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ABSTRACT

Motivation: Because of its low cost, amplicon sequencing, also

known as ultra-deep targeted sequencing, is now becoming widely

used in oncology for detection of actionable mutations, i.e. mutations

influencing cell sensitivity to targeted therapies. Amplicon sequencing

is based on the polymerase chain reaction amplification of the regions

of interest, a process that considerably distorts the information on

copy numbers initially present in the tumor DNA. Therefore, additional

experiments such as single nucleotide polymorphism (SNP) or com-

parative genomic hybridization (CGH) arrays often complement ampli-

con sequencing in clinics to identify copy number status of genes

whose amplification or deletion has direct consequences on the effi-

cacy of a particular cancer treatment. So far, there has been no proven

method to extract the information on gene copy number aberrations

based solely on amplicon sequencing.

Results: Here we present ONCOCNV, a method that includes a multi-

factor normalization and annotation technique enabling the detection of

large copy number changes from amplicon sequencing data. We vali-

dated our approach on high and low amplicon density datasets and

demonstrated that ONCOCNV can achieve a precision comparable

with thatofarrayCGHtechniques indetectingcopynumberaberrations.

Thus,ONCOCNV applied on ampliconsequencingdatawouldmake the

use of additional array CGH or SNP array experiments unnecessary.

Availability and implementation: http://oncocnv.curie.fr/

Contact: valentina.boeva@curie.fr

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

The emergence of the amplicon sequencing technique, which fol-

lowed whole-exome sequencing (WES), promises a revolution in

cancer diagnostics and treatment. Amplicon sequencing consists

of the polymerase chain reaction (PCR) amplification of a lim-

ited number of the genomic regions of interest (amplicons) fol-

lowed by high-throughput sequencing (Supplementary Fig. S1A)

(Beadling et al., 2013). Each amplicon often coincides with an

exon; exons longer than the typical length of PCR reaction prod-

ucts may be covered by two or more amplicons (Supplementary

Fig. S1B).
Although relatively expensive exome sequencing consists of in-

depth sequencing of nearly all the coding exons, the amplicon

sequencing technique aims at sequencing a limited number of

genes (from several dozen to several thousand exons) at an ex-

tremely low cost. The genes included in a panel of amplicon

sequencing (actionable genes) are genes that are often altered in

different cancer types, and for whose alterations targeted thera-

pies have been established or are in clinical development. For in-

stance, the TargetRichTM CRX kit from Kailos Genetics assays

such cancer-related genes as BRAF, EGFR, FLT3, JAK2, KIT,

KRAS, PIK3CA, PTEN, TP53 and VEGFA; the AmpliSeqTM

Cancer Panel from Life Technologies targets 190 regions of inter-

est in 46 well-characterized oncogenes and tumor suppressors.
Some actionable genes often undergo point mutation or exon

deletions (e.g. ALK, BRAF), whereas others undergo amplifica-

tion in copy number (e.g. MYCN, ERBB2) (Garraway and

Lander, 2013; Small et al., 1987). Because of the exceedingly

high read coverage of amplicon sequencing data, there is nometh-

odological issue in the identification of point mutations and small

insertions or deletions (indels). However, how to reliably detect

copy number changes, in particular gene deletions and amplifica-

tions, in amplicon sequencing data is still open to discussion.

Here, we focus on the identification of copy number alter-

ations (CNAs) also known as large copy number changes

(CNVs) of the actionable genes targeted by amplicon sequencing.

Although there are several algorithms to detect CNAs in exome

sequencing data (Amarasinghe et al., 2013; Boeva et al., 2011; Li

et al., 2012), it is questionable as to whether the same approaches

can be efficient when applied to amplicon sequencing data. First,*To whom correspondence should be addressed.
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amplicon sequencing targets fewer regions and thus provides less

information than exome sequencing datasets (510000 exons

versus 4200 000 exons); consequently, data normalization can

be less effective on amplicon sequencing data. Second, because

of the different protocols used for library preparation, amplicon

sequencing data can have various biases. Importantly, while for

exome sequencing experiments an effort has been made to uni-

form exon coverage, amplicon sequencing technology empha-

sizes extremely high depth of coverage with less regard to

coverage homogeneity.
Here we provide a solution to the challenging question of ex-

tracting CNAs from amplicon sequencing data by (i) defining a

method to normalize read coverage with a small set of normal

control samples and (ii) assigning statistical significance to puta-

tive CNAs resulting from the segmentation of normalized pro-

files. We validated the proposed method on (A) a high amplicon

density dataset of eight tumor samples for which array compara-

tive genomic hybridization (array CGH) profiles were available,

(B) a high amplicon density dataset of 30 ErbB2-positive ovarian

cancer samples and (C) a low amplicon density dataset of 30

tumors, coupled with single nucleotide polymorphism (SNP)

array data. We show that the results obtained from the

ONCOCNV method compare favorably with the results

obtained from ADTEx (Amarasinghe et al., 2013) and

NextGENe (http://www.softgenetics.com/NextGENe_013.

html), which are respectively public-domain and commercial

software designed to detect CNVs in whole exome sequencing

data.

