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Abstract: It was recently reported that static magnetic fields increase lipid order in the
hydrophobic membrane core of dehydrated native plant plasma membranes [Poinapen,
Soft Matter 9:6804-6813, 2013]. As plasma membranes are multicomponent, highly
complex structures, in order to elucidate the origin of this effect, we prepared model
membranes consisting of a lipid species with low and high melting temperature. By
controlling the temperature, bilayers coexisting of small gel and fluid domains were
prepared as a basic model for the plasma membrane core. We studied molecular order
in mixed lipid membranes made of dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and
dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) using neutron diffraction in the presence
of strong static magnetic fields up to 3.5 T. The contribution of the hydrophobic membrane
core was highlighted through deuterium labeling the lipid acyl chains. There was no
observable effect on lipid organization in fluid or gel domains at high hydration of the
membranes. However, lipid order was found to be enhanced at a reduced relative humidity
of 43%: a magnetic field of 3.5 T led to an increase of the gel signal in the diffraction patterns
of 5%. While all biological materials have weak diamagnetic properties, the corresponding
energy is too small to compete against thermal disorder or viscous effects in the case of
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lipid molecules. We tentatively propose that the interaction between the fatty acid chains’
electric moment and the external magnetic field is driving the lipid tails in the hydrophobic
membrane core into a better ordered state.

Keywords: lipid membranes; effect of magnetic fields on membranes; neutron diffraction;
membrane electric dipole moment; membrane magnetic moment; biomagnetism

PACS classifications: 87.14.Cc; 87.16.D-; 83.85.Hf; 87.50.C-; 87.50.uj; 87.16.dt

1. Introduction

Magnetic fields are known to interact with biological systems in various ways. Animals, such
as pigeons and certain ants, use magnetic fields for orientation [1–4]. Magnetotactic bacteria move
along the direction of an external applied ~B field [5,6]. Biological systems typically show a weak
diamagnetism [7], which was used to levitate live animals, such as a grasshopper, mouse and frog [8].
Weak static magnetic fields of 0.2 T were found to induce alterations on human skin fibroblasts [9] and
phospholipid bicelles are known to align in an external magnetic field [10–12].

While magnetic fields in nature are typically weak (the Earth’s magnetic field is in the order of
∼50 µT), it is possible that strong artificial fields may have a physiological effect. Magnetic fields of
3 T are routinely generated for magnetic resonance imaging (MRI); the latest generation MRI machines
use fields of 4.7 T and even 7 T to gain unprecedented spatial resolution.

In plants, more specifically in their seeds, enhanced germination was reported after exposure to
magnetic fields [13–15]. The germination process starts by water uptake and is accompanied by
electrolyte leakage due to seed membrane impairment [16]. It was recently reported that static
magnetic fields interact with native plant plasma membranes [17] by increasing lipid order inside of
the hydrophobic membrane core.

The plasma membrane was identified as a potential target for magnetic interactions in this study.
However, since the plasma membrane is a complex structure with many different components, we
prepared a simplified system to investigate the potential origin of the observed effect. In order to mimic a
membrane core of lipids in their gel and fluid state, we mixed dimyristoyl-sn-glycero-3-phosphocholine
(DMPC), a 14 carbon saturated phospholipid with a transition temperature of about room temperature,
and dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), a 16 carbon saturated phospholipid with a
transition temperature of ∼40 ◦C, at a concentration of 1:1. The molecules are sketched in Figure 1a.

