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Abstract

The rapid increase in transcriptome data provides an opportunity to access the complex reg-

ulatory mechanisms in cellular systems through gene association network (GAN). Nonethe-

less, GANs derived from single datasets generally allow us to envisage only one side of the

regulatory network, even under the particular condition of study. The circumstance is well

demonstrated by inconsistent GANs of individual datasets proposed for similar experimental

conditions, which always leads to ambiguous interpretation. Here, pan- and core-gene asso-

ciation networks (pan- and core-GANs), analogous to the pan- and core-genome concepts,

are proposed to increase the power of inference through the integration of multiple, diverse

datasets. The core-GAN represents the consensus associations of genes that were inferred

from all individual networks. On the other hand, the pan-GAN represents the extensive

gene-gene associations that occurred in each individual network. The pan- and core-GANs

prospects were demonstrated based on three time series microarray datasets in leaves of

Arabidopsis thaliana grown under diurnal conditions. We showed the overall performance of

pan- and core-GANs was more robust to the number of data points in gene expression data

compared to the GANs inferred from individual datasets. In addition, the incorporation of

multiple data broadened our understanding of the biological regulatory system. While the

pan-GAN enabled us to observe the landscape of gene association system, core-GAN

highlighted the basic gene-associations in essence of the regulation regulating starch

metabolism in leaves of Arabidopsis.

Introduction

The accuracy and precision of inferring gene association networks (GANs) and data interpre-

tation are dependent on the amount and quality of the underlying data, analytical methods

employed and the experimental design. The integration of heterogeneous data and exhaustive

utilization of all available information has become the frontier of biological research, especially

in the post-genomic era. With the current advances in high-throughput technologies and the
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ever growing amount of genomic data, exemplified by the massive genome sequence data

available in public databases, efficient and effective data utilization have become a major chal-

lenge. The concepts of pan- and core-genomes have been used to investigate the global and

common gene sets in related species employing the huge amount of genome sequence data

[1]. The concepts were originally introduced to integrate the genome information of bacteria

[1] and have since been successfully applied to study eukaryotic organisms [2–5]. Pan-genome

describes the union of nucleotide sequence entities (i.e. global set of genes) that exist in organ-

isms within the same phylogenetic clade, and comprises the core-genome (essential nucleotide

sequences shared by all genomes in the cohort), dispensable genome (nucleotide sequences

shared by a subset of genomes in the cohort) and strain-specific genes (nucleotide sequences

existing only within a particular genome in the cohort) [1, 6]. Pan-genomic approach has been

widely employed to investigate genome diversity, pathogenesis and drug resistance, bacterial

toxins and species evolution in bacteria [7–10], virus [11], fungus [2] and plant genomes [4, 5].

The contributions of these integrative data approaches, i.e. pan- and core- genomes, have been

presented in a range of studies, and software packages and tools have been developed to facili-

tate their application [12].

The availability of transcriptome data has enabled the identification of genes differentially

expressed under different conditions. Gene expression profiles provide the clue for decoding

gene regulation and for identifying transcription factors and their associated target genes,

mostly through the gene association network (GAN) [13]. The gene regulatory system is time

and condition-specific, and this dynamism makes its assessment particularly challenging. The

inference of dissimilar GANs from gene expression datasets that are largely comparable, with

respect to experimental conditions, have been widely reported [14, 15], indicating a perfor-

mance gap (accuracy and precision) and the need for improvement. Thus, the rationale to con-

struct GAN by integrating multiple datasets, as against relying on consensus networks based

on individual datasets, was proposed [14].

To pursue a novel conceptual analysis for transcriptome data integration and utilization,

we constructed the pan- and core-gene association networks (pan- and core-GANs) employing

multiple gene expression microarray datasets of Arabidopsis thaliana grown under diurnal

conditions. The core-GAN, derived from the associated gene-pairs found in all employed data-

sets, represents the regulation that are related to the essential cellular processes, while the pan-
GAN covers the entire gene-gene associations involved in the gene regulation, for the studied

conditions. The performances of these gene association networks were evaluated and com-

pared with those developed from individual datasets. Our results demonstrated the advantages

of the pan- and core-GANs over the GANs from individual datasets.

Materials and methods

Data acquisition

Three time series microarray gene expression data of Arabidopsis thaliana grown under diur-

nal conditions, including Smith et al. (2004) [16], Blasing et al. (2005) [17] and Li et al. (2009)

[18], were retrieved from the National Center for Biotechnology Information database

(NCBI); the reference numbers of the experiments are GSE6174, GSE3416 and GSE11708,

respectively (S1 Fig). The Affymetrix ATH-1 genome array platform contains approximately

22,000 Arabidopsis genes. The Smith et al.’s (2004) dataset is an eleven-point time series data

(0, 1, 2, 4, 8, 12, 13, 14, 16, 20, 24 h) that describes gene expression in four-week-old Arabidop-
sis leaves during a 12 h diurnal cycle (12 h dark:12 h Light; 12D:12L); the six-point time series

data (4, 8, 12, 16, 20, 24 h) by Blasing et al.’s (2005) describes gene expression in the leaves of a

five-week-old Arabidopsis grown under 12 h diurnal (12L:12D) conditions; and Li et al. (2009)
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contains a five-point time series data (1, 4, 8.5, 12, 16 h) for 6-week-old Arabidopsis leaves dur-

ing a short-day diurnal cycle (8L:16D).