2 MATERIALS AND METHODS

In this article, we present a method for detecting copy number changes in

sequencing data generated for a relatively small panel of genes. We first

apply several normalization steps: library-specific (normalization for li-

brary size, GC content and amplicon length) and technology-specific

normalization (normalization with a control baseline); the next steps

are segmentation and gene-aware correction of the predicted CNAs

(Fig. 1). The only requirement for the selection of diploid control samples

is that they should be processed using the same target selection kit as the

tumor samples.

2.1 Datasets

To validate our method, we used three experimental amplicon sequencing

datasets: A, B and C. The high amplicon density tumor DNA for datasets

A and B was subjected to amplicon sequencing with target selection using

the Ion XpressTM Plus Fragment Library Kit by Life Technologies (panel

of 406 genes including 46500 exons covered by 415000 amplicons).

Dataset C is a part of the SHIVA clinical trial (Le Tourneau et al.,

2012). This dataset was generated using the Ion AmpliSeqTM Cancer

Panel V1 in combination with the Ion AmpliSeqTM Library Kit 2.0 by

Life Technologies; for our analysis, we used 11 genes covered by 96

amplicons. We used 15 diploid samples (high amplicon density, control

dataset X) and 6 diploid samples (low amplicon density, control dataset

Y) to create the baseline for the normalization of datasets A/B and C,

respectively.

In addition to amplicon sequencing, the tumor samples from dataset A

were analyzed using an array CGH technique. Tumor samples from

dataset C were processed with SNP arrays. The details of the processing

of array CGH and SNP array data are provided in the Supplementary

Materials.

2.2 Read counting

In the analysis of high-throughput sequencing data, an appropriate def-

inition of read counts (RCs) is of high importance. In whole-genome

sequencing data, RC refers to the number of reads starting in a given

window (Boeva et al., 2011). In WES and RNA sequencing data analysis,

RC corresponds to the number of read mappings overlapping each exon

(Amarasinghe et al., 2013). When dealing with amplicon sequencing data,

one could apply a similar approach and reasoning in terms of exons.

However, this may lead to a loss of information. In amplicon sequencing,

one exon can be targeted using two or more closely located or overlap-

ping amplicons; averaging this information will decrease the sensitivity of

CNA detection. In ONCOCNV, we therefore implemented an intuitive

procedure to calculate RCs: each read is assigned to only one amplicon

region, the one with which the read alignment has the maximum overlap.

In the case of highly overlapping amplicons, it can be unclear which

amplicon generated the read. We therefore merge amplicons when two

of them overlap each other by475% of their lengths.

Given that the amplicon sequencing reads are single ended and sequen-

cing depth is extremely high, we do not discard duplicate reads to avoid

distorting the RC disproportionately (Zhou et al., 2014).

2.3 Normalization of RCs per target

The RC processing method implemented in ONCOCNV includes nor-

malization for library size, GC content of each amplicon region and

amplicon length. We call these kinds of biases ‘library specific’. The

exact shape of the functional dependency of the RC on the GC content

and amplicon length may be different in each library (Supplementary Figs

S2A, B and S3A, B).

Control 1 Control N…

Linear regression 
using the baseline

Tumor 

Linear regression 
using the baseline

Normalized tumor 
profile

Normalized control profiles

of zero level

First 3 PCA components = Baseline

T-test and fixed variance test 

CNA regions

with a gene-aware model CNA  regions 

Fig. 1. Workflow of ONCOCNV. Control samples may be processed

separately from tumor samples. As ONCOCNV performs normalization

by GC content and amplicon length, it is not critical for the control

samples to be sequenced jointly
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2.3.1 Normalization with respect to library size The average

number of reads from a library mapped to an amplicon is Avg=N/R,

where N is the total number of reads and R is the total number of

amplicons. We normalize the raw read count (RRC) by the library size:

NRCLib=RRC=Avg, where NRCLib stands for the RC normalized with

library size. Under the assumption of comparable efficiency of PCR amp-

lification for all regions targeted, the RRC values would be similar for

different amplicons, and thus, the normalized read count (NRC) values

would typically be close to 1 (Supplementary Fig. S4).

2.3.2 Normalization with respect to CG-content For target

sequencing data, as for whole-genome sequencing data (Boeva et al.,

2011), we observe a significant GC-content bias (Fig. 2A and

Supplementary Fig. S2A). The shape of the GC-content dependency

may vary even between datasets generated within the same laboratory

(Supplementary Fig. S2B). We correct for the GC-content bias by using

local polynomial regression fitting [LOESS (Cleveland et al., 1992), R

package stats, degree=2]. The resulting values NRCGC do not

depend on the GC content of the amplicon sequences (Supplementary

Fig. S2C).

2.3.3 Normalization with respect to target length We observed

that smaller amplicons usually generate more RCs than larger ones, prob-

ably owing to more efficient PCR amplification for smaller DNA frag-

ments (Supplementary Fig. S2B and S3A). Similar to the GC content, this

bias can be more or less pronounced in different samples (Supplementary

Fig. S3B). We correct for the amplicon length bias by using the same

technique as for the GC-content correction, i.e. LOESS (Cleveland et al.,

1992). The resulting values NRCLen do not depend on the GC content

(Supplementary Fig. S3C) or on the length (Supplementary Fig. S3D) of

the amplicon sequence.

2.4 Establishment of baseline

In addition to the library-specific bias, there is a technology-specific bias.

This bias, even after normalization for the library-specific bias, is present

to a different extent in the RCs (Supplementary Fig. S5A and B).