Diffraction patterns were collected at a temperature of 30 ◦C, between the main transition
temperatures of DMPC and DPPC. The molecular structure was studied using neutron diffraction, as
sketched in Figure 1b. The bilayers were placed in a cryomagnet to expose them to static magnetic fields
of up to 3.5 T in-situ during the experiments. By studying the intensity of the gel and fluid signals as a
function of hydration and applied magnetic field, we present experimental evidence that static magnetic
fields can lead to an increase of the gel signal in dehydrated lipid membranes. By calculating the
corresponding energies, we show that this effect is caused not by the membranes’ diamagnetic moment
but by the electric dipole moment of the acyl chains.
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Figure 1. (a) Schematic representations of the DMPC and DPPC molecules used to
prepare the synthetic membranes for this study. (b) Sketch of the scattering geometry:
Highly oriented, multi- lamellar membranes were applied on silicon wafers. Eighteen such
wafers were mounted inside of a 3.5 T horizontal cryomagnet for the neutron diffraction
experiments. Out-of-plane and in-plane structures of the membrane were studied separately
but simultaneously. The magnetic field vector, ~B, was parallel to the out-of-plane and
in-plane scattering vectors, qz or q||.

2. Results

Highly oriented, solid supported bilayers made of DMPC and DPPC in a 1:1 ratio were prepared
on 1 cm × 1 cm silicon wafers and mounted in an aluminum sample can, which was fabricated to fit
into the cryomagnet. The wafers were oriented vertically on a neutron triple-axis spectrometer such that
the in-plane structure and the out-of-plane structure could be studied simultaneously simply by rotating
the sample by 90◦ around the vertical z-axis, as detailed in the Materials and Methods Section. The
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cryomagnet produced a horizontal field of up to 3.5 T, which could be changed in-situ. The magnetic
field vector, ~B, was oriented parallel to the scattering vectors, q|| or qz, during the scans, respectively.

The use of neutron beams for this study has the advantage that different parts of the membranes
can be deuterium labeled. To emphasize the coherent signal of the hydrophobic membrane core, chain
deuterated lipids (DMPC-d54 and DPPC-d62) were used. The neutron triple-axis spectrometer was used
in elastic mode such that the monochromator and analyzer were reflecting the same wavelength neutrons.

The experiment was conducted in the following way: we first studied the molecular structure of
the DPPC/DMPC membranes for relative humidities between 97% and 10% to explore the effect of
magnetic field on gel and fluid domains. The magnetic field dependence was studied in more detail at
a relative humidity (RH) of 43%, where ~B was found to increase molecular order in the hydrophobic
membrane core.

2.1. Membrane Out-of-Plane Structure

The quality of the membranes, i.e., the lamellar structure of the stacked bilayers, was studied in
out-of-plane (reflectivity) scans, and is shown in Figure 2a. Up to five equally spaced and well-developed
Bragg peaks were observed for all humidities, which is indicative of a well-organized lamellar structure.
The absence of peak splitting indicates that the DMPC/DPPC mixture did not phase separate into DMPC
and DPPC bilayers, which would result in two different dz spacings.

Lamellar spacings were determined for all samples and are listed in Table 1. The dz spacings were
found to continuously decrease with decreasing hydration, in agreement with previous studies [18,19] in
purple membrane and pure DMPC, respectively. We note that dz is the sum of the head-head thickness
of the bilayers plus the thickness of the hydration water layer in between the stacked membranes.

Figure 2b shows out-of-plane scans measured at 43% relative humidity for magnetic field strengths of
0, 1, 2.5 and 3.5 T. The fact that the curves at different magnetic fields coincide indicates that magnetic
fields do not have an effect on the lamellar organization of the membrane stack (within the resolution
of this experiment). We note that the magnetic field vector, ~B, was parallel to qz (perpendicular to the
bilayers) in these measurements.

Table 1. List of all samples prepared for this study. All scans were measured at a temperature
of T = 30 ◦C (303 K). Different relative humidities were achieved through saturated salt
solutions. Lamellar dz spacings and lipid area of the gel state patches were determined from
out-of-plane and in-plane diffraction, respectively.