The information on transcription factor (TF) genes of Arabidopsis was obtained from four

databases including Plant Transcriptional Factor Database (PlantTFDB) version 3.0 [19],

Database of Arabidopsis Transcription Factors (DATF) version 2.0 [20], Arabidopsis transcrip-

tion factor database (AtTFDB) [21] and RIKEN Arabidopsis Transcription Factor database

(RARTF) [22]. The families of regulator genes in the inferred networks were classified based

on PlantTFDB, DATF, AtTFDB and RARTF databases.

The inferred gene association networks were evaluated against three reference networks of

Arabidopsis to generalize our analysis and ensure that our results are not associated with a spe-

cific reference network. The reference networks included two co-expression networks that

were based on 11,171 microarray gene chips and 328 RNA-seq datasets, obtained from

ATTED database [23] and an experiment-based regulatory network obtained from the AtReg-

Net database [24]. The co-expression networks in ATTED database were inferred based on

Pearson’s correlation coefficient (PCC). The reference network from AtRegNet database con-

sisted of 10,193 genes with 16,109 interactions, whereas the microarray and RNA-seq based

networks from the ATTED database consisted of 18,987 genes with 1,897,242 associations,

and 19,708 genes with 1,865,890 associations, respectively.

Gene association network inference

The gene association networks were inferred based on co-expression among the differentially

expressed genes (DEGs) in each dataset. Herein, DEGs refer to genes whose patterns of expres-

sion differed across experimental conditions. They were, in practice, classified as the top five

percentile of standard deviation (sd) for all expression profiles in the datasets. Then, the pair-

wise relationships of genes were calculated based on the Pearson’s correlation coefficient, and

only the gene pairs with |PCC|� 0.9 and p-values� 0.05 were included in the resulting gene

association networks. Additionally, different cutoff criteria were also employed to ensure the

validity of the results and conclusions. The pan- and core-GANs were constructed based on

graphical integration of the union and interaction sets of the individual networks, respectively.

The core-GAN represents the consensus associations of genes that were inferred from all indi-

vidual networks. On the other hand, the pan-GAN represents the extensive gene-gene associa-

tions that occurred in each individual network.

Network performance evaluation

The performances of the inferred gene association networks (GANs) were assessed using the

network performance indices presented in Eqs 1–4:

accuracy ¼
TPþ TN

TPþ TNþ FPþ FN
; ð1Þ

precision ¼
TP

TPþ FP
; ð2Þ

specificity ¼
TN

TNþ FP
; ð3Þ

sensitivity ¼
TP

TPþ FN
ð4Þ
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where TP—true positive, FP—false positive, TN—true negative, and FN—false negative. All

inferred networks were assessed using these performance indices on the basis of the given ref-

erence GAN of Arabidopsis derived from ATTED and AtRegNet databases.

Results and discussion

Inference of gene association networks based on three microarray datasets

The global gene expression data underwent reverse engineering analysis whereby the associa-

tion of genes related to regulatory processes under prevailing conditions were inferred based

on the gene co-expression hypothesis. The GANs that are based on individual datasets are

often characterized by low precision usually caused by the temporal and spatial effects of the

samples and the technical design such as replication and size of data series. In this section, we

showed that under similar conditions, the GANs proposed to describe gene regulatory pro-

cesses differed by the datasets employed in the co-expression analysis with respect to the net-

work constituents, network performance and the biological insights conveyed by the

networks. The study was conducted based on three largely comparable microarray time series

datasets, including the eleven-point time series data by Smith et al., 2004 [16], the six-point

time series data by Blasing et al., 2005 [17] and the five-point time series data by Li et al., 2009

[18] (S1 Fig).

Variation of network constituents. We compared the three GANs developed based on

the time series microarray data on gene expression in leaves of Arabidopsis grown under diur-

nal conditions (S1 Fig), hereafter referred to as Smith-GAN, Blasing-GAN and Li-GAN. The

results demonstrated the diversity among the GANs in terms of network constituents, families

of transcription regulators (TFs) and the TF-target gene associations. The Smith-GAN con-

tains 1,017 genes (including 114 TFs) with 23,001 associations, Blasing-GAN contains 1,092

genes (including 112 TFs) with 54,327 associations and Li-GAN contains 1,128 genes (includ-

ing 154 TFs) with 123,895 associations (Fig 1). The GANs differed significantly in relation to

the number of gene associations, although they contain similar number of genes. Particularly,

the Li-GAN, which was developed from a relatively low resolution dataset (five points), con-

tains the highest number of genes and gene associations. This marked difference may be due

to inherent effect of the data resolution on the resulting network [25, 26].