Therefore, for each technological platform, we construct a baseline that

reflects the technological bias in the diploid control samples and use it for

the normalization of test samples.

To construct the baseline, we apply principal component analysis

(PCA) to the NRCs NRCLen from the diploid samples. The first principal

component (PC1) captures the most variation in NRCLen and highly cor-

relates with the average value of NRCLen over the control samples

(Pearson correlation 0.99, Supplementary Fig. S6). We observed that it

was important to keep the second and third PCs, as they capture add-

itional biases (Supplementary Fig. S5C). In our example (datasets A and

B), the first three components account for 90.5% of the total variance in

the NRCs of the diploid control samples, whereas the first component

explains only 79% of the variance (Supplementary Fig. S6A). Thus, by

default, we keep the first three PCs as baseline. This parameter may,

however, be changed by the user after examination of the explained vari-

ance in the output of ONCOCNV. Also, if the number of control samples

(n) is less than four, only (n – 1) PCs will be kept. At least two control

samples are necessary to run ONCOCNV. When several tumor/matched

normal datasets are present, the baseline should be created using all the

control samples available.

For the final normalization of the sample RCs, we use a linear regres-

sion over the baseline. The resulting profile, NRCFinal, shows lower vari-

ance than NRCLen and no directional bias (Supplementary Fig. S5D).

It should be noted that independent component analysis (ICA) could

seem more appropriate than PCA to deal with the technology-specific

bias. Each independent component could represent an independent

source of noise in the experiment. The use of ICA instead of PCA will

not, however, lead to different results in normalization based on the re-

gression over the first components, as the first independent components

are linear combinations of the first PCs (Hyv€arinen and Oja, 2000).

2.5 Correction of control sample RCs for gender

A control dataset is often generated from a mixture of male and fe-

male samples. To correct the RCs in the control samples for gender,

we apply the following strategy. After the first normalization step

(normalization with respect to library size), we calculate

Mi=meanðNRCLen on chrXÞ=meanðNRCLibÞ for each control sample i.

Then we choose the optimal model with one or two components for

Mi, according to the Bayesian information criterion for expectation–

maximization initialized by hierarchical clustering for parameterized

Gaussian mixture models (Fraley and Raftery, 2002). If the best model

includes two components, we can conclude that our dataset represents a

mixture of male and female samples: samples falling in a cluster with

smaller Mi are male and samples falling in a cluster with higher Mi are

female. If the best model contains only one cluster, we can conclude that

all samples have the same gender and we assign male gender to them if

the M value for all samples is50.9. For all control samples annotated as

male, we multiply the RCs on chrX by two to make them comparable

with female control samples.

2.6 Assessment of standard deviation for NRCs

Although we know how to normalize sample RCs, we do not know which

deviation from zero level should be called significant to call a copy

number change. To solve this issue, we need to evaluate the standard

deviation of NRCfinal for each amplicon region. We notice that different

amplicon regions tend to have different standard deviations

(Supplementary Fig. S7A). Generally, the higher the NRC (i.e. PC1),

the lower the variance (Supplementary Fig. S7B). Further, we assume

that NRCfinal follows a normal distribution, with the mean value
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Fig. 2. Normalization of RC data improves correlation with array CGH

measurements. (A) GC-content bias. The y-axis shows the RC normalized

with respect to library size (Sample X1). (B) Amplicon length bias. The y-

axis shows the RC normalized with respect to GC-content and library

size (Sample X10). (C) Correlation between RRCs and log-ratio values of

array CGH (Sample A1). (D) Correlation between NRCs and log-ratio

values of array CGH (Sample A1). In (C) and (D), mean value per gene is

shown
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depending on the copy number status (�=0 in the case of copy number

neutral), and the standard deviation depending on the first PC of our

baseline (�=fðPC1Þ) (Li et al., 2012). To model �=fðPC1Þ, we use all

control samples. However, the overall variance can be higher in some

samples than in others (Supplementary Fig. S7). Thus, before the evalu-

ation of �=fðPC1Þ, we rescale the control samples so that they have the

same overall variance of 1. We model function fðPC1Þ using LOESS

(degree=2) (Supplementary Fig. S8) (Cleveland et al., 1992). At the

end of this step, each amplicon i is assigned standard deviation �i,

which shows how the NRC for this amplicon varies in comparison

with NRCs of other amplicon regions.

2.7 Processing of tumor sample RCs

Logarithmic values of the tumor sample RCs are normalized by library

size, GC content and amplicon length. For further analysis, we keep

residuals of the linear regression of the tumor NRCs over the baseline

calculated for the control samples.

The resulting profiles are segmented using the circular binary segmen-

tation (CBS) method [R packages PSCBS and DNAcopy (Olshen et al.,

2004; Venkatraman and Olshen, 2007)]. To avoid breakpoints at outlier

values, for each amplicon i, we give the segmentation algorithm weight-

ings w, which are inversely proportional to the variances �2i . Generally, all

NRC values within a segment resulting from the CBS correspond to a

particular copy number status.

To annotate a segment as a gain, loss or neutral copy number, we

define a segmentation and clustering approach. This is based on the idea

that the mean values of NRCs of segments (segment mean values) should

roughly correspond to integer copy number changes (Supplementary Fig.

