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Purpose: To develop a head and neck normal structures autocontouring tool that could be used to
automatically detect the errors in autocontours from a clinically validated autocontouring tool.
Methods: An autocontouring tool based on convolutional neural networks (CNN) was developed for
16 normal structures of the head and neck and tested to identify the contour errors from a clinically
validated multiatlas-based autocontouring system (MACS). The computed tomography (CT) scans
and clinical contours from 3495 patients were semiautomatically curated and used to train and vali-
date the CNN-based autocontouring tool. The final accuracy of the tool was evaluated by calculating
the Sørensen–Dice similarity coefficients (DSC) and Hausdorff distances between the automatically
generated contours and physician-drawn contours on 174 internal and 24 external CT scans. Lastly,
the CNN-based tool was evaluated on 60 patients’ CT scans to investigate the possibility to detect
contouring failures. The contouring failures on these patients were classified as either minor or major
errors. The criteria to detect contouring errors were determined by analyzing the DSC between the
CNN- and MACS-based contours under two independent scenarios: (a) contours with minor errors
are clinically acceptable and (b) contours with minor errors are clinically unacceptable.
Results: The average DSC and Hausdorff distance of our CNN-based tool was 98.4%/1.23 cm for
brain, 89.1%/0.42 cm for eyes, 86.8%/1.28 cm for mandible, 86.4%/0.88 cm for brainstem, 83.4%/
0.71 cm for spinal cord, 82.7%/1.37 cm for parotids, 80.7%/1.08 cm for esophagus, 71.7%/0.39 cm
for lenses, 68.6%/0.72 for optic nerves, 66.4%/0.46 cm for cochleas, and 40.7%/0.96 cm for optic chi-
asm. With the error detection tool, the proportions of the clinically unacceptable MACS contours that
were correctly detected were 0.99/0.80 on average except for the optic chiasm, when contours with
minor errors are clinically acceptable/unacceptable, respectively. The proportions of the clinically
acceptable MACS contours that were correctly detected were 0.81/0.60 on average except for the optic
chiasm, when contours with minor errors are clinically acceptable/unacceptable, respectively.
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Conclusion: Our CNN-based autocontouring tool performed well on both the publically available
and the internal datasets. Furthermore, our results show that CNN-based algorithms are able to iden-
tify ill-defined contours from a clinically validated and used multiatlas-based autocontouring tool.
Therefore, our CNN-based tool can effectively perform automatic verification of MACS contours. ©
2019 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Asso-
ciation of Physicists in Medicine. [https://doi.org/10.1002/mp.13814]

Key words: autocontouring, contouring QA, convolutional neural network, deep learning, head and
neck

1. INTRODUCTION

Manual contouring is a time-consuming process1,2 and prone
to inter- and even intrauser variabilities.3–8 An autocontour-
ing system can save the experienced user’s time and reduce
both inter- and intra-user variabilities. However, an experi-
enced user must review every contour generated from an
autocontouring system before it would be used clinically. A
previous study showed that automated contouring of head
and neck structures can save 180 min per patient, but still
requires 66 min to edit the automatically generated contours.9

Although the editing process takes significantly less time than
the manual contouring process, this process still requires
user’s judgment, which can be biased and time-intensive, and
errors could still be missed. An automated contour review
process that automatically flags suspicious cases could poten-
tially be more objective, and provide additional time-savings.
Furthermore, the automatic review process would be an inte-
gral part of an automated radiation treatment planning sys-
tem; we are currently developing such a system,10 which asks
the users to review all the automatically generated contours
every time a new treatment plan is created.

In this study, an autocontouring tool based on convolu-
tional neural networks (CNN) was developed and tested. We
then assess the error detection ability of our tool when
applied to computed tomography (CT) scans with normal
structures contoured using an in-house atlas-based contour-
ing tool. This multi-atlas based autocontouring system
(MACS) is the primary contouring tool for a fully automated
radiation treatment plan generator,10 and it has been used suc-
cessfully for clinical11 and research purposes for several
years.12–15 Specifically, it is used to contour the normal struc-
tures for nearly all head and neck patients who receive radio-
therapy at our institution, so the development of a CNN-
based autocontouring tool promises to augment and provide
quality assurance to MACS.