The three GANs were not only different in terms of the number of the genes and their asso-

ciations, but also the biological information inferred from the functions of the constituent

genes and transcription factors. Only 400 genes (~20% of all 1,989 genes in the three networks)

and 2,909 gene-associations (~2% of all 183,440 associations in the three networks) were con-

sistently proposed in all three GANs (Fig 1A). The GANs were also dissimilar with respect to

the number of TF genes and the major TF-families proposed to be involved in the regulatory

process, under the experimental conditions (Fig 1B). Each GAN contained at least 30 tran-

scription factor families with different proportions of TF-families and TF genes; specifically,

Smith-GAN contained 31 families, Blasing-GAN contained 36 families and Li-GAN contained

34 families. The major TF family found in Smith-GAN and Blasing-GAN was bHLH, which

covered about 10 percent (11/114 and 12/112 genes, respectively) of the total TFs in the net-

works (Fig 1B). Despite sharing the major TF families, it was found that Smith-GAN contained

five unique TF families including C2C2 (Zn), HB-other, HMG, MBF1 and ULT; and Blasing-

GAN contained seven unique TF families including BES1, FAR1, LBD, M-type, NF-YB,

NF-YC and SW13. Unlike the others, Li-GAN contained a large proportion of ERF TF-family,

which accounted for about 15 percent (23/154) of the total TF genes in the network. Six unique

TF families including C2H2 (Zn), CAMTA, NF-YA, Nin-like, PLATZ and TALE were found

to be involved in transcriptional regulation.

Pan- and core- gene association networks
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The inferred GANs also differed in key transcription factors, which act as global regulators.

The top 10 TFs, ranked on the basis of their connection with target genes in the network, were

subsequently compared to examine the diversity of the GANs. None of the key TFs was found

in all three GANs, and only three key TFs, including MYB-related TF (At2g46830), C2C2-CO-

like TF (At3g21890) and DBB TF (At2g21320) were consistently inferred by Smith-GAN and

Li-GAN. Ten unique key TFs were found in Blasing-GAN (S1 Table). These results highlighted

the likelihood of overlooking key TFs involved in the regulatory mechanism when inferring

GANs from individual datasets. For instance, the LBD TF (At4g37540) found in Blasing-GAN

is involved in the regulation of many aspects of plant metabolism (e.g. controlling nitrogen (N)

and nitrate (NO3
-) uptake and assimilation in plant cells), growth and development [27]; and

the Nin-like TF (At2g43500) found in Li-GAN is involved in the regulation of nitrate signaling

during seed germination [28, 29].

Variation in network performance. The performance of a GAN is influenced by the

quality of data, method of data analysis and parameter settings employed [30]; and it is often

assessed relying on indices such as accuracy and precision [25]. In this work, the performance

of Smith-GAN, Blasing-GAN and Li-GAN was investigated based upon the reference co-

expression network of Arabidopsis obtained from ATTED [23]. The accuracy and precision of

the three inferred GANs differed markedly (Fig 2). Smith-GAN showed the highest accuracy

(93.5%) and precision (23.7%), followed by Blasing-GAN (accuracy = 89.0% and preci-

sion = 9.1%), and Li-GAN (accuracy = 80.0% and precision = 7.6%) (S2 Table). These results

corroborate previous findings that employing limited data increases the probability of false

positive prediction, i.e. false identification of gene co-expression patterns with no biological

relevance [31, 32], and highlight the predominant influence of the number of data points on

transcriptional network inference. However, only 25% of the time series microarray data and

RNA-seq in the Gene Expression Omnibus (GEO) database contain more than five data points

[32], and there is a general lack of transcriptome data for higher eukaryotic organisms such as

plants species. For cassava, in particular, only three transcriptome data on storage root devel-

opment including Li et al. (2010) [33], Yang et al., (2011) [34] and Sojikul et al., (2015) [35]

have been published till date, and they contain only 3–4 data points.

Variations in biological insights. In this section, we investigated the diversity of the

GANs derived from individual datasets, regarding the biological content. The three GANs

were subjected to gene ontology (GO) enrichment analysis, to determine the predominant bio-

logical processes involved in the regulatory network. The Smith-GAN was found to be

enriched with 206 GO terms (535 genes with GO terms of total 1,017 genes), Blasing-GAN

contained 162 GO terms (384 genes with GO terms of total 1,092 genes) and Li-GAN con-

tained 248 GO terms (513 genes with GO terms of total 1,128 genes) (FDR� 0.05). In total,

118 GO terms were found to overlap the three networks that may imply coincidence of the bio-

logical contents covered among GANs (Fig 3). The common GO terms are likely relevant to

the transcriptional regulation of plants responses to stress, circadian rhythm and red/far-red

light, which are key biological processes in Arabidopsis leaves under diurnal conditions [36,

37]