S9). In other words, the segment mean values corresponding to the same

number of copies should cluster together. A similar approach was used by

Gusnanto et al. (2012) to detect CNAs in whole-genome sequencing data.

Using R package mclust (Fraley et al., 2012), we cluster weighted

means of segment log ratio values. To prevent clustering errors, we add

Gaussian noise to the data (Supplementary Fig. S9B and C). For each

segment, the standard deviation of the added random variable is equal to

the standard error of the mean, and thus depends on the length of the

segment. Our approach is nearly identical to the classic non-parametric

density estimation using the Parzen window method (Parzen, 1962). Here,

to be able to apply the existing clustering tool mclust, we perform sam-

pling from normal distribution instead of kernel density smoothing.

We select the level with the maximum density to be the neutral copy

number level (zero level in Supplementary Fig. S9C). We center the ratio

values on the zero level. All segments with mean values clustered with

zero are further considered copy neutral. We evaluate the overall stand-

ard deviation �sample of the sample using the copy-neutral regions. We

rescale the standard deviation �samplei =�sample � �i, where �
sample
i is the

standard variation for amplicon i in a given tumor sample.

2.8 Statistical validation of candidate CNAs

For each segment annotated as a putative CNA at the previous step, we

perform two tests to ensure that the observed deviation from the normal

cannot be because of mere chance. We calculate the P-values of the fixed

variance test and the t-test under the null hypothesis that log ðNRCi
finalÞ

are generated by a normal distribution with mean value zero and stand-

ard deviation �sample
i .

2.8.1 Fixed variance test If, for a copy-neutral amplicon i values,

Xi=log NRCi
final

� �
=�sample

i

follows a normal distribution Nð0; 1Þ, then the arithmetic mean of a

sample X1;X2;X3; . . .�Nð0; 1Þ is also normally distributed:

X�N 0; 1 n=
��
. To test the significance of a deviation from neutrality for

a consecutive set of target regions k+1 . . . ; k+n, we use the following

statistics formula:

abs
Xi=k+n

i=k+1
log NRCi

final

� �
=�sample

i

� �
=n

� �
;

which should follow half-normal distribution with �=
ffiffiffiffiffiffi
�n
p

=
ffiffiffi
2
p

.

2.8.2 T-test Under the hypothesis that target regions

i=k+1 . . . ; k+n are copy-neutral random variables, Xi are normally

distributed with expectation 0. Thus, we can apply a t-test to test the

hypothesis about the mean value of Xif gi=k+1...;k+n. It should be noted

that, as the standard deviation is not fixed but evaluated via the sample

standard deviation, the t-test usually produces higher P-values than the

fixed variance test.

2.8.3 Filtering of candidate CNAs We keep only those candidate

CNAs for which the fixed variance test and t-test P-values are50.01. This

allows us to be extremely stringent in filtering false-positive CNAs

(Supplementary Fig. S10).

Contamination by normal cells, tumor hyper-ploidy and presence of

subclones deteriorates the copy number ratios and impede the accuracy of

CNA detection. Unfortunately, it is impossible to get reliable information

about these factors from amplicon sequencing data. Thus, we imposed a

detection threshold on the number of cells with a given CNA. The ex-

pected NRC value in a region of a gain or loss of l copies can be calcu-

lated as ExpectedNRC=ð1� cÞ � 1+c � ð1� l=PÞ, where c is the fraction

of all cells in the sample containing the CNA and P is the tumor ploidy.

The higher the tumor ploidy and contamination by normal cells and the

lower the fraction of tumor cells containing each CNA, the closer the

expected NRC will be to 1, and the more difficult it will be to discriminate

between true and false calls (Supplementary Fig. S11A). To avoid false-

positive predictions, ONCOCNV filters out all candidate CNAs whose

weighted geometric mean of NRCs varies within the range (0.875 to

1.125). This filter is likely to remove all CNAs present in fewer than

25, 33 and 50% of cells in diploid, triploid and tetraploid tumors, re-

spectively (Supplementary Fig. S11B).

2.9 Detection of one-point copy number changes

Our method does not focus on the identification of one-point copy

number changes (gain or loss of one exon/amplicon region).

Nevertheless, we provide a functionality to output P-values and outlier

statuses for each target region i based on a normal distribution

N wmseg; �
ratio
i

� �
of ratio values, where wmseg is the weighted mean of

the large segment including i, and �ratioi is the evaluated standard devi-

ation. Similar to CONTRA (Li et al., 2012), we adjust these P-values for

multiple testing using the Benjamini and Hochberg correction (Benjamini

and Hochberg, 1995).

2.10 Readjustment of segmentation with a gene-aware

model

The segmentation procedure described above is performed in a gene-un-

aware way. Although segmentation usually places a breakpoint between

two genes, in some cases, the breakpoint is positioned within a gene

(Supplementary Fig. S12). In this case, there are two possible scenarios:

(i) the chromosomal break occurs within the gene or (ii) because of noise,

the predicted breakpoint was mis-positioned several probes left or right of

the real breakpoint. We developed a readjustment strategy to account for

the second scenario. When a breakpoint falls within the gene and breaks

it into several (usually two) segments, we test whether the mean value of

one of the segments could explain all the observed log(NRC) values of the

gene (t-test). A gene with more amplicon regions is more likely to be

correctly annotated with respect to the copy number status than a gene

with fewer amplicon regions.