Machine learning-based contouring error detection algo-
rithms have shown promising results in various radiation
treatment sites. McIntosh et al.,16 used image features with
conditional random forests algorithm to detect contouring
errors in thoracic structures. Hui et al.,17 applied principal
component analysis and Procrustes analysis on shapes of
contours to detect contouring errors in male pelvis. Chen
et al.,18 identified contouring errors in head and neck
region by the geometric attribute distribution models.

Furthermore, McCarroll et al.,19 developed a bagged tree
classification model using contour features to predict the
errors in MACS contours and achieved 0.63 accuracy.
However, many of the erroneous MACS contours still have
reasonably good shapes and relative position although the
absolute positions are off by few millimeters to centime-
ters, and these errors are difficult to be detected by the
machine learning-based algorithms using the shapes and/or
features of the contours. On the other hand, Beasley
et al.,20 used volumetric overlap and distance between
expert’s contours and automatically generated contours to
detect errors in the automatically generated contours, and
was able to achieve AUC of 0.85–0.90 in detecting errors
in parotids contours. As this approach is effective to detect
even small offsets in contours, we implement the similar
approach to detect errors in MACS contours by replacing
the expert with the CNN-based autocontouring tool.

The CNN algorithm was chosen to develop an autocon-
touring tool because other studies21–26 have shown that
CNN-based models outperform most other machine learning-
based and model-based algorithms in contouring head and
neck structures. Zhu et al.,22 showed that their CNN-based
autocontouring algorithm for head and neck normal struc-
tures could achieve the equivalent performance with the best
MICCAI 2015 challenge results with the atlas- and model-
based algorithms.27 Google DeepMind23 demonstrated that
their CNN-based autocontouring algorithm was able to
achieve the near expert dosimetrist level accuracy and they
also provided the ground truth contours on their test dataset
to enable other autocontouring systems to benchmark the per-
formance. However, most of the autocontouring tools were
developed for internal use or commercial purpose and thus
not publicly available. Therefore, we develop our own CNN-
based autocontouring tool and provide the performance of
our tool with the benchmark data from Google DeepMind.

2. MATERIALS AND METHODS

The CNN-based autocontouring tool was developed to
generate contours for 16 head and neck normal structures:
brain, brainstem, spinal cord, left and right cochlea, esopha-
gus, left and right eyes, left and right lenses, mandible, optic
chiasm, left and right optic nerves, and left and right parotids.
These are the structures for which MACS can generate
contours.
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2.A. CNN-based autocontouring model

2.A.1. Training and validation data

The CT scans and the corresponding clinical contouring
data of the 3495 patients who received external photon beam
radiation treatment from September 2004 to June 2018 at the
University of Texas MD Anderson Cancer Center were used
as the training and validation data. Of these patients, 1169
had head and neck cancer, 1319 had brain cancer, and 1007
had thoracic or esophageal cancer. Contours for each struc-
ture were acquired independently to maximize the amount of
data, and thus, the number of available structures in a single
patient’s data varied from 1 to 16. The total number of CT
scans used for training and validation for each structure is
given in Table I. Of these scans, 80% were used for training,

and 20% were used for cross-validation. The data were col-
lected solely on the basis of their structure labels, but manual
review was conducted when two or more labels indicated the
same structure in the same CT scan.