Although majority of the dominant biological functions of the inferred GANs were similar,

the other half of the enriched GO terms varied with the employed datasets. These results shed

light on the regulatory network, offering different perspectives based on the experimental

Fig 1. Variation of network constituents. The gene association networks, developed based on three gene expression data in leaves of Arabidopsis grown under diurnal

conditions, were compared in terms of (A) the number of genes (left) and gene-associations (right), and (B) Percentage of number of TF genes in each transcription

factor family, calculated from total TF genes in each GAN: Smith-GAN (114 TFs), Blasing-GAN (112 TFs) and Li-GAN (154 TFs). Black asterisks denote TF-families

proposed by only one GAN.

https://doi.org/10.1371/journal.pone.0210481.g001
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design and measurement techniques employed, as demonstrated in Fig 3, but these are often

ignored during analysis. The enriched GO terms, particularly those identified by the individual

GANs, may additionally describe the regulatory processes occurring in the Arabidopsis leaves

under diurnal conditions. The Smith-GAN is relevant to the wax biosynthetic process, glucan

biosynthetic process, nitric oxide biosynthetic process, long-day photoperiodism and flower

development. The Blasing-GAN and Li-GAN are more involved in the regulation of secondary

metabolism such as choline biosynthetic process, xylan catabolic process, leucine biosynthetic

process, anthocyanin biosynthetic process, terpenoid catabolic process, nicotianamine biosyn-

thetic process, glutamate biosynthetic process, short-day photoperiodism and heterochrony.

Integrated gene association networks for gene association study

Earlier, we showed how three time series microarray gene expression data in leaves of Arabi-
dopsis grown under diurnal conditions were used to infer three GANs that are markedly differ-

ent in many aspects, notwithstanding the largely comparable experimental conditions. To

address the reliability concerns, efforts have been made in recent years to develop integrative

approaches for inferring GANs. For example, the integration of gene associations inferred

from several transcriptome datasets in a wide range of conditions [23] and the use of gene

associations that are consistent across networks, based on meta data analysis and consensus

analysis [14] have been proposed. The advantages and inherent drawbacks for these

approaches have been debated and there is no best solution yet. In this work, we present alter-

native methods for studying GANs based on the integration of multiple datasets (pan-GAN

and core-GAN) and show that both strategies might be essential for understanding the

Fig 2. Performance of the inferred gene association networks (GANs). The performance of the three GANs of in

leaves of Arabidopsis under diurnal condition was assessed based on accuracy and precision.

https://doi.org/10.1371/journal.pone.0210481.g002
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landscape of GANs and describing gene regulatory mechanisms. The pan-GAN and core-
GAN approaches were used to exhaustively identify all possible gene sets and associations

involved in cellular regulation, and infer the common gene-gene associations required for

broad regulatory function, respectively.

The conceptual framework for developing pan- and core-GANs is illustrated in Fig 4. Pan-

GAN combined all genes and gene associations that were inferred from the transcriptome

datasets. Thus, it represents the overall genes and gene-pairs that might be involved in cell reg-

ulatory processes. The core-GAN, a subset of pan-GAN, was constructed based on a group of

consistent network constituents (genes and gene-pairs). Besides the high-confidence predic-

tion [15, 38, 39], core-GAN could employ common or primary regulatory machinery to

manipulate normal cellular regulation. To examine this conceptual idea, integrated GANs

were inferred from the three time series microarray datasets. The pan-GAN composed of

183,440 associations and 1,989 genes (including 235 TF genes), while core-GAN consisted of

2,909 associations and 321 genes (including 44 TF genes) (S2 Fig). Subsequently, the integrated

networks were subjected to a performance analysis, as described earlier, and were compared

with the GANs from individual datasets.

Network performance of pan- and core-GANs

The performance of pan- and core-GANs was examined using the network performance indi-

ces consisting of accuracy, precision, specificity, sensitivity and false positive rate. For all

inferred GANs (i.e. pan-GAN, core-GAN, Smith-GAN, Blasing-GAN, and Li-GAN), the valid-

ity of their gene associations was assessed against three independent reference networks

Fig 3. Variations in biological insights. The functional contents of the three gene association networks were investigated through gene ontology (GO) enrichment

analysis. Biological functions significantly over-represented in the regulatory network were determined based on Bonferroni corrected p-value� 0.05. The overlapped

enriched GO terms exhibited the common predominant functions contained in the three GANs of Arabidopsis leaves under diurnal conditions.

https://doi.org/10.1371/journal.pone.0210481.g003
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Fig 4. Conceptual framework of pan- and core-GANs for inferring transcriptional regulation using multiple transcriptome datasets. The framework

presented in this work can be described in four steps: (1) data collection and normalization, (2) inference of GANs from individual datasets, (3) construction of

Pan- and core- gene association networks
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including two co-expression networks developed from 11,171 microarray experiments and

328 RNA sequencing datasets deposited in ATTED database [23]; and the GAN of transcrip-

tion factors (TFs) and their target genes (TGs) deposited in AtRegNet database [24]. The gene

targets of TFs obtained from the AtRegNet database were identified based on: 1) the direct

binding measurement of TF-TG, 2) the mutation experiments of TF-TG association in trans-

genic plants, and 3) the reported evidence of TF-TG regulation in vivo.

