found regarding addiction
and depression (bipolar) gene sets in the IC and claustrum,
as well as dopamine activity in the IC. Although we did not
observe any gene sets indicating an association with Parkinson’s
disease and schizophrenia, studies have implicated the IC and
claustrum in these diseases (Kalaitzakis et al., 2009; Cascella et al.,
2011; Chen et al., 2016; Criaud et al., 2016; Arrigo et al., 2018;
Joutsa et al., 2018).
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TABLE 7 | Top 20 specifically enriched GO groups in the adult claustrum that are also enriched in the fetal claustrum.

Name Genes AUROC Specificity rank p-valueFDR Fetal AUROC Fetal p-value

Regulation of macroautophagy 158 0.645 0 3.57E-07 0.623 4.48E-08

Cytosolic transport 151 0.641 0 9.03E-07 0.54 0.0456

Regulation of dendritic spine development 65 0.694 0 1.36E-05 0.564 0.0384

Vacuolar transport 127 0.637 1 1.98E-05 0.614 4.46E-06

Regulation of postsynaptic membrane neurotransmitter receptor levels 65 0.688 0 2.91E-05 0.674 6.06E-07

Protein serine/threonine phosphatase complex 48 0.712 0 4.89E-05 0.598 0.00923

Regulation of phosphatase activity 170 0.613 0 4.97E-05 0.56 0.00352

Clathrin-dependent endocytosis 40 0.725 0 9.02E-05 0.692 1.28E-05

Cytoskeleton-dependent intracellular transport 165 0.611 0 9.17E-05 0.542 0.0308

Regulation of phosphoprotein phosphatase activity 113 0.633 0 9.17E-05 0.582 0.00135

Regulation of protein dephosphorylation 134 0.619 1 1.71E-04 0.581 6.37E-04

Axo-dendritic transport 63 0.668 0 2.41E-04 0.582 0.0119

Autophagosome assembly 89 0.638 1 3.76E-04 0.635 5.53E-06

Clathrin vesicle coat 28 0.741 0 4.86E-04 0.7 1.25E-04

Vesicle coat 57 0.668 0 5.20E-04 0.601 0.00409

Organelle transport along microtubule 74 0.646 1 5.92E-04 0.627 8.24E-05

Membrane coat 99 0.622 1 9.25E-04 0.617 2.88E-05

Clathrin coat of coated pit 20 0.768 0 0.00117 0.712 5.28E-04

Vesicle docking 66 0.647 0 0.00118 0.606 0.00143

Vesicle-mediated transport to the plasma membrane 83 0.629 0 0.00143 0.6 8.44E-04

TABLE 8 | Disease gene sets enriched in the adult claustrum after multiple test correction.

Name Genes AUROC Specificity rank p-valueFDR Fetal AUROC Fetal P-value

HIV Infections 99 0.633 2 0.00547 0.476 0.798

Epileptic encephalopathy 26 0.731 3 0.0209 0.648 0.005

Severe intellectual disability (I.Q. 20-34) 99 0.616 4 0.0237 0.628 6.16E-06

Global developmental delay, severe 47 0.661 2 0.0333 0.475 0.724

Addiction
Genes associated with cocaine, amphetamine, morphine, alcohol
and withdrawal were found to be significant in the IC. Cocaine
seems to be the most prominently associated drug of abuse in
the insula region as it was the only term that passed multiple
test correction. The insula has long been known to play roles
in addiction (Droutman et al., 2015b). One of the main studies
credited for bringing attention to the insula found that stroke
patients that suffered damage to the insula were more likely
to quit smoking immediately after lesion onset compared to
non-insular damage (Naqvi et al., 2007). Since then, numerous
studies have linked the insula with having a prominent role
in addictions. Preclinical studies have involved the insula in
motivation, nicotine-taking and -seeking behaviors (Forget et al.,
2010; Pushparaj et al., 2013), gambling (Pushparaj et al., 2015)
and alcohol addiction (Pushparaj and Le Foll, 2015). Numerous
clinical studies have also provided valuable information relating
the insula and addiction. For instance, cocaine users were found
to have decreased gray matter in the insula (Ersche et al., 2011;
Gardini and Venneri, 2012), as well as greater connectivity
within the salience network (i.e., the anterior IC and anterior
cingulate cortex) (Wisner et al., 2013). It was unexpected that no
enrichment was found for terms relating to nicotine since many
preclinical and clinical studies found insular differences that were

associated with nicotine dependence (Droutman et al., 2015b).
Given that nicotine triggers the release of dopamine, we note that
genes in the dopamine signaling pathway are strongly enriched in
the adult and fetal insula, suggesting downstream relationships.