3446

V.Boeva et al.

<inlinemediaobject><imageobject><imagedata fileref=
IG(IG)
principal component
<inlinemediaobject><imageobject><imagedata fileref=
IG(IG)
<inlinemediaobject><imageobject><imagedata fileref=
IG(IG)
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu436/-/DC1
prior to
<inlinemediaobject><imageobject><imagedata fileref=
IG(IG)
<inlinemediaobject><imageobject><imagedata fileref=
IG(IG)
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu436/-/DC1
<inlinemediaobject><imageobject><imagedata fileref=
IG(IG)
read count
read count
-
(
)
<inlinemediaobject><imageobject><imagedata fileref=
IG(IG)
<inlinemediaobject><imageobject><imagedata fileref=
IG(IG)
<inlinemediaobject><imageobject><imagedata fileref=
 (SCA)
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu436/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu436/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu436/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu436/-/DC1
in order 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu436/-/DC1
-
<inlinemediaobject><imageobject><imagedata fileref=
IG(IG)
<inlinemediaobject><imageobject><imagedata fileref=
IG(IG)
<inlinemediaobject><imageobject><imagedata fileref=
IG(IG)
<inlinemediaobject><imageobject><imagedata fileref=
IG(IG)
due to
p
<inlinemediaobject><imageobject><imagedata fileref=
IG(IG)
<inlinemediaobject><imageobject><imagedata fileref=
IG(IG)
<inlinemediaobject><imageobject><imagedata fileref=
IG(IG)
<inlinemediaobject><imageobject><imagedata fileref=
IG(IG)
<inlinemediaobject><imageobject><imagedata fileref=
IG(IG)
<inlinemediaobject><imageobject><imagedata fileref=
IG(IG)
<inlinemediaobject><imageobject><imagedata fileref=
IG(IG)
<inlinemediaobject><imageobject><imagedata fileref=
IG(IG)
<inlinemediaobject><imageobject><imagedata fileref=
IG(IG)
-
,
<inlinemediaobject><imageobject><imagedata fileref=
IG(IG)
<inlinemediaobject><imageobject><imagedata fileref=
IG(IG)
since
p
p
lower than 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu436/-/DC1
<inlinemediaobject><imageobject><imagedata fileref=
IG(IG)
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu436/-/DC1
In order t
&percnt;
&percnt;
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu436/-/DC1
p
<inlinemediaobject><imageobject><imagedata fileref=
IG(IG)
<inlinemediaobject><imageobject><imagedata fileref=
IG(IG)
<inlinemediaobject><imageobject><imagedata fileref=
IG(IG)
<inlinemediaobject><imageobject><imagedata fileref=
IG(IG)
ly
p
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu436/-/DC1
indeed 
due to


3 RESULTS

3.1 Comparison with WES-specific methods: NextGENe

and ADTEx

We decided to compare our CNA calling method in ultra-deep

targeted sequencing data with two WES-specific tools: ADTEx

(Amarasinghe et al., 2013), a method based on hidden Markov

models (HMMs) for CNA calling in targeted (exome) sequencing

data, and NextGENe, commercial software designed by

SoftGenetics. Although both ADTEx and NextGENe were

tested on WES data only, conceptually there is no reason why

these methods should not be applied to a smaller panel of tar-

geted genes (�400 in our case). We applied ONCOCNV,

ADTEx and NextGENe to a high amplicon depth sequencing

dataset of eight tumor samples. The array CGHs performed for

these samples showed different CNA complexity levels

(Supplementary Fig. S13). Although we also compared our

method with CONTRA (Li et al., 2012)—a method to detect

one-exon copy number changes as well as large CNAs in targeted

sequencing data—we do not report the results of this comparison

in this article as, in our data, CONTRA identified510% of the

true CNAs (Supplementary Fig. S14).
Until now, ADTEx has not allowed the creation of a baseline

using several control files. We therefore applied two possible

strategies: (i) we selected 1 of 15 control samples and used it as

a matched normal control and (ii) we merged the 13 control

samples in 1.AM file and used it a matched control. In the

ADTEx manual, it is advised to discard duplicate reads before

running the analysis. In our case, duplicate reads constitute

�95% of all reads (because of the high depth of coverage of

our data). We therefore applied two independent strategies to

call CNAs with ADTEx: with and without duplicate filtering.

For the four output files (single and merged controls; with and

without duplicates), we checked the correlation between the

NRCs and log ratio values calculated during CGH experiments.

The correlation values were similar for all four types of output

file (Supplementary Table S1). Following recommendations

from the authors of the ADTEx manual, we decided to use the

ADTEx analysis based on one control sample including dupli-

cate filtering (single control, no duplicates) for further

comparison.

3.1.1 Comparison of normalization results The values resulting

from the ONCOCNV normalization procedure correlate highly

with the log ratio values of the array CGH experiments per-

formed on the same samples (Figs 2C, D and 3A,

Supplementary Table S1). The correlation was higher for

ONCOCNV NRCs than for RCs normalized by ADTEx and

NextGENe. For example, for sample A1, the linear correlation

between CGH log ratio values and ONCOCNV NRCs was 0.83,

compared with 0.65 and 0.62 for ADTEx and NextGENe, re-

spectively (Supplementary Fig. S15). This demonstrates that the

normalization procedure used in ONCOCNV has clear advan-

tages over those used in CNA calling methods developed for

exome sequencing data analysis.