For the three reference networks, the analyses showed similar network performance and

also gave the corresponding results of the comparative study between the GANs (i.e. GANs of

individual datasets and GANs of the integrated datasets) (Fig 5 and S3 Fig). The performances

of the GANs derived from individual microarray datasets were to a large extent dissimilar, but

variations in the datasets only had a subtle effect on the overall performances of the integrated

GANs. Among the GANs derived from single datasets, Smith-GAN, which was developed

from a long time series dataset, performed best in almost all the measured indices, except sen-

sitivity; and the opposite was the case for Li-GAN, derived from a short time series dataset.

Smith-GAN exhibited about 93.5–95.5 percent accuracy, 95.7–96.2 percent specificity, 0–23.7

percent precision and 0.7–29.5 percent sensitivity; while Li-GAN was relatively poor in accu-

racy, specificity and precision, but had the highest sensitivity of up to 45 percent (S2–S4

Tables) when comparing among GANs inferred from individual datasets. These results

highlighted the significance of data resolution (data point) on the transcriptional network

inference, especially when using individual datasets. Long time series data (> eight data

points) usually provide more defined expression patterns with distinct correlated and random

profiles, which could help reduce the number of false positive predictions and improve the

accuracy, precision and specificity of inferred networks.

Overall, the performance of the pan- and core-GANs was more robust to the number of

data points (Fig 5). Integration of the datasets improved the performance of the inferred GAN

especially when compared with Li-GAN derived from a short-series dataset. Fig 5 shows that

pan-GAN and core-GAN derived from both two and three transcriptome datasets increased

the accuracy and specificity levels of Li-GAN. The accuracy was increased from c.a. 80 percent

to c.a. 93 percent (accuracy range of 86.1% - 93.4%) for pan-GAN, and c.a. 95 percent (accu-

racy range of 87.0% - 94.6%) for core-GAN. The specificity was improved from c.a. 80 percent

to c.a. 94 percent (specificity range of 86.2%-94.3%) for pan-GAN and c.a. 96 percent (specific-

ity range of 94.6–96.2%) for core-GAN. Furthermore, the level of false positive predictions in

Li-GAN was reduced from c.a. 21 percent down to c.a. 6 percent (FPR range of 5.7% - 13.8%)

in pan-GAN, and c.a. 4 percent (FPR range of 3.8% - 5.4%) in core-GAN. The comparative

analysis of network performance showed corresponding results for all employed reference

GANs in this study.

Despite the enhanced network performance, core-GAN resulted in the loss of valuable

information that could be captured only in some datasets. The core-GAN rejected more than

70 percent of true positive interactions inferred by the analysis of the individual dataset (e.g.
Smith-GAN: 3,702 interactions (76.0%), Blasing-GAN: 2,804 interactions (70.5%), Li-GAN:

6,632 interactions (85.0%)) (S2 Table). Compared with pan-GAN, 90 percent (10,768 interac-

tions) of true positive interactions were abandoned in core-GAN or consensus-based network.

These GANs served different purposes for example, the core-GAN offered a high-confidence

network with better performance, while pan-GAN inferred extensive set of genes and associa-

tions that are probably involved in the transcriptional regulatory process.

overall GAN from multiple datasets and (4) inference of pan-GAN from all gene associations, and core-GAN from the consistent set of gene associations across

individual networks.

https://doi.org/10.1371/journal.pone.0210481.g004
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Pan- and core-GANs of starch metabolism in Arabidopsis leaves under

diurnal conditions

To demonstrate the use of pan- and core-GANs in the inference of transcriptional regulation,

GANs were constructed to investigate starch metabolism in leaves of Arabidopsis thaliana
under diurnal conditions. The metabolism of starch in leaves is regulated by the synchronized

rhythms of both diurnal and circadian cycles [16, 17, 40, 41]. The transcriptional regulation of

starch metabolism in Arabidopsis leaves was studied through the network of gene association,

focusing on the 48 starch-related genes suggested by Smith and colleagues [16]. The GANs

developed based on the three microarray datasets covered, at most, only about 37 percent of

genes (18 of 48 starch-related genes) related to the starch metabolism pathway. The pan-GAN

contains 135 genes and 2,210 associations, and describes the transcriptional regulation of 18

starch metabolic genes (four genes of the synthesis pathway and 14 genes of the degradation

pathway; Table 1) by 117 TF genes (Fig 6A). In contrast, core-GAN is substantially smaller and

contains nine starch metabolic genes (one gene of synthesis pathway and eight genes of degra-

dation pathway; Table 1), 12 TFs and 44 associations (Fig 6B). The results showed that tran-

scriptional regulation of whole starch metabolism could not be observed, although multiple

datasets were combined. Hence, it would be impossible to fully describe this regulation based

on individual datasets.

