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ABSTRACT Multi-parental recombinant inbred populations, such as the Collaborative Cross (CC) mouse
genetic reference population, are increasingly being used for analysis of quantitative trait loci (QTL).
However specialized analytic software for these complex populations is typically built in R that works only on
command-line, which limits the utility of these powerful resources for many users. To overcome analytic
limitations, we developed gQTL, a web accessible, simple graphical user interface application based on the
DOQTL platform in R to perform QTL mapping using data from CC mice.
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The utility of model organisms for genetic analysis of biological systems
has dramatically increased with the establishment of genetic reference
populations. Modern, multi-parental populations specifically designed
for quantitative trait locus (QTL) and systems genetics analyses orig-
inated with the Collaborative Cross (CC) mouse genetic reference pop-
ulation (Threadgill et al. 2002; Threadgill and Churchill 2012). The CC
population is derived from eight founder strains, A/J, C57BL/6J, 129S1Sv/
ImJ, NOD/ShiLtJ, NZO/H1LtJ, CAST/EiJ, PWK/PhJ, and WSB/EiJ, rep-
resenting the three major Mus musculus subspecies (M. m. musculus,
M.m. domesticus, andM.m. castaneus) and which captures 90% of the
genetic variation in laboratory mice (Roberts et al. 2007). Although the
CC has an organized genetic structure (Churchill et al. 2004) and is
increasingly being used to identify genetic factors controlling
a variety of phenotypes from infectious disease and cancer to
molecular circuitry (Rasmussen et al. 2014; Dorman et al. 2016;
Venkatratnam et al. 2018), genetic analysis of phenotypes using
the CC can be challenging due to the multi-allelic structure of

the population and complex analytic tools needed to perform
analyses (Aylor et al. 2011).

Although not a replicable population like the CC, the Diversity
Outbred (DO) population was derived from the CC population to
increase the recombination load inorder to improvemapping resolution
for QTL analysis (Svenson et al. 2012). To support genetic analysis
using the DO population, DOQTL was developed (Gatti et al. 2014),
which also is increasingly being used for analysis of CC data. DOQTL is
an R-based program developed to overcome several analytic challenges
of multi-parental populations by implementing an integrated pipeline
for haplotype reconstruction, regressionmodeling to account for kinship,
significance thresholds through permutation analysis, and combined as-
sociation mapping and parental allele-specific tests. Although DOQTL
has become the predominant analytic platform for analysis of CC data, it
presents a substantial barrier for most biologists with limited computer
programming background. Exploiting recent advancements in web
framework technologies in R programming, we developed gQTL, which
is web application to simplify genetic analyses using data collected from
CC mice that will greatly extend the utility of the CC model for a much
broader user base.

METHODS
gQTL was implemented using the R Shiny framework (Chang et al.
2016), which provides necessary tools for rapid prototyping of interac-
tive web applications. gQTL relies on functions from the DOQTL R
package to perform QTL mapping (Gatti et al. 2014). Since the CC
population has a fixed genetic architecture, associated genotypes and
haplotype probabilities for each CC line are stored and loaded into
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memory in the backend when gQTL is launched. The genotype prob-
abilities for each CC and founder strain were obtained from UNC Sys-
tems Genetics data repository (http://csbio.unc.edu/CCstatus/index.py),
while the MegaMUGA and GigaMUGA marker set from which the
genotypes are determined in the CC was obtained from The Jackson
Laboratory data repository (ftp://ftp.jax.org/MUGA/). The user has the
ability to choose between either of these marker sets during the sub-
mission of the analysis.

Data availability
The authors affirm that all datanecessary for confirming the conclusions
of this article are represented fully within the article and its figures.
Supplemental material available at Figshare: https://doi.org/10.25387/
g3.6453092.