We confirmed that correction for the GC content plays a key

role in amplicon data normalization (Supplementary Fig. S16).

Correction for the technology-specific bias using the first PCs of

PCA is also important to decrease the variance and correct for

outliers in NRCs (Supplementary Figs S5 and S16C, D, G

and H).

3.1.2 Comparison of prediction accuracies For all samples,

ONCOCNV achieved much higher prediction accuracy than

the other two tools (Figs 3B–D and 4 and Supplementary

Table S2). Here, accuracy measures the proportion of genes

with correctly annotated copy number status: neutral, gain or

loss. The overall prediction accuracy varied from 0.74 to 0.99

for ONCOCNV, while it was significantly lower for the other

two tools: 0.56–0.92 for ADTEx and 0.44–0.85 for NextGENe

(Fig. 3B). For all methods, samples with a high number of gen-

omic rearrangements were more challenging to analyze correctly

than samples with less complex profiles (Supplementary Figs S17

and S18).

3.2 Validation on 30 ErbB2-positive tumor samples

To validate our method further, we applied ONCOCNV to ana-

lyze amplicon sequencing data generated for 30 ErbB2-positive

ovarian cancer samples. The copy number status of the ErbB2

gene was assessed via fluorescence in situ hybridization using

FFPE tissue sections. The gene ErbB2 (also known as HER2)

encodes a receptor tyrosine kinase whose activation plays an

important role in cell survival and drives cell proliferation (Tai

et al., 2010). ErbB2 is frequently overexpressed in breast, gastric,

ovarian and prostate cancer. ErbB2 overexpression most often

occurs because of a gene amplification (Pauletti et al., 1996).

Several drug compounds are used in clinics to block ErbB2 sig-

naling in the case of overexpression of ErbB2. Thus, a persona-

lized treatment is available for patients with amplification of the
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Fig. 3. Comparison of RC normalization and accuracy of CNV calls

achieved by ONCOCNV, ADTEx and NextGENe for samples from

dataset A. (A) Correlation between NRCs and log ratio values of array

CGH. (B) Prediction accuracy. Accuracy= (#True predictions)/(#All

predictions), where each prediction corresponds to a gene copy number

status (gain, neutral or loss). (C) True-positive rate. (D) False-positive

rate
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ErbB2 gene (approved in clinical practice for breast and gastric

cancer patients).
In 29 of the 30 ErbB2-positive samples, ONCOCNV predicted

a gain in the genomic region containing the ErbB2 gene (Fig. 5).

Twenty-eight samples carry more than one additional copy of

ErbB2 (orange points in Fig. 5). The high true-positive rate

(496%) demonstrates the validity of our approach for the detec-

tion of amplification of actionable genes.
Intriguingly, in 1 sample of the 30, ONCOCNV did not detect

any gain on chromosome 17 containing the ErbB2 gene

(Supplementary Fig. S19). The high quality of the corresponding

NRC profile suggests to us that the duplication of ErbB2 may

have happened in a subclonal population of cells that, for some

reason, was not present in the tissue section subjected to ampli-

con sequencing. Unfortunately, no more of this sample was

available and no further investigation was possible.

3.3 Validation on the SHIVA clinical trial dataset

We applied ONCOCNV to a low amplicon density dataset of

tumors sequenced in the SHIVA clinical trial (Le Tourneau et al.,

2012). The data corresponded to a targeted sequencing of 190

amplicons covering the exons of 46 actionable genes. The

number of amplicons varied from 1 to 17 per gene. As our algo-

rithm was designed to deal with data containing multiple ampli-

con regions per gene, for our analysis, we kept 11 genes. Each of

them contained at least seven amplicon regions. The 11 genes

selected were located on 10 different chromosomes. In the

SHIVA trial, a dual approach is used: amplicon sequencing is

used to detect single nucleotide variants and indels, whereas SNP

arrays provide information about the copy number status of the

genes and contamination by normal cells. We wanted to test

whether amplicon sequencing-based detection of CNAs could

replace currently used SNP arrays.
As when using only 11 genes, it is often impossible to assess

the correct zero level, we considered relative gains and losses in

the calculation of CNA prediction accuracy (see Discussion). For

example, if the SNP array technique detected a one copy loss of

the first five genes whereas ONCOCNV predicted a one copy

gain of the last six genes, we considered that the latter prediction

was correct (the absolute prediction accuracy is shown in

Supplementary Fig. S20).

We observed a high accuracy of CNA detection for samples

with low contamination by normal cells: for all but one sample

with518% contamination, the CNA detection accuracy was at

least 90% (Fig. 6). As we expected, our ability to detect CNAs

in low amplicon density datasets strongly depends on the

normal contamination (Pearson correlation coefficient 0.64,

P-value 10–4).