The consensus-based network, proposed herein as core-GAN, is generally considered a reli-

able network because the constituents are supported by more than one independent study,

making it a primary network that represents the basic transcriptional regulatory process of the

system. Accordingly, our proposed core-GAN was exploited in the identification of the impor-

tant genes that play a major role in starch metabolism under diurnal cycle. These genes were

basically defined by the number of associations (i.e., node degree); highly associated genes

were denoted as hub genes. The degree of association reflects the influence of such a gene on

the overall regulatory network. It suggests the tightly regulated genes for a target-gene hub and

the global regulator for a TF-gene hub. Through graphical analysis, node degree of all genes in

GANs of starch metabolism was determined and shown in Fig 7. Among the nine starch meta-

bolic genes in core-GAN, Granule-Bound Starch Synthase (GBSS: At1g32900) had the highest

node degree (= seven; called a hub gene) and was found to be associated with seven neighbors

(Fig 7A). The result corroborates the reported significant role of GBSS in amylose and starch

biosynthesis [42]. Depletion of the GBSS function crucially affects amylose content in starch

granules of plant species such as Arabidopsis [43, 44], sweet potato [45], cassava [46] and

wheat [47]. Regarding the transcription factor genes, B-Box Domain Protein 19 (BBX19:

At4g38960) was identified as a hub by a node degree of eight (Fig 7B). BBX 19 is reported to be

a key regulator involved in the growth and developmental processes, including seedling photo-

morphogenesis [48] and regulation of photoperiodic flowering [49].

Furthermore, the gene co-expression network could suggest the mechanism underlying the

influence of diurnal cycle on starch metabolism. The proposed core-GAN showed that starch

metabolism was tightly regulated by the endogenous circadian clock which allowed the intra-

cellular process of plant to be entrained by the diurnal cycle. As demonstrated in the sub-net-

work of core-GANs, GBSS was found to be regulated by seven transcription factors under

diurnal conditions based on the co-expression hypothesis; the transcription factor families

Fig 5. Comparison of the network performances of core-GAN, pan-GAN and the three GANs derived from individual datasets. The performance of all inferred

networks was computed and compared with the three reference networks (two co-expression networks comprising 11,171 microarray datasets and 328 RNA-seq

datasets from ATTED database, and one transcriptional regulatory network from AtRegNet database). The numbers (1 to 3) on the top of graphical column represent

the number of transcriptome datasets from which the corresponding gene association network was inferred.

https://doi.org/10.1371/journal.pone.0210481.g005
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Table 1. Starch metabolic genes presented in core-GAN and pan-GAN of Arabidopsis leaves under diurnal conditions.

AGI Name Description core-GAN pan-GAN

Starch biosynthesis

At4g24620 PGI1 Phosphoglucoisomerase

At5g51820 PGM1 Phosphoglucomutase

At5g19220 APL1 ADP glucose pyrophosphorylase large subunit 1

At1g27680 APL2 ADP glucose pyrophosphorylase large subunit 2

At4g39210 APL3 ADP glucose pyrophosphorylase large subunit 3
p

At2g21590 APL4 ADP glucose pyrophosphorylase large subunit 4

At5g48300 APS1 ADP glucose pyrophosphorylase small subunit

At1g05610 APS2 ADP glucose pyrophosphorylase small subunit-like

At5g24300 SS1 Starch synthase I

At3g01180 SS2 Starch synthase II
p

At1g11720 SS3 Starch synthase III

At4g18240 SS4 Starch synthase IV

At1g32900 GBSS1 Granule-bound starch synthase
p p

At3g20440 SBE1 Starch branching enzyme I

At5g03650 SBE2 Starch branching enzyme II

At2g36390 SBE3 Starch branching enzyme III
p

Starch degradation

At5g65685 GLS1 Glucan synthase-like

At2g39930 ISA1 Starch debranching enzyme: Isoamylase I

At1g03310 ISA2 Starch debranching enzyme: Isoamylase II

At4g09020 ISA3 Starch debranching enzyme: Isoamylase III
p p

At5g04360 LDA1 Starch debranching enzyme: Limit dextrinase

At1g10760 GWD1 Glucan water dikinase 1
p p

At4g24450 GWD2 Glucan water dikinase-like 2

At5g26570 GWD3 Glucan water dikinase-like 3
p p

At5g64860 DPE1 Glucanotransferase
p p

At2g40840 DPE2 Transglucosidase
p

At3g29320 PHS1 Glucan phosphorylase (plastidial)
p p

At3g46970 PHS2 Glucan phosphorylase (cytosolic)
p p

At4g25000 AMY1 a-Amylase 1

At1g76130 AMY2 a-Amylase 2
p

At1g69830 AMY3 a-Amylase 3
p p

At3g23920 BAM1 b-Amylase 1

At4g00490 BAM2 b-Amylase 2

At4g17090 BAM3 b-Amylase 3
p

At5g55700 BAM4 b-Amylase 4

At4g15210 BAM5 b-Amylase 5
p

At2g32290 BAM6 b-Amylase 6
p

At2g45880 BAM7 b-Amylase 7

At5g45300 BAM8 b-Amylase 8

At5g18670 BAM9 b-Amylase 9
p p

At3g23640 AGL1 a-Glucosidase-like 1

At5g63840 AGL2 a-Glucosidase-like 2

At3g45940 AGL3 a-Glucosidase-like 3

At5g11720 AGL4 a-Glucosidase-like 4

At1g68560 AGL5 a-Glucosidase-like 5
p

(Continued)
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included four zinc-finger (BBX3/COL2: At3g02380, BBX18: At2g21320, BBX19: At4g38960 and