The data curation was performed semiautomatically as
described in Fig. 1. First, the acquired clinical contours
and the corresponding scans were given to a CNN-based
segmentation model for training. The model was trained
until it could roughly segment the structures but was still
underfitted. Then, the contours were automatically gener-
ated on the training data with the trained model, and the
Sørensen–Dice similarity coefficients (DSCs)14 between
the original training data and the predicted contours were
calculated. When a calculated DSC was less than a certain
value (0.6 for structures larger than an eye, 0.4 for smaller
structures), the original contour was manually reviewed,
and any of the incorrect clinical contours were removed
from the training dataset. Once the entire set of training
data was reviewed, we trained the model with the “re-
fined” dataset again. This process was repeated two to
three times, until all the significantly incorrect contours
were eliminated from the training dataset.

Next, the training data were flipped and rotated for data
augmentation. First, the structures were doubled by horizon-
tal flipping. The paired structures had to be relabeled owing
to their change in orientation from flipping (e.g., right eye
becomes left eye after flipping). Then, the data were tripled
by rotation around the longitudinal axis at two random angles
between �30° and 30°.

2.A.2. Training the CNN-based segmentation model

The proposed model uses a combination of classification
and segmentation CNN models. The Inception-ResNet-v228

TABLE I. The number of datasets used for training and validation for each
structure.

Structure
Number of available
clinical contours

Brain 1297

Brainstem 1702

Spinal cord 1332

Mandible 825

Esophagus 1134

Optic chiasm 983

Parotid (left, right) 997, 1016

Eyes (left, right) 978, 976

Lens (left, right) 1070, 1067

Optic nerve (left, right) 997, 996

Cochlea (left, right) 1664, 1662

FIG. 1. (a) The semiautomated method for data curation. When the Dice similarity coefficients was lower than required by the criteria, the original contour was
reviewed manually. (b) Example of a structure labeled incorrectly (the right eye labeled as left eye). (c) Error in which the teeth were included as part of the mand-
ible. [Color figure can be viewed at wileyonlinelibrary.com]
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image classification model was trained to detect the existence
of the structures in each CT slice. The classification results
were used to determine the range of CT slices containing each
structure, as shown in Fig. 2. The CT slices within the range,
as shown in Fig. 2(b), were then given as an input to the seg-
mentation models in the inference phase. The binary classi-
fier was used to determine the presence or the absence of
each structure in each image slice except for the brainstem
and spinal cord. Instead, a three-class classifier was used to
select between the brainstem, spinal cord, and the absence of
both structures, because they are physically connected in the
axial direction. The ground truth for training and validation
were created by labeling the slices containing clinical contour
as presence.

We used two CNN-based models for segmentation. The
small structures (eyes, lenses, optic chiasm, optic nerves, and
cochleas) were segmented using the V-Net29 three-dimen-
sional (3D) CNN-based model. The additional batch renor-
malization layers30 were applied to the end of every
convolutional and up-convolutional layer of the original V-
Net model. The other structures were segmented using the
FCN-8s,31 a two-dimensional (2D) CNN-based architecture.
The batch renormalization layers were also added to the end
of every layer in the FCN-8s model.

The input size of 20 slices 9 512 9 512 was used for
the segmentation of the eyes and the associated structures
(lenses, optic nerves, and optic chiasm). According to pre-
vious studies, the median (�standard deviation) diameter
of a human eye is 24.9 � 2.2 mm,32 and the mean
heights of optic nerves and optic chiasm are 3.0 and
3.5 mm, respectively.33 Thus, we can assume that eyes
and all associated structures are located within �10 slices
(�25 mm) from the longitudinal center of the eyes. An
input image size of 20 slices 9 512 9 512 was also cho-
sen for cochlea segmentation for consistency, even though
the cochleas were mostly covered within five CT slices.
The rest of the structures were segmented with the FCN-
8s. The size of the input images was 512 9 512 9 1

channel. Only the CT slices that were classified to con-
tain the structure of interest were transferred to the FCN-
8s model for segmentation. All of the classification and
segmentation architectures were trained independently for
each structure.