A

C

B

Accuracy

0.8879

0.6018

0.5250

CGHa

ONCOCNV

ADTEx

NextGENe

lo
g(

N
R

C
)

lo
g(

ra
tio

)

loss neutral gain

Fig. 4. Example of CNVs called by ONCOCNV, ADTEx and

NextGENe (Sample A1). (A) Array CGH profile for sample A1, seg-

mented using cghseg: purple (loss), orange (gain). x-axis corresponds to

probe indexes. (B) Copy number profile calculated by ONCOCNV. x-

axis corresponds to amplicon indexes. (C) Agreement between CNVs

predicted from array CGHs and amplicon sequencing. Each vertical

bar denotes a gene copy number status: white (neutral), purple (loss)

and orange (gain)
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Fig. 6. CNA detection accuracy in 30 samples from the SHIVA clinical

trial (dataset C). The accuracy of CNA detection is negatively correlated

with the percentage of normal cell contamination (Pearson r=–0.64,

P-value=10–4)

Fig. 5. Accuracy of the detection of the ErbB2 amplification. Normalized

read count (NRC) and copy number prediction for the ErbB2 gene and

six adjacent genes in 30 Erbb2-positive ovarian cancer samples (dataset

B). The Y-axis shows the average log(NRC) per gene. The color corre-

sponds to the predicted copy number status: purple (loss), white (neutral),

orange (gain). The darker orange color shows a gain of two and more

copies of the gene
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3.4 Data and software availability

Amplicon sequencing and CGH data and the ONCOCNV

source code are available at http://oncocnv.curie.fr/

4 DISCUSSION

We proposed a method to analyze amplicon sequencing data to

be used to detect CNAs involving at least several exons. Our

method, ONCOCNV, demonstrated a high accuracy of CNA

predictions for the samples for which we had the results of

array CGH analysis as gold standard. ONCOCNV significantly

outperformed methods developed for exome sequencing data

analysis. This is because of the extensive normalization strategy,

which includes normalization for the GC content, amplicon

length (via LOESS correction) and other technology-specific

biases (via PCA of the control samples).
An important advantage of ONCOCNV is the refinement of

breakpoints falling initially within a gene (i.e. after the segmen-

tation of NRC profiles). ONCOCNV reanalyzes the NRCs up-

stream and downstream of the putative breakpoint and decides

whether intragenic breakpoint has indeed taken place and that it

is not the result of inaccurate segmentation (Supplementary Fig.

S12).
In our dataset, we observed samples (e.g. controls 3 and 9,

Supplementary Fig. S2A) where a large fraction of amplicons

(26% for both) have zero or extremely low RCs. We would

like to point out that ONCOCNV is able to detect such artifacts

and analyze CNAs correctly in the corresponding samples.
The prediction of gains and losses by ONCOCNV includes

information on average log ðNRCÞ. In addition, it estimates pos-

sible copy numbers. This estimate is based on the assumption

that the tumor sample genome is diploid and that the sample is

not contaminated by normal cells. We are aware that this as-

sumption might be far from being true. However, we prefer to

provide an estimate of the probable copy number to allow the

user to distinguish between gains and amplifications, and be-

tween one and two allele losses. The question of predicting the

exact copy number cannot be solved by using copy number pro-

files alone. The assessment of B allele frequencies provides a

possible solution (Popova et al., 2009). We did not use this so-

lution in ONCOCNV because of the high dispersion of B allele

frequencies in the amplicon sequencing data (data not shown).
CNAs detected by ONCOCNV (and by other software whose

algorithm is based only on the analysis of copy number profile)

are relative to the evaluated zero level. For instance, if we meas-

ure the copy numbers of only a pair of genes, we will not be able

to see a gain or loss if this happens simultaneously in both genes.

Thus, to properly estimate the zero level, many genes should be

included in the targeted gene panel.
As we expected, we detected a fall in the CNA detection ac-

curacy for samples that were highly contaminated by normal

cells. In this situation, the noise in measurements is comparable

with the expected difference between measurements in the case of

one copy gain or loss. As our approach does not use information

about B allele frequencies, certain combinations of normal con-

tamination and tumor ploidy significantly impair the efficiency

of the technique. This is especially true when there are a small

number of measurements (amplicons) per gene.

We would like to point out that ONCOCNV does not detect

one-amplicon amplifications/deletions. We believe the noise in

current amplicon-based technologies does not allow detection

of such CNVs with high certainty. However, there are methods,

such as CONTRA (Li et al., 2012), which predict the CNVs of

single amplicon regions.
We do not position ONCOCNV as a tool for exome sequen-

cing data analysis. Unlike many exome sequencing data analysis

tools, ONCOCNV does not take into account B allele frequen-

cies. Because of this limitation, ONCOCNV is not able to evalu-

ate the level of the contamination by normal cells or improve the

accuracy of CNA calling by simultaneously processing copy

number and B allele frequency profiles (Boeva et al., 2012;

Sathirapongsasuti et al., 2011).

Our analysis of biases intrinsic to amplicon sequencing re-

vealed two factors influencing the RCs: amplicon length and

GC content. As LOESS correction is possible only for the ampli-

con sizes frequently present in the dataset (from 70 to 140bp in

our case), we advise using as narrow a range of amplicon lengths

as possible in the future design of amplicon regions. Similarly,

for the GC-content normalization, the CNA prediction may be

inaccurate for amplicons with extremely high or low GC content.

This is especially true in the case when all amplicon regions

within a gene (usually overlapping with exons) have an extremely

high or low GC content. For such genes, we advise designing

additional amplicons in the intronic regions with moderate GC

content if it is planned to completely bypass array CGH or a

similar technique to predict the copy number status of the tar-

geted regions.