BBX25: At2g31380) [50], two MYB (CCA1: At2g46830 and LHY: At1g01060) and one Dof

(CDF1: At5g62430) (Fig 7C). Correspondingly, it has been reported that the expression of

GBSS gene might be regulated by the core circadian clock TFs, CCA1 and LHY [51]. Also, the

CCA1 and LHY genes are the main regulators for BBX18, BBX19 and BBX25 [52], and the co-

expression profiles under constant light condition suggest they also regulate BBX3 [53–55].

In addition to the co-expression evidence, the regulation of GBSS by CCA1 and LHY genes

was also supported by the existing circadian clock-specific transcriptional binding site on the

promoter. It was reported that upstream promoter of GBSS gene in Arabidopsis contains cis-
regulatory element (AACAAATCT) for CCA1 TF binding [51]. However, a phylogenetic

study of GBSS genes in monocots and eudicots revealed the genomic structure of GBSS genes

are largely similar within the same plant cohort, but distinct across cohort [56]. Thus, tran-

script abundance of GBSSmight be controlled by different regulators. The expression of GBSS
gene in leaves of Arabidopsis is regulated by the circadian clock of CCA1 and LHY proteins

[51], whereas in rice endosperm, it is controlled by two interacting proteins of the MYC and

EREBP families [57].

In contrast with the core-GAN, which relied on high precision data and low network cover-

age, pan-GAN provided the extensive gene regulatory network with considerably good overall

performance (Fig 5 and S2–S4 Tables). It illustrated the atlas of the transcriptional regulatory

process for starch metabolism in Arabidopsis leaves during light/dark cycles which covered all

correlated genes identified in the individual datasets (Table 1). According to pan-GAN of

starch metabolism, GBSS was also highly regulated by genes in starch biosynthesis pathway

with the largest set of correlated genes (55 neighbor genes), while GWD3 was identified for

starch degradation pathway in the same manner (58 neighbor genes) (Fig 7A). For the tran-

scription factor, BBX3/COL2 was identified as the hub regulator for this GAN with 71 corre-

lated genes (Fig 7B). The large coverage of pan-GAN could help certify the hub potential of

highly regulated genes identified from the confined set of core-GAN. Pan-GAN, in addition,

enabled us to envisage the global view of the gen regulatory network for the studied system

that could not be well inferred by core-GAN.

The pan-GAN of the starch metabolism explicitly showed that starch synthesis and starch

degradation pathways were tightly regulated by the same set of transcriptional regulators

under diurnal conditions (Fig 8A). The results indicated that up to 48 percent of the transcrip-

tion factor genes (56 of 117) related to starch metabolism likely regulate both the starch synthe-

sis and degradation pathways. For instance, pan-GAN suggested that BBX3 (COL2), CCA1
and LHY transcription factors were the regulators of two starch biosynthesis gene (positive

correlation: GBSS and SS2 genes) and five starch degradation genes (negative correlation:

GWD1, GWD3, AMY3, ISA3 and DPE1 genes), yet in an antagonistic manner. Another 61 TFs

were found to be related with either starch synthesis genes (nine TFs) or starch degradation

genes (52 TFs).

Approximately 75 percent of TFs in pan-GAN regulating starch metabolism (pink squares

in S4 Fig) were associated with circadian-genes (orange diamond in S4 Fig), including CCA1,

Table 1. (Continued)

AGI Name Description core-GAN pan-GAN

At5g46110 TPT1 Triose phosphate translocator

At5g16150 GLT1 Glucose transporter

At5g17520 MEX1 Maltose exporter

https://doi.org/10.1371/journal.pone.0210481.t001
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Fig 6. Pan- and core-GANs of starch metabolism in Arabidopsis leaves under diurnal conditions. Transcriptional regulation of starch

metabolism was inferred by associations of starch metabolic genes and TF genes: (A) Starch-sub network based on pan-GAN and (B)

starch-sub network based on core-GAN. The pink rectangles represent TF genes, the green circles represent starch metabolic genes, the

blue and red lines represent positive and negative correlation between gene pairs, respectively.