RESULTS AND DISCUSSION
After creating a user account, data can be uploaded into a server-side
deployment of gQTL, which accepts simple tab delimited or comma
separated text files containing a sex identifier and multiple phenotype
columns from individual or strain pooled CC data (Figure 1A). At least
3 columns containing Strain (CC), Sex and Phenotype values are man-
datory. The CC column can be official or alias names (Supplementary
Material, Table S1). Each row can be a linemean or individualmice, sex
column should contain M or F, and multiple phenotype columns can
be used. In a recent toxicology study, we used the CC population to
evaluate the inter-strain variability in oxidative metabolism of trichlo-
roethylene (TCE) and found several QTL controlling tissue TCE levels
and expression of specific genes using DOQTL (Venkatratnam et al.
2017); datasets from this project are used here to illustrate simplicity of
gQTL (Supplemental Material, Table S2). After uploading the data file,
users can remove outliers, normalize the data and perform QTL map-
ping. Uploaded data are presented as a table, wherein specified pheno-
type columns can be selected for analysis (Figure 1B). Data from
specific CC strains for each phenotype can be manually removed using
simple check boxes, or automatic outlier removal can be selected. Trait
outliers are detected using the standard boxplot outlier rule, 1.5 ·
interquartile range (IQR) (Tukey 1977). Multiple data transformation
choices (log, sqrt, rankZ) are available for user selection, or an auto-
mated transformation selection feature can be specified that uses the
Shapiro-Wilk test of normality to determine the optimal transforma-
tion between log and sqrt (Shapiro and Wilk 1965). For a selected
phenotype column, data quality plots, including raw and normalized
histogram and QQ plots, are displayed (Figure 2). Finally, individual or
multiple phenotype data columns can be submitted to the server for
QTL mapping. Significance thresholds are determined through permuta-
tion analysis using a user-specified number of permutations (Churchill
and Doerge 1994). QTL mapping with 1000 permutations typically takes
about 5 hr to finish due to the fact that DOQTL runs on a single core;
future implementations will transition to multiple cores. E-mail notifica-
tions keep the user informed on the current state of the job(s) running on
the server. Each user account can store up to seven different analyses for
later revisiting and re-submission of QTL mapping jobs with different
parameters.

After the analyses are complete, QTL results can be explored using
the web application (Figure 2; Gatti et al. 2014). Linkage plots are
displayed along with permutation determined LOD scores for the 85,
90 and 95% significance threshold levels. Chromosome-wide, CC foun-
der strain-specific allele effect plots are automatically generated for any
locus reaching significance that shows the marker ID with the maximal
LOD and its location in cM andMb coordinates on Build 37 (mm9) or
Build 38 (mm10) depending on marker set selected, as well as Mb

Figure 1 Screen shots of data entry and initial processing. (A) Data
loading and file type selection. (B) Uploaded data visualization, outlier
selection, and normalization options.
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Figure 2 Screen shots of QTL analysis results. (A) Options for data visualization with normalized histogram. (B) QQ plot. (C) QTL plot with
threshold levels and locations of significant markers. (D) Allele effect and genotype-phenotype plots. (E) A zoomed version of the significant QTL
interval.
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coordinates of the confidence interval based on a 95%Bayesian credible
interval (Sen and Churchill 2001). Higher resolution images of the 95%
intervals can be selected that show underlying gene annotations. Other
chromosomes that may contain regions of interest but not reach at least
85% significance can be manually selected to generate additional chro-
mosome-specific allele effect plots. For those loci reaching at least 85%
significance thresholds, phenotypes for each CC sample is also plotted
by genotype to visualize those genotypes driving the QTL signal. A
comprehensive PDF report is automatically generated for archiving
(Supplemental Material, Figure S1). Additionally, a ZIP archive con-
taining the PDF report along with publication quality PNG figures at
600 dpi can be downloaded.

gQTL v1.0 provides an easy to use graphical user interface for QTL
mapping analyses of studies in CCmice with the upload of quantitative
phenotype data collected inCCmice being the only input required from
users. We plan to extend the application to include the ability to use
phenotypes from CC Recombinant Inbred Intercrosses (CC-RIX) in
subsequent version releases (Zou et al. 2005).

WEB RESOURCES
The web application is freely available at: https://genomics.tamu.edu/
gqtl. A built-in help menu exists on gQTL with instructions on setting
up user accounts, uploading phenotype data files, inspecting phenotype
data, running QTL analysis, viewing QTL analysis results and generat-
ing reports of QTL results. The source code, from the original devel-
opers (Gatti et al. 2014), for the underlyingDOQTL package is available
at GitHub (https://github.com/dmgatti/DOQTL).
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