Lipid Composition
Relative Humidity Magnetic Field Strength (T) dz Spacing Gel Phase Lipid Area (Å2)
% Salt 0 1 2.5 3.5 (Å) 0 T Field 3.5 T Field

DMPC/DPPC (1:1)

97 K2SO4 x – – x 60.7± 0.1 43.04 42.98
75 NaCl x – – x 58.6± 0.7 43.24 43.03
50 Mg(NO3)2 x – – x 58.5± 0.1 42.70 42.70
43 K2CO3 x x x x 59.0± 0.4 42.51 42.51
25 CH3COOK x – – x 57.8± 0.1 42.23 42.27
10 LiCl x x 56.6± 0.1 42.30 42.21

Loss of lamellar order would be observed as a decrease in the intensity of the lamellar peaks, in
particular the higher order reflections. A change of the lamellar dz spacing would result in a shift of
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the Bragg peak positions. While magnetic fields have no observable effect on the out-of-plane structure,
changes in the molecular organization in the membrane plane were observed, as will be discussed in the
next section.
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Figure 2. (a) Out-of-plane scans for DMPC/DPPC (1:1) membranes measured at different
levels of hydration. The well-developed and equally spaced Bragg reflections indicate that
the membranes form well-organized lamellar structures. (b) Out-of-plane scans at 43%
relative humidity at magnetic field strength of 0 T→3.5 T→2.5 T→1 T→0 T→3.5 T. All
curves agree within the resolution of our experiment, indicating that the magnetic field does
not change the lamellar structure of the membranes.

2.2. Membrane In-Plane Structure

Typical in-plane diffraction patterns are shown in Figure 3 for relative humidites of 97% and 10%.
The diffraction along the in-plane axis, q||, shows a number of intensities. Signals at q|| of ∼1.2 Å−1,
1.65 Å−1 and 1.92 Å−1 can be indexed by higher order background contributions, such as the 3rd order
silicon [220], the 2nd order silicon [220] and the 3rd order silicon [111] peak. Lipid signals are observed
at q|| values of 1.39 and 1.46 Å−1. These correlation peaks are well-known as fluid and gel acyl chain
correlation peaks [20–22], and can be fitted with Lorentzian peak profiles. They correspond to the
packing of the lipid acyl chains in the hydrophobic membrane core.
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At a low hydration of 10% RH, all lipid species, DMPC and DPPC, are found in their densely packed
gel state, as only a gel signal is observed in the data in Figure 3a. At a high hydration of 97%, a broad
fluid peak coexisting with a narrow gel peak is observed. The volume fraction of the respective phase is
determined from the integrated intensities of the corresponding signals to 1:1. At a temperature of 303 K,
50% of the lipids are above their main phase transition temperature and in their fluid phase (DMPC)
while 50% of the lipids are below their main transition and in their gel phase (DPPC), in agreement with
the observations.
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Figure 3. Typical in-plane diffraction at (a) 10% relative humidity and (b) 97% relative
humidity. While the narrow signal at 10% RH indicates that all lipid species take an all-trans
(gel) conformation, coexisting gel and fluid signals are observed at high humidity of 97%.
Additional signals can be assigned to background scattering from silicon wafers.

The lipid tails form a densely packed structure with hexagonal symmetry (planar group p6) in the
hydrophobic membrane core, as reported from, e.g., neutron diffraction [23]. The distance between two
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acyl tails is determined to be aT = 4π/(
√

3qT ), which results in a tail spacing of 5.2 Å for the fluid
DMPC component and a smaller spacing of 4.9 Å for the better ordered DPPC gel phase. In the absence
of strong fluctuations (in the gel state), the area per lipid molecule can be determined from the position
of the in-plane correlation peak to AL = 16π2/(

√
3q2T ) [24–26], or AL =

√
3a2T when using the lipid

spacing. Values for the gel phase areas are listed in Table 1. The almost identical values for areas with
and without a magnetic field indicate that the magnetic field does not have an observable impact on the
area per lipid.

Based on the out-of-plane and in-plane data, we picture the structure of the bilayers as follows: the
solid supported DMPC/DPPC bilayers form well-organized lamellar membrane stacks. The individual
bilayers in the stack consist of coexisting fluid and gel patches enriched in DMPC and DPPC lipids.
If the two lipid species were mixed uniformly, only one average acyl chain distance should be observed,
in contradiction to the in-plane scan in Figure 3b. As too small patches of only a few nanometers in
size, would be difficult to observe with scattering techniques due to coherent averaging [23,27–30], the
observed patches can therefore be estimated to be most likely in the order of a few micrometers.