https://doi.org/10.1371/journal.pone.0210481.g006
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ELF3, ELF4, GI, LHY, LUX, PRR3, PRR9 and TOC1 [37]. Pan-GAN revealed that 16 TFs coop-

eratively control GBSS1 and SS2 genes (Fig 8B), and 11 of the TFs are circadian-related regula-

tors (central clock genes: LHY, CCA1, APRR1 and At1g07050; and 7 BBX TF genes) that could

Fig 7. Node degree of genes in starch-sub network of core-GAN and pan-GAN of Arabidopsis leaves under diurnal conditions. (A) Node degree of starch

metabolic genes, (B) node degree of transcription factor, and (C) the potential transcriptional regulators of GBSSI gene based on core-GAN. The pink rectangles

represent TF genes, the green circles represent starch metabolic genes, the blue and red lines represent positive and negative correlation between gene pairs,

respectively.

https://doi.org/10.1371/journal.pone.0210481.g007
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not be captured by core-GAN. These observations supported the coordination between GBSS1
and SS2 which affects starch composition.

Conclusions

In this study, pan- and core-gene association networks (pan-GAN and core-GAN) are pro-

posed to improve our understanding of the biological regulatory system and address the issues

network reliability and sensitivity to data quality, often associated with GANs inferred from

individual datasets. Overall, enhanced network performance was achieved by incorporating

multiple transcriptome dataset into a single network (Fig 4). Overall, the pan- and core-GANs

performed better than GANs derived from individual datasets, and they were also more

robust. The pan-GAN captured all gene sets and associations involved in cellular, totaling

Fig 8. Pan-GAN for exploring the gene regulation underlying starch metabolism in leaves of Arabidopsis under diurnal conditions. (A) Gene association network

demonstrating the role of TF genes in the regulation of starch biosynthesis and degradation in Arabidopsis leaves (B) A group of TF genes co-regulating GBSSI and SS2
genes; green circles—starch genes, orange rectangles—circadian clock-related TF genes, blue rectangles—zinc-finger B-box TF gene, pink rectangles—other TF families,

blue lines—positive correlation between gene pairs, and red lines—negative correlation between gene pairs.

https://doi.org/10.1371/journal.pone.0210481.g008
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1,989 genes, 183,440 associations and 235 TF genes. The core-GAN consisted of 2,909 associa-

tions, 321 genes and 44 TF genes (S2 Fig), representing the basic gene-gene associations, com-

mon in all datasets employed, required for broad regulatory function. These integrative

approaches are promising tools for improving our understanding of the gene regulatory

processes.

Supporting information

S1 Fig. The conditions of time-series microarray datasets. (1) Smith et al. (2004) collected

the data at 1, 2, 4, 8 and 12 hours during the dark, and light periods (2) Blasing et al. (2005) col-

lected the data at 4, 8 and 12 hours in both light/dark cycle conditions and (3) Li et al. (2008)

collected the data at 1 and 4 hours during the light period and at 0.5, 4 and 8 hours during the

dark period.

(TIF)

S2 Fig. Pan- and core- gene association networks of Arabidopsis leaves under diurnal con-

dition. (A) pan-gene association network (pan-GAN) and (B) core-gene association network

(core-GAN). The pink rectangles represent transcription factor genes, and the orange dia-

monds represent other genes (i.e., metabolic genes and signaling proteins). The gray symbols

represent genes of pan-GAN that were absent in the core-GAN. The red and blue lines denote

negative and positive correlation, respectively.

(TIF)

S3 Fig. Comparison of the network performances of core-GAN, pan-GAN and the three

GANs derived from individual datasets whereby the GANs were developed based on differ-

ent cutoff criteria of correlation coefficient. (A) cut-off varied according to the absolute

magnitude of PCC values; (B) cut-off varied according to relative percentile rank of PCC val-

ues.

(PDF)

S4 Fig. Pan-GAN for inferring the regulation of starch metabolic genes by circadian clock.

The orange diamonds represent circadian clock-related genes, the pink rectangles and the

green circles represent TF and starch genes that are related to circadian clock genes. The gray

symbols represent genes that are not correlated with circadian clock-related genes. The red

and blue lines denote negative and positive correlation, respectively.

(TIF)

S1 Table. Top ten TF genes (hub genes) in the GANs inferred from individual gene expres-

sion datasets, i.e. Smith-GAN, Blasing-GAN and Li-GAN.

(PDF)

S2 Table. Comparing the performance of Smith-GAN, Blasing-GAN, Li-GAN, core-GAN

and pan-GAN using the co-expression network from 11,171 microarray datasets (ATTED

database) as a reference network.

(PDF)

S3 Table. Comparing the performance of Smith-GAN, Blasing-GAN, Li-GAN, core-GAN

and pan-GAN using the co-expression network from 328 RNA-seq datasets (ATTED data-

base) as a reference network.

(PDF)

S4 Table. Comparing the performance of Smith-GAN, Blasing-GAN, Li-GAN, core-GAN

and pan-GAN using the transcriptional regulatory network, based on direct TF-TG
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interactions, in AtRegNet database as a reference network.

(PDF)
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