Dopamine is broadly associated with addiction, as all drugs of
abuse increase dopamine levels (Nestler, 2005). It has been long
known that dopamine is a key player in addiction [see our review
(Le Foll et al., 2009)] and is involved in dopamine utilization
(Gaspar et al., 1989). Our finding of enriched expression of
genes in the dopamine signaling pathway is specific as only
one other brain region was found to have a higher AUROC
value. Of these 43 genes, dopamine receptors 1 (ranked 5th),
3 (14th), 4 (22nd) and 5 (8th) are ranked in the top half with
DRD2 having depleted expression (ranked second last). High
expression of DRD1 mirrors previous studies that found higher
expression of DRD1 and low expression of DRD2 (Hurd et al.,
2001). Functional studies have found insular infusions of a D2
antagonist did not have an effect on nicotine self-administration,
but a D1 antagonist did (Kutlu et al., 2013). Although it is not as
established as dopamine, glutamate has also been shown to play a
role in addiction (Tzschentke and Schmidt, 2003; D’Souza, 2015).
In the long insular gyri, three gene ontology groups relating to
glutamate signaling and activity were enriched, all validated in
the fetal data and had high specificity to the insula. Researchers
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FIGURE 5 | UMAP projection of the insular and clastral samples. Complete
transcriptome profiles are reduced to a two-dimensional space (UMAP1 and
2) for visualization. Each dot represents a sample with color marking the
sampled region (claustrum: red; long insular gyri: green; long insular gyri: blue).

TABLE 9 | The top ten fetal and adult regions that specifically express the 20 most
up-regulated genes in the adult claustrum.

Rank Adult region AUROC Fetal region AUROC
Adult Fetal

1 Claustrum 1 Intermediate zone in granular
insular cortex

0.783

2 Short insular
gyri

0.94 Layer III of piriform cortex 0.764

3 Long insular
gyri

0.905 Intermediate zone in
dysgranular insular cortex

0.756

4 Frontal
operculum

0.888 Claustrum 0.719

5 Planum polare 0.856 Subplate zone in dysgranular
insular cortex

0.706

6 Posterior orbital
gyrus

0.842 Intermediate zone in primary
auditory cortex

0.703

7 Temporal pole,
inferior aspect

0.842 Midbrain reticular formation 0.703

8 Temporal pole,
superior aspect

0.82 Molecular layer of caudal
subiculum

0.691

9 Temporal pole,
medial aspect

0.809 Subplate zone in caudal
perirhinal cortex

0.687

10 Piriform cortex 0.771 Posterior hypothalamic
nucleus

0.673

have demonstrated that glutamate plays a role in drug seeking
and reinstatement (Kalivas, 2009; Knackstedt and Kalivas, 2009).
Drugs of abuse also alter the transmission of glutamate either
by indirectly or directly acting on its receptors (D’Souza, 2015).
Clinically, inhibition of glutamate release is a potential target for
cocaine addiction treatment (Schmidt and Pierce, 2010; D’Souza,
2015; Caprioli et al., 2018).

Depression
We find limited evidence of higher expression of depression
associated genes in the insula and claustrum. However, genes
associated with mood disorders are ranked as the second and
third top disease gene sets associated with the adult short and long
insular gyri, respectively (specificity <10). The literature supports
the insula and claustrum as having some involvement with
depression. Studies have shown that patients with depression
have altered functional connectivity in the insula, specifically
the anterior region (Veer et al., 2010; Kandilarova et al., 2018;
Wang et al., 2018). Gray matter reductions in the anterior insula
were also found in patients with major depressive disorder (Lee
et al., 2011; Stratmann et al., 2014). A meta-analysis found the
insula was consistently identified in imaging studies of depression
across methods and study design (Fitzgerald et al., 2008). In
comparison to the insula, stronger enrichment of expression
for depression associated genes was found in the claustrum.
Possibly due to its size and location, the claustrum has not
been identified in imaging studies of depression. However, a
postmortem study found bilaterally reduced claustral volumes in
major depressive disorder (Bernstein et al., 2016). Anhedonia,
one of the main symptoms in depression, has been linked to
both the insula and claustrum in our results. The most specific
depression associated result is the enrichment of “anhedonia”
genes in the fetal claustrum. Anhedonia symptoms in individuals
with unipolar or bipolar depression were negatively correlated
with metabolism in the insula and claustrum (Dunn et al.,
2002). Furthermore, in a healthy population of adolescents,
those who scored higher on anhedonia measures exhibited
decreased activation in the claustrum and insula compared to
those who had lower anhedonia scores (Chan et al., 2016).
Altogether, we highlight the relevance of this region to mood
disorders and anhedonia while suggesting more attention be
given to the claustrum.