2.A.3. Training parameters

The pixel sizes of the CT scans in the transverse plane var-
ied from 0.53 to 1.37 mm, and the slice thicknesses varied
from 1.0 to 3.75 mm, respectively. All data were resampled
to have the same voxel size of
0.9766 mm 9 0.9766 mm 9 2.5 mm. The CT numbers
lower than �1000 HU and higher than 3000 HU were
clipped. Then, the CT numbers ranged from �1000 to
3000 HU were rescaled to the 0–255 pixel intensity range.

An NVIDIA DGX Station with four V100 GPUs was
used to train our models. The loss function for the segmen-
tation models was DSC as it was our metric to determine
the accuracy of a segmentation model. A weighted cross-
entropy was used as a loss function for the classification
model to compensate for the data imbalance between the
number of slices with and without the organ of interest.
The weight was determined to be the ratio the number of
absence to the number of presence. The Adam optimizer34

was used as an optimization algorithm. The Adam opti-
mizer’s parameters beta1, beta2, and epsilon were set to
0.9, 0.999, and 10�8, respectively.

2.B. Evaluation

2.B.1. Model accuracy

Twelve CT scans with baseline contouring atlas of the
head and neck MACS and 162 CT scans from head and neck
cancer patients who received proton radiation treatment at
the University of Texas MD Anderson Cancer Center were
used as the test data. Similar to the training and validation

FIG. 2. Application of the convolutional neural network-based classification model to a computed tomography (CT) scan. The presence or absence of mandible
on each CT slice was evaluated as shown in (a), and once the evaluation was done for every structure on all CT slices, the range of each structure in the longitudi-
nal axis was selected for each patient as shown in (b). [Color figure can be viewed at wileyonlinelibrary.com]
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data, the number of available structures in a single patient’s
data varied from 1 to 16, and the total number of CT scans
used for each structure is given in Table II. The accuracy of
the model was measured by the DSC and the Hausdorff dis-
tance14 between the model-generated contours and the man-
ual contours.

Also, 24 CT scans from The Cancer Imaging Archive
(TCIA) with 14 normal structure contours (everything except
esophagus and optic chiasm) were used as an external test
dataset. The physician-drawn contours for the TCIA dataset
were provided by Google DeepMind.23 DeepMind also pub-
lished the performance of their autocontouring model, which
achieved near expert dosimetrist level performance on the
TCIA dataset. We applied our CNN-based model to the same
TCIA data, calculated the DSC between our contours and the
physician-drawn contours from DeepMind, and compared the
calculated DSC with the DeepMind’s published DSC. We
used a two-tailed Student’s t-test to detect any statistically sig-
nificant difference between the two models, with significance
defined by a P < 0.05.

2.B.2. Automatic verification of automatically
generated contours

We trained and tested our CNN-based autocontouring sys-
tem as an automatic verification tool with 48 CT scans with
MACS contours and 12 CT scans with the baseline contour-
ing atlas of the head and neck MACS, all of which were inde-
pendent from the training dataset for the CNN-based
autocontouring system. The contours were scored by an expe-
rienced head and neck radiation oncologist on a scale of 1 to
3, where 1 was a clinically acceptable contour without
editing (no error), 2 was a contour requiring minor editing
(minor error), and 3 was a clinically unacceptable contour
requiring major editing (major error),35 and the number of
MACS contours for each score are given in Table III. We
then generated our CNN-based model contours on these
patients and calculated the DSC between the MACS con-
tours and the CNN-based model contours. Of these 60
patients, 40 patients were used for receiver operating char-
acteristic (ROC) analysis based on their DSC and physi-
cian scores. We created two ROC curves per organ for
two scenarios; (a) considering minor contouring errors to
be clinically acceptable, so we would only detect major
contouring errors, and (b) considering minor contouring
errors to be clinically unacceptable, so we would detect
both minor and major contouring errors. The DSC thresh-
old, the minimum DSC to pass the automatic verification
tool, was derived not to include any major errors for the
scenario (a), and to include less than 30% of the minor
errors for the scenario (b). Furthermore, area under the
curves (AUCs) of the ROC curves were calculated to
quantitate the relationship between DSC and physician
scores.