Figure 4 shows in-plane scans measured for all hydration levels. Scans were taken without an external
magnetic field, and at a field strength of B = 3.5 T. The curves with and without magnetic field all
coincide within the resolution of this experiment, except at a relative humidity of 43%. At this humidity,
the intensity of the gel peak was found to increase when a magnetic field was present. All scans in
Figure 4 were fit using Lorentzian peak profiles for the gel and fluid lipid signals to determine position,
width, amplitude and integrated intensity.

The corresponding integrated intensities for the two signals are plotted in Figure 5. Gel and fluid
signals have equal intensity at 97% relative humidity, in agreement with the 1:1 ratio of DMPC and
DPPC lipids. When reducing the relative humidity, the fluid signal decreases and the gel signal increases.
Except for the relative humidity of 43%, data points with and without magnetic field coincide. We note
that the difference in peak intensity at 43% relative humidity was reproducible and well outside the
experimental error bars.

Figure 6 shows the integrated intensity of the gel correlation peak at a relative humidity of 43% as a
function of the external magnetic field. Peak areas were normalized to the peak area in zero magnetic
field for an easy comparison (the absolute values for the integrated peak intensities are listed in Table 2).
The peak was first measured without an external field, i.e., at 0 T, before the field was ramped up to
3.5 T. The field strength B was then decreased to 2.5 T, 1 T and switched off again. In the final step of
the protocol, B was increased back to 3.5 T. The corresponding diffraction patterns were measured for
∼4 h each.



Membranes 2015, 5 539

0

1

2

3

4x 10
4

 

 

0T

3.5T

0

1

2

 

 

0T

3.5T

1 1.3 1.6 1.9
0

0.3

0.6

 

 

0T

3.5T

In
te

n
s
it
y

q
||
(Å-1)

(a)

(c)

(f)

RH=10%

RH=43%

RH=97%

0

1

2

3

4

x 10
4

 

 

0T

3.5T
(b)

RH=25%

0

1

2

 

 

0T

3.5T
(d)

RH=50%

1 1.3 1.6 1.9
0

0.6

1.2

 

 

0T

3.5T

q
||
(Å-1)

(e)

RH=75%

Figure 4. In-plane diffraction patterns for all membranes prepared for this study. Curves
measured at 0 T and at 3.5 T are overlaid for an easy comparison. A difference with and
without an applied external magnetic field was observed for 43% relative humidity, only. All
other curves agree within the resolution of this experiment.
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Figure 5. Integrated peak intensities of the gel and fluid correlation peaks from Figure 4
as a function of relative humidity. While gel and fluid peaks have equal intensity at 97%
relative humidity, the fluid component reduces with decreased relative humidity and the
gel component increases. Intensities for both peaks measured with and without an external
magnetic field agree within the resolution of this experiment except at 43% relative humidity.
An increase in the gel component with applied field was observed at this relative humidity.
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Figure 6. Integrated intensity of the gel signal as a function of magnetic
field strength. The magnetic field was changed using the following protocol:
0 T→3.5 T→2.5 T→1 T→0 T→3.5 T. The intensity of the gel signal keeps increasing with
time of exposure, rather than being related to absolute field values.
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Table 2. Integrated intensities from fitting Lorentzian peak profiles to the gel and fluid acyl chain correlation peaks in Figure 4 for
all samples. The order of the corresponding field exposure protocol is also given (ord).