5 CONCLUSIONS

We present ONCOCNV, a computational method and software

tool to detect CNAs in tumor amplicon sequencing data. Our

method includes normalization of RCs for library-specific biases

(library size, GC content and amplicon length) and for technol-

ogy-specific bias. To normalize for the latter, we use a set of

control samples. We demonstrate that ONCOCNV significantly

outperforms methods such as ADTEx (Amarasinghe et al., 2013)

and NextGENe developed for the analysis of exome sequencing

data. To make ONCOCNV useful for both bioinformaticians

and clinicians, we output both detailed and summarized results,

as well as a visualization of the annotated copy number profile

(Fig. 4B). We believe that the use of our method on large panels

of targeted genes could potentially replace CGH or SNP arrays

in the future.

Funding: The SHIVA trial is supported by the grant ANR-10-

EQPX-03 from the Agence Nationale de le Recherche

(Investissements d’avenir) and SiRIC (Site de Recherche

Int�egr�e sur le Cancer). High-throughput sequencing was per-

formed by the NGS platform of the Institut Curie, supported

by grants ANR-10-EQPX-03 and ANR10-INBS-09-08 from the

Agence Nationale de la Recherche (Investissements d’avenir) and

by the Canceropôle Ile-de-France.

Conflict of Interest: none declared.

3449

Detection of copy number aberrations in amplicon sequencing data

,
http://oncocnv.curie.fr/
due to
-
principal component analysis
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu436/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu436/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu436/-/DC1
read count
<inlinemediaobject><imageobject><imagedata fileref=
IG(IG)
which
to
Since
Due to
; Boeva etal., 2012
read count
-
Since
: 
-
-
-
read count
-


REFERENCES

Amarasinghe,K.C. et al. (2013) CoNVEX: copy number variation estimation in

exome sequencing data using HMM. BMC Bioinformatics, 14, S2.

Beadling,C. et al. (2013) Combining highly multiplexed PCR with semiconductor-

based sequencing for rapid cancer genotyping. J. Mol. Diagn., 15, 171–176.

Benjamini,Y. and Hochberg,Y. (1995) Controlling the false discovery rate: a

practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B

Methodol., 57, 289–300.

Boeva,V. et al. (2011) Control-free calling of copy number alterations in deep-

sequencing data using GC-content normalization. Bioinformatics, 27, 268–269.

Boeva,V. et al. (2012) Control-FREEC: a tool for assessing copy number and allelic

content using next-generation sequencing data. Bioinformatics, 28, 423–425.

Cleveland,W.S. et al. (1992) Local regression models. In: Chambers,S.J.M. and

Hastie,T.J. (eds) Statistical Models. Wadsworth & Brooks/Cole, Pacific

Grove, CA, pp. 309–376.

Fraley,C. et al. (2012) MCLUST Version 4 for R: Normal Mixture Modeling for

Model-Based Clustering, Classification, and Density Estimation. Department of

Statistics, University of Washington, Seattle, WA.

Fraley,C. and Raftery,A.E. (2002) Model-based clustering, discriminant analysis,

and density estimation. J. Am. Stat. Assoc., 97, 611–631.

Garraway,L.A. and Lander,E.S. (2013) Lessons from the cancer genome. Cell, 153,

17–37.

Gusnanto,A. et al. (2012) Correcting for cancer genome size and tumour cell con-

tent enables better estimation of copy number alterations from next-generation

sequence data. Bioinformatics, 28, 40–47.

Hyv€arinen,A. and Oja,E. (2000) Independent component analysis: algorithms and

applications. Neural Netw. Off. J. Int. Neural Netw. Soc., 13, 411–430.

Li,J. et al. (2012) CONTRA: copy number analysis for targeted resequencing.

Bioinformatics, 28, 1307–1313.

Olshen,A.B. et al. (2004) Circular binary segmentation for the analysis of array-

based DNA copy number data. Biostatistics, 5, 557–572.

Parzen,E. (1962) On estimation of a probability density function and mode. Ann.

Math. Stat., 33, 1065–1076.

Pauletti,G. et al. (1996) Detection and quantitation of HER-2/neu gene amplifica-

tion in human breast cancer archival material using fluorescence in situ hybrid-

ization. Oncogene, 13, 63–72.

Popova,T. et al. (2009) Genome alteration print (GAP): a tool to visualize and mine

complex cancer genomic profiles obtained by SNP arrays. Genome Biol., 10,

R128.

Sathirapongsasuti,J.F. et al. (2011) Exome sequencing-based copy-number variation

and loss of heterozygosity detection: ExomeCNV. Bioinformatics, 27,

2648–2654.

Small,M.B. et al. (1987) Neoplastic transformation by the human gene N-myc.Mol.

Cell. Biol., 7, 1638–1645.

Tai,W. et al. (2010) The role of HER2 in cancer therapy and targeted drug delivery.

J. Control. Release, 146, 264–275.

Le Tourneau,C. et al. (2012) Designs and challenges for personalized

medicine studies in oncology: focus on the SHIVA trial. Target. Oncol., 7,

253–265.

Venkatraman,E.S. and Olshen,A.B. (2007) A faster circular binary segmenta-

tion algorithm for the analysis of array CGH data. Bioinformatics, 23,

657–663.

Zhou,W. et al. (2014) Bias from removing read duplication in ultra-deep sequencing

experiments. Bioinformatics, 30, 1073–1080.

3450

V.Boeva et al.