To test the DSC thresholds, we calculated the sensitiv-
ity and specificity on the other 20 patient data. We
defined clinically acceptable contours to be positive and
clinically unacceptable contours to be negative. Therefore,

TABLE III. The number of multiatlas-based autocontouring system (MACS) contours with each score for the 60 datasets.

Structure No errors

Training dataset

NA* No errors

Testing dataset

NA*Minor errors Major errors Minor errors Major errors

Brain 28 2 5 5 13 2 1 3

Brainstem 26 7 2 5 13 3 1 3

Cochleas 28 29 13 10 13 16 5 6

Lenses 43 7 30 0 26 2 12 0

Mandible 16 12 8 4 8 5 4 3

Optic nerves 28 25 17 10 15 8 11 6

Eyes 35 20 19 6 17 11 8 4

Parotids 39 18 13 10 21 9 4 6

Spinal cord 27 6 2 5 14 3 0 1

Esophagus 11 9 20 0 10 5 4 1

Optic chiasm 15 8 12 5 6 8 3 3

NA*: Only a subset of MACS contours available for some patients.

TABLE II. The number of datasets used for testing for each structure.

Structure
Number of available
clinical contours

Brain 108

Brainstem 126

Spinal cord 162

Mandible 117

Esophagus 111

Optic chiasm 48

Parotid (left, right) 168, 159

Eyes (left, right) 105, 106

Lens (left, right) 79, 80

Optic nerve (left, right) 67, 68

Cochlea (left, right) 77, 75
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the sensitivity measures the proportion of the clinically
acceptable contours that are correctly detected as such and
the specificity measures the proportion of the clinically
unacceptable contours that are correctly detected as such.
As the DSC thresholds were derived independently for
each scenario, the sensitivity and specificity were calcu-
lated independently for each scenario with corresponding
thresholds as well.

3. RESULTS

3.A. Model accuracy

The average DSCs and Hausdorff distances between our
model contours and clinical contours are calculated in
Table IV. For the large structures created with FCN-8 archi-
tecture, the DSCs were higher than 80.7%, and for the small
structures created with the V-Net model, the DSCs were
higher than 65.2% except for the optic chiasm.

The DSCs between our model contours and the Deep-
Mind physician-drawn contours and between the Deep-
Mind model contours and the DeepMind physician-drawn
contours are in Table V. The differences between the mod-
els for both lenses, both parotids, the left optic nerve, the
left eye, and the spinal cord were not statistically signifi-
cant, and our model performed better than DeepMind’s in
contouring the brainstem. Our model performed worse
than DeepMind’s in the brain, both cochleas, the mand-
ible, the right optic nerve, and the right eye, but the differ-
ences were smaller than 3.5% except both cochleas. The
differences in the standard deviations of the DSCs of the

two models were small (<2%) except for the brainstem
and lenses, where DeepMind’s outcomes were more spar-
sely distributed than our model’s outcomes. The Hausdorff
distance between our model contours and DeepMind
physician-drawn contours are in Table VI, and the average
Hausdorff distances were <1.78 cm for all structures
except for the brain.

3.B. Automatic verification of automatically
generated contours

The ROC curves based on DSC and physicians’ scoring
for the 40 patients are shown in Fig. 3. The average and
minimum AUCs were 0.98 and 0.95 (excluding the optic
chiasm) if minor errors were considered clinically accept-
able. That is, for the scenario where we wish to only
detect situations where major edits are needed. The aver-
age and minimum AUCs were 0.85 and 0.66 if minor
errors were clinically unacceptable. The sensitivity and
specificity based on the given DSC thresholds on the 20
patients were given in Table VII. If minor errors were
clinically acceptable, the average sensitivity and specificity
was 0.81 and 0.99, respectively, excluding the optic chi-
asm. If minor errors were considered clinically unaccept-
able, the sensitivity and specificity was 0.61 and 0.80,
respectively, excluding the optic chiasm.