Learning and Memory
In the long insular gyri and granular IC, we found a set of 141
genes associated with learning to be significantly and specifically
enriched. Although not validated in the fetal data, associative
learning was enriched in the adult data. In addition, a memory
gene set was enriched in the long insular gyri, with only two
other brain regions holding a higher AUROC value. At first
glance, the enrichment may be explained by the IC role in taste
learning. Studies have indicated its role in working memory of
taste (Ragozzino and Kesner, 1999), conditioned taste aversion
(Schier et al., 2016) and taste learning [see review by Yiannakas
and Rosenblum (2017)]. This is in part mediated by glutamatergic
and dopaminergic transmission (Guzmán-Ramos et al., 2010;
Osorio-Gómez et al., 2017), which also showed enrichment in the
insula. However, no gene ontology groups corresponding to taste
specifically were enriched in the IC. Although this was surprising,
the insula has been implicated in other areas of learning and
memory, which may explain these gene set enrichments. For
instance, the insula is activated during a learning/memory task
of human face recognition (Paller et al., 2003) and object
recognition memory (Bermudez-Rattoni et al., 2005). While the
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long insular gyri has an above average estimated proportion of
neurons, the short gyri and claustrum have higher estimates,
suggesting this signal is not due to a high proportion of neurons.
However, a single-cell dissection of the insula may highlight
specific neuron types.

Cardiac Muscle Contraction
One interesting finding from the gene ontology enrichment in
the IC was that of cardiac muscle contraction. We found a
gene set of 127 genes relating to cardiac muscle contraction
to be significantly and specifically enriched in the long insular
gyri. Broadly, the insula has been described as a key region
in the brain-heart axis (Nagai et al., 2010). Introception, and
specifically awareness of one’s heartbeat is among the bodily
states that the insula is believed to mediate (Craig, 2002, 2003).
This has been shown using heartbeat monitoring tasks whereby
researchers have found the insula to be activated (Pollatos
et al., 2007; Zaki et al., 2012; Kuehn et al., 2016). These
findings are mainly found in the anterior insula. However,
the enrichment we observed was in the posterior region.
This may be due to the fact that the posterior insula is
the receiver of interoceptive signals, which is then sent to
the anterior insula (Craig, 2002). Furthermore, damage to the
insula was associated with electrocardiographic abnormalities
(Abboud et al., 2006) and an increase in adverse cardiac
outcomes (e.g., myocardial infarction, new-onset angina, sudden
cardiac death) (Laowattana et al., 2006). While these neural
connections between the insula and heart are interesting, it’s
not clear why genes that function in muscle contraction are
enriched in the insula.

Oxygen Transport
We found high and specific enrichment of two oxygen-related
GO terms, oxygen transport and oxygen carrier activity, in
the adult long insular gyri. This enrichment, was validated in
the fetal dysgranular IC as well. It is not known why these
genes are enriched here, but we suspect that it could be due
to the insula’s role in homeostasis. Similarly to the implication
of the insula in regulating heartbeat described above, it has
also been implicated in regulating breathing and respiration
(Kaada and Jasper, 1952; Showers and Lauer, 1961; Hassanpour
et al., 2018). In addition, dyspnea (i.e., breathlessness) has been
shown to activate the insula (Banzett et al., 2000; von Leupoldt
et al., 2008; Esser et al., 2017). However, these studies have
found other areas to also be involved; therefore, further studies
are needed to clarify why these gene sets were specifically
enriched in the insula.

Epilepsy
Genes associated with seizures and epilepsy were enriched in the
claustrum. Specifically, genes linked to epileptic encephalopathy,
a severe and early onset disorder are strongly enriched. An
example gene is GNAO1, which is the 23rd most specifically
expressed gene in the adult claustrum and is known to cause early
onset epileptic encephalopathy (Nakamura et al., 2013; Law et al.,
2015). Researchers have found that the claustrum was involved
early on in kainate-induced seizures and in some instances, the

seizure originated in the claustrum (Bayat et al., 2018). A number
of studies using magnetic resonance imaging (MRI) have found
a link between the claustrum and epilepsy (Sperner et al.,
1996; Nixon et al., 2001; Ishii et al., 2011; Meletti et al., 2015,
2017). Although not all seizures affect consciousness, it remains
an important feature of seizures (Blumenfeld, 2012). As we
previously mentioned, the exact role of the claustrum is not
well understood, however, many theories focus around the idea
of its involvement in consciousness (Crick and Koch, 2005;
Chau et al., 2015; Yin et al., 2016). A case study of an epileptic
patient reported that stimulating an electrode placed between the
claustrum and anterior IC disrupted consciousness, which was
then regained after stimulation stopped (Koubeissi et al., 2014).
In fact, the role of the claustrum in consciousness during seizures
has been the subject of a recent review (Kurada et al., 2019).
Thus, given the enrichment of epilepsy-related genes and the link
between consciousness and seizures, this may further allude to
the claustrum’s role in consciousness.