97% 75% 50% 43% 25% 10%
Field (T) ord gel fluid ord gel fluid ord gel fluid ord gel fluid ord gel fluid ord gel fluid

0 1 161 ± 11 170 ± 27
1 372 ± 15 86 ± 30

1 691 ± 9 33 ± 39
1 648 ± 7 0

1 1029 ± 14 0 1 921 ± 12 0
3 384 ± 8 89 ± 10 5 691 ± 7 0

1 4 691 ± 8 0
2.5 3 680 ± 8 0

3.5 2 160 ± 10 179 ± 24 2 383 ± 8 88 ± 11 2 688 ± 9 43 ± 39
2 675 ± 8 0

2 1033 ± 14 0 2 911 ± 13 0
6 691 ± 8 0
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The area of the peak assigned to the gel component increased in total by 5%, well outside of the
(conservative) experimental error bars. The increase of the gel correlation peaks indicates an increased
order in lipid gel domains in the presence of static magnetic fields at reduced hydration. We note that
the intensity did not decrease when the magnetic field was decreased from 3.5 T and eventually switched
off. Time of exposure to magnetic fields seems to be more important than the absolute values of the
external field. The effects were erased when the sample was placed at higher humidities of greater than
75% RH, or above a temperature of 50 ◦C.

3. Discussion

The aim of this study was to elucidate a potential origin for the effect of static magnetic fields on
plant plasma membranes observed by Poinapen et al. [17]. In this experiment, the authors observed an
increase in the lipid gel signals in dehydrated plasma membranes and identified the membrane core as
potential target for the interaction with magnetic fields. We prepared and studied a simplified system by
mixing two lipid species, DMPC and DPPC, to create membranes consisting of coexisting small gel and
fluid patches. By studying the intensity of the corresponding gel and fluid acyl chain correlation peaks,
the effect of magnetic field on the two phases could be investigated.

Highly oriented mixed lipid bilayers made of DMPC and DPPC were exposed to strong static
magnetic fields up to 3.5 T and their nanoscale molecular structures were investigated. The membranes
were kept at a temperature of T = 30 ◦C and under different relative humidities. Humidity could not be
changed in-situ continuously, however; experiments were performed at relative humidity values available
through different saturated salt solutions. As the temperature was kept between the main transition
temperatures of DMPC and DPPC, 50% of the hydrated bilayer consisted of fluid patches and 50% of
lipid patches in their gel state at high humidities.

3.1. Magnetic Fields Have an Effect on Dehydrated Lipid Membranes

As a first finding, the magnetic fields did not have an effect on the lamellar organization of the
membrane stacks. Reflectivity curves at all humidities with and without magnetic field were found
to coincide.

No effect of even the strongest magnetic field of 3.5 T could be observed on fluid (made of DMPC) and
gel domains (consisting of DPPC) at a high hydration of the bilayers, at 97% relative humidity. Within
the resolution of our experiments, static magnetic fields do not seem to affect membrane structure in the
physiologically relevant fluid phase of the bilayers. Thermal fluctuations are most likely dominant and
we refer to this state as the “fluctuation regime”.

As Poinapen et al. reported an effect of magnetic fields in dehydrated plasma membranes, we then
started to reduce the hydration of the bilayers. Differences in the in-plane diffraction patterns were
observed at a reduced relative humidity of 43%. The correlation peak assigned to the gel lipid component
of the membrane were found to increase in intensity in the presence of a magnetic field, in agreement
with the observations by Poinapen et al.

The magnetic fields were found to have no effect on the membranes at very low levels of hydration
of 10% relative humidity, most likely because molecular degrees of freedom are significantly hindered
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and slowed down; we refer to this state as the “viscous regime”. It is well known that lipid bilayers form
more densely packed structures at low relative humidities [31] where fluctuations and molecular motions
are strongly suppressed.

The ratio between lipids in their fluid and gel state was determined from the ratio of integrated
intensities of the fluid peak to the gel-phase peaks in Figure 5. Following this data, the fluid fraction
continuously decreased with decreasing humidity; no fluid lipids were observed at 43% relative humidity.
At this humidity, the membranes consisted of DMPC and DPPC patches in their gel state. A static
magnetic field directed parallel to the plane of the bilayers was found to increase the integrated intensity
of the gel signal by ∼5% at this humidity.