The MACS mandible contours with errors are demon-
strated in Fig. 4. Figure 4(a) shows the major error in the
mandible which was detected by our system (DSC = 74.0).
Figure 4(b) shows the minor error case detected by our sys-
tem (DSC = 83.5), and Fig. 4(c) shows the minor error case
undetected by our system (DSC = 86.7). As shown in
Figs. 4(b) and 4(c), most of the minor error cases are only
required to modify very small volumes which have a small
impact on DSC, so the DSC distributions of no errors and
minor errors are difficult to be distinguished.

4. DISCUSSION

We have demonstrated that a CNN-based architecture
can accurately contour normal structures in the head and
neck region. CNN architectures are preferred to have a
fixed-size input. However, the scan range and the number
of slices significantly vary according to clinical protocols
and patients’ height. To address this problem, we have
used a unique approach of using a CNN-based classifica-
tion architecture, when the DeepMind model was built to
have a partial 3D CT scan with 21 slices as an input to
contour a single-CT slice. Our approach allows us to flexi-
bly choose any 2D or 3D CNN-based segmentation archi-
tectures, so we could choose the segmentation
architectures based on the performance and/or the GPU
memory availability. As we trained each organ contouring
algorithm independently, we would be able to retrain any
poorly performing architecture independently later with an
advanced architecture or newly collected data.

TABLE IV. Sørensen–Dice similarity coefficients (in percentage) and Haus-
dorff distance (in cm) between our convolutional neural network-based model
and clinical contours from 174 test patients.

Structure DSC SD Hausdorff Distance SD

Brain 98.4 0.3 1.23 1.52

Brainstem 86.4 7.9 0.88 1.96

Cochlea, left 65.2 11.9 0.47 0.36

Cochlea, right 67.6 13.1 0.45 0.35

Lens, left 72.9 13.9 0.42 1.10

Lens, right 70.4 14.5 0.35 0.67

Mandible 86.8 3.3 1.28 0.95

Optic nerve, left 67.9 9.2 0.69 0.77

Optic nerve, right 69.3 8.5 0.74 0.72

Eye, left 88.8 3.7 0.49 1.42

Eye, right 89.3 3.6 0.35 0.10

Parotid, left 82.6 6.4 1.34 0.56

Parotid, right 82.7 4.8 1.39 0.58

Spinal cord 83.4 6.4 0.71 1.31

Esophagus 80.7 7.0 1.08 1.09

Optic chiasm 40.7 13.9 0.96 0.40

DSC, Dice similarity coefficient; SD: standard deviation.
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Furthermore, we can think a classification-segmentation
combination for a single organ as a module and apply it
to contour the organ for other sites, such as the esophagus
for thoracic patients. A disadvantage to this approach is
that multiple models are used to generate contour predic-
tions requiring additional time to predict all contours;
however, our approach still manages to contour 16 struc-
tures on a CT scan of 160 slices in 2 min using a single
GPU.

The accuracy of MACS contours was strongly associ-
ated with DSC between CNN-based model contours and
MACS contours. This association indicates that our CNN-
based model can effectively identify the major errors in
the MACS contours. To date, most of the automated con-
touring error detection techniques were developed with
machine learning algorithms using features or shapes of
contouring structures16,17,36 and the relative positions18 of
the contours. Chen et al.,18 showed that their geometric
attribution-based contouring error detection algorithms for
the brain, brainstem, parotids, optic nerves, and optic chi-
asm contours can achieve the average sensitivity of 0.786–
0.831 and the average specificity of 0.878–0.951. These
show that our system has similar accuracy MACS contour-
ing errors for the previously developed machine learning-
based algorithms. Furthermore, because most of the signif-
icant errors from MACS contours were specifically caused
by irregular patient positions or abnormally large tumors,
erroneous MACS contours in these cases still have reason-
ably good shapes and relative positions as shown in
Fig. 4. Therefore, our CNN-based contouring verification
system has a strength in detecting significant errors in
such cases over the other machine learning-based error
detection algorithms.