Human Immunodeficiency Virus
Genes associated with HIV infections were enriched and had high
specificity to the claustrum. In support of this, researchers have
found astrogliosis (Sevigny et al., 2005) and increased fractalkine
(Tong et al., 2000) in the claustrum of people with HIV
encephalitis. Fractalkine is a chemokine encoded by the CX3CL1
gene, which we found to be significantly enriched in both the
adult and fetal claustrum. Furthermore, a study on postmortem
brains of children who died of acquired immunodeficiency
syndrome (AIDS) found the claustrum, among other brain
regions, to have a decreased volume (Kozlowski et al., 1997).

Intracellular Transport
Genes that function in intracellular transport are expressed at
higher levels in the claustrum. Specifically enriched GO terms
include cytosolic, vacuolar, cytoskeleton-dependent, and axo-
dendritic transport. White matter has long been considered to be
a transport system (Paus et al., 2014). Our findings of increased
axo-dendritic transport related genes, combined with the region’s
wide-ranging projections (Torgerson et al., 2015; Wang et al.,
2017) suggest that the claustrum may be a key hub in this
transport network.

Macroautophagy
The most specific GO group for the claustrum was “regulation
of macroautophagy”. We were unable to find any reports in
the literature of enhanced macroautophagy or related genes
in the claustrum. Given its location in between white matter
tracts, we speculate the claustrum may undertake increased
macroautophagy based myelin remodeling. Such autophagic
mechanisms have shown to be important in the peripheral nerve
injury and amyotrophic lateral sclerosis but have not been linked
to the claustrum (Ceballos-Diaz et al., 2015; Gomez-Sanchez
et al., 2015; Qin et al., 2018). Like the long motor neurons that
degenerate in amyotrophic lateral sclerosis, we suspect that a high
level of autophagy might be needed to support the connectivity of
the claustrum (Torgerson et al., 2015).
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Insula-Claustrum Comparisons
In a brain-wide analysis, we found that the insula has the highest
expression of the claustral markers. More broadly, claustral
specific genes are enriched in neocortical regions. Surprisingly,
the intermediate zone of the developing insular cortex had higher
expression of these genes than the fetal claustrum samples. More
specifically, of all the fetal regions, the intermediate zone of the
insula had the highest expression of the adult claustral markers.
This zone is the deepest of those assayed and thus closest to the
insula. The strong expression of adult claustral markers in this
zone may inform future developmental studies. Overall, these
findings reinforce rodent studies that found the claustrum and
insula have a strong ontogenetic relationship through a shared
lateral pallium origin (Puelles, 2014; Watson and Puelles, 2017;
Binks et al., 2019).

Strengths and Limitations
This study benefits from two brain- and genome-wide Atlases
of the human brain. This coverage allowed us to transfer
information from anatomy to genes. By using two transcriptomic
Atlases, we were able to test signals obtained from the adult
in the fetal brain, providing reproducibility across development.
Although this approach reveals novel molecular features of the
insula and claustrum, there are some limitations. First, the sample
size is limited (six adult brains and four fetal brains). Second,
sex is not balanced with five male adult brains and only one
female adult brain. The reverse issue is present in the fetal brains,
whereby three are female. However, we note that the number of
genes differentially expressed across regions dwarfs the number
that are sex or even species specific (Strand et al., 2007; Toker
et al., 2016). We also note that we use gene expression profiles
of bulk tissue, which contain variable proportions of cell-types.
Differences in cell-type proportions may be the primary drivers
of the extracted signals and not the differential expression of
specific genes. At the coarse level, our analysis of estimated cell-
type proportions did not suggest that our findings are primarily
driven primarily by proportion differences.

CONCLUSION

In conclusion, our study of insular and claustrum specific gene
expression links these regions to an array of functions and
diseases. Many of these gene enrichments were expected, such
as that of genes associated with addiction, as well as some of
the top individual genes found in the claustrum, which are
known to be claustral markers. Our finding of enrichment of
epilepsy gene sets in the claustrum could further allude to its
role in consciousness, which has been hypothesized to be its

primary function. Insular associations with oxygen transport
and cardiac muscle contraction molecules reinforce it’s past
links to interoceptive awareness. Combining the results, we find
associations with learning, memory, severe intellectual disability,
and epilepsy, suggesting the insula-claustrum region plays critical
roles in cognition. Other findings, such as the enrichment of
genes involved HIV and macroautophagy in the claustrum
require further investigation. In addition, our findings of strong
transcriptomic similarity between the two regions confirm their
ontogenetic relationship. Altogether, our results provide a novel
molecular perspective on the unique properties of the insula-
claustrum region.
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