4.A. Model accuracy

The number of training, validation, and test data we used
to train and evaluate the model is the largest among deep
learning-based head and neck autocontouring studies up-to-
date.26 Although the accuracy of the internal dataset does not
seem to be superior to other CNN-based models, the end-to-
end comparison shows that the accuracy of our model is
almost equivalent to that from DeepMind, which has near
expert dosimetrist level accuracy, except for cochleas. Addi-
tionally, our model achieved similar or lower standard devia-
tions compared with the DeepMind model and had no
completely failed cases (DSC = 0) on the TCIA data. The
consistency and robustness of a model are important charac-
teristics as a quality assurance tool, and our model has a
strength in these aspects.

The accuracy of the cochlea contours from our CNN-
based model was significantly inferior to those from the
DeepMind model. However, the volume of the cochlea
was about three to four times larger for our model than
that from the DeepMind model as shown in Figs. 5(a) and
4(b). The volume difference was due to differences in how
clinicians contour the cochleas. At MD Anderson, theT
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semicircular canals are included as part of the cochlea to
reduce the risk of hearing loss from radiation treatment,37

while the DeepMind’s contour does not include the semi-
circular canals. Therefore, most of the DeepMind physi-
cian’s cochlea contours are completely covered by the
cochlea contours from our model, and the true-positive
ratio, the volume ratio of the cochlea from the DeepMind
model covered by the cochlea from our model, was
97.0% � 5.0 (SD). Furthermore, the DSCs of the left and

the right cochlea were 65.2% and 67.6%, respectively, with
our physician-drawn contours (Table IV), but were 39.5%
and 42.2%, respectively, with the DeepMind physician-
drawn contours (Table V). The accuracy of our model was
still lower by about 10%, but considering the small volume
of a cochlea, the difference would probably not signifi-
cantly affect the final dose distribution of radiation treat-
ment planning, especially if a small planning margin is
created around the structure.

TABLE VII. The sensitivity and specificity of 20 patients for each structure with minor contouring errors acceptable and unacceptable scenarios with 95% confi-
dence interval (CI) derived with the binomial test.

Structure

Minor contouring errors acceptable Minor contouring errors not acceptable

Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Specificity (95% CI)

Brain 0.80 (0.52–0.96) 1.00 (0.16–1.00) 0.92 (0.64–1.00) 0.75 (0.19–0.99)

Brainstem 0.94 (0.70–1.00) 1.00 (0.03–1.00) 0.77 (0.46–0.95) 0.75 (0.19–0.99)

Cochleas 0.72 (0.53–0.87) 1.00 (0.48–1.00) 0.08 (0.00–0.36) 0.95 (0.76–1.00)

Lenses 0.64 (0.44–0.81) 1.00 (0.74–1.00) 0.31 (0.14–0.52) 0.86 (0.57–0.98)

Mandible 0.92 (0.64–1.00) 1.00 (0.40–1.00) 0.75 (0.35–0.97) 0.78 (0.40–0.97)

Optic nerves 0.87 (0.66–0.97) 0.91 (0.59–1.00) 0.87 (0.60–0.98) 0.79 (0.54–0.94)

Eyes 1.00 (0.88–1.00) 1.00 (0.63–1.00) 0.53 (0.28–0.77) 0.74 (0.49–0.91)

Parotids 0.77 (0.58–0.90) 1.00 (0.40–1.00) 0.62 (0.38–0.82) 0.77 (0.46–0.95)

Spinal cord 1.00 (0.80–1.00) NA* 0.71 (0.42–0.92) 0.67 (0.09–0.99)

Esophagus 0.47 (0.21–0.73) 1.00 (0.40–1.00) 0.50 (0.19–0.81) 0.89 (0.52–1.00)

Optic chiasm 0.07 (0.00–0.34) 1.00 (0.29–1.00) 0.17 (0.00–0.64) 1.00 (0.72–1.00)

NA*: No major contouring errors presented.

FIG. 3. Receiver operating characteristic curves generated for each structure with 40 patients. 95% confidence interval (CI) for area under the curves were derived
with the bootstrapping method. Dice similarity coefficients thresholds were derived and presented for both minor contouring errors acceptable and unacceptable
scenarios. [Color figure can be viewed at wileyonlinelibrary.com]
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The definitions of other structures also differed somewhat
between the two groups. The brain was defined to exclude the
brainstem in the DeepMind contour, whereas the brainstem
was a part of the brain in MD Anderson’s contour, as shown
in Figs. 5(c) and 5(d). These differences in contouring style
underestimate the DSC of our CNN-based model about 2%
(Table V) compared with the DSCs of the brain with our
physician’s contour (Table IV). This indicates that the actual
differences in the accuracies of the brain would be less than 1
% between the two models.

4.B. Automatic verification of automatically
generated contours

The specificity showed that major contouring errors can
be confidently identified by measuring DSC between our
CNN-based contours and the target contours for most of
the head and neck normal structures. Furthermore, the
AUCs and the average sensitivity showed that the overall
accuracy of these tool to identify major contouring errors
is sufficient to be clinically implemented. Any major error
in the optic chiasm, however, was difficult to be identi-
fied. For the optic chiasm, our CNN-based model was
neither consistent nor robust [mean DSC, 40.7% � 13.9%
(SD)]. The poor performance on contouring the optic chi-
asm was due to the very low contrast of the optic chiasm
in CT images; even experts struggle to precisely draw the
optic chiasm on CT, so MRI is recommended for contour-
ing the optic chiasm.38 This difficulty can be seen in how
the chiasm is drawn in clinical practice, with much varia-
tion in size and shape.

Although the AUCs and the sensitivity and specificity
showed some potential to identify minor contouring errors
for some structures, the relationship was not as strong as it
was with major contouring errors. As we defined a minor
contouring error to be a contour located in a right position
but required a small shape modification, DSC, the geomet-
ric overlap over two contours, could not be a sensitive
metric to measure the difference between well-defined con-
tours and contours requiring minor edits. Additionally, as
minor errors were defined to be small variations in shapes
of contours, implementing both our system and the

FIG. 5. Physician-drawn contours for cochleas (a), (b) and brain (c), (d). (a)
and (c) were drawn by physicians at MD Anderson, and (b) and (d) were
drawn by physicians working with DeepMind. [Color figure can be viewed at
wileyonlinelibrary.com]

FIG. 4. Multiatlas-based autocontouring system mandible contours with
errors were tested with the error detection system. Two consecutive slices
around the most erroneous region were presented for each case, and the
results were (a) major error detected, (b) minor error detected, and (c) minor
error not detected. [Color figure can be viewed at wileyonlinelibrary.com]
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feature-based16 or the shape-based contour verification
tools17,36 would improve the overall contouring verification
accuracy.

One of the limitations of the automatic error verification
study is that each contour was scored by only one radiation
oncologist, so the study does not include the impact of inter-
observer variability. Because every radiation oncologist has
slightly different ways to draw contours, it is possible that a
contour scored to be “no error” can be scored as “minor
error” by another radiation oncologist and vice versa. Simi-
larly, some of the cases that we failed to predict the scores
could have been successful if another radiation oncologist
scores them, so further study with taking account of interob-
server variability would be able to improve the overall robust-
ness of our tool.

5. CONCLUSION

We have demonstrated that a CNN-based autocontour-
ing tool with near expert dosimetrist level accuracy for
most of the head and neck normal structures can be devel-
oped using semiautomatically curated patient data. Further-
more, our model enables the detection of most of the
major errors in the normal structures of the head and neck
contours created by a clinically validated multiatlas-based
autocontouring tool.
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