While the integrated intensity of the gel and fluid correlation peaks is proportional to the volume
fractions of the respective phases, the increase in gel signal in the presence of magnetic field cannot be
attributed to converting fluid into gel lipids, as no fluid phase was observed without a magnetic field.
The increase in intensity must be the result of a conformational change of the lipid acyl chains in the
hydrophobic membrane core. While the area per lipid molecule is one of the order parameters that
affects lipid phases in bilayers, gel lipid areas were found to be unchanged by magnetic fields, as listed
in Table 1. This is indicative of a direct interaction between the external magnetic field and the lipid tails
in the hydrophobic membrane core.

Our results are in agreement with the results reported by Poinapen et al. [17] that static magnetic fields
increase ordering in plasma membranes and lead to an increase in the gel signals of the structural lipids.
We note that the changes in the corresponding signals observed by Poinapen et al. were significantly
larger (600%) than the relatively small changes observed in our study. We attribute this to a different
experimental protocol: the plasma membranes were exposed to small fields for a significantly longer
period of time as compared with our study.

The magnetic fields in our experiment could be changed in-situ to investigate the reversibility of the
magnetic field effect, i.e., if the structure returns to its initial state when the magnetic field is switched off.
This is important to understand whether the effect of the field is to facilitate the kinetics of a transition
into a better ordered lipid phase, which is slow the absence of the field, or if the field is moving the
system to a new equilibrium state, i.e., a thermodynamic state.

The measurements in Figure 6 unambiguously show that the bilayers did not return to their initial
state during the time scale of our experiment of a few hours when the magnetic field was switched off.
This indicates that the system is trapped in a state with a long relaxation time. Time of exposure seems
more important than the actual field strength and the data show a saturation effect: while there is a 3.5%
increase when the magnetic field is initially ramped up from 0 to 3.5 T, no effect was observed when the
field was ramped up from 0 to 3.5 T again at the end of the procedure. The intensity of the gel signal
saturated at a total, maximum increase of ∼5%.

3.2. A Potential Mechanism for Lipid Tails to Interact with Magnetic Fields

The reason that the magnetic interaction is observed at 43% RH could be (1) the result that thermal
fluctuations and effects due to dehydration cancel out at this relative humidity, such that the small effect
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of the magnetic field becomes visible, or (2) a resonance effect where the energy related to the magnetic
field is of the same size as an energy barrier for molecular motions in the bilayers.

There are several ways a lipid bilayer can interact with a magnetic field. A small diamagnetism
is common in most biological materials [7]. An anisotropy of the magnetic susceptibility is used for
instance to align phospholipid bicelles in an external magnetic field [10–12]. In a magnetic field, the
molecule develops an orientation-dependent magnetic moment that interacts with the field producing
a torque, which tends to align the molecule consistent with the minimum free energy orientation.
For a single molecule, however, this torque is very small and probably cannot compete with thermal
disorder [32]. Lipid bilayers, however, may show cooperativity, allowing the net torque to override
thermal motion and bring about the alignment of all individual molecules or micellar units. Also,
the system must be sufficiently mobile to order on time scales acceptable to laboratory operations.
At high viscosities, the rates of reordering required to achieve the minimum energy configuration are
prohibitively small, whereas at very low viscosities there may be insufficient cooperativity [32].

The strength of the magnetic dipole moment of a lipid tail can be estimated. The diamagnetic
susceptibility of the membrane core was determined to be χ = 10 × 10−6 [7]. The dipole moment
per unit volume is defined by:

µm

V
= χB (1)

The volume of a lipid tail is given by half of the lipid area (as listed in Table 1) and the head
group-head group distance (typical values for dHH are 40 Å), VT = AT dHH , to ∼430 Å−3, such that
the dipole moment at a magnetic field strength of 3.5 T is determined to be µ = 1.5× 10−32 Am2. The
potential energy of such a dipole moment in the magnetic field of 3.5 T is Em = µmB = 5 × 10−32 J.
When compared to thermal energy at T =30 ◦C of Ethermal = kB T = 303K × 1.38 × 10−23J/K =

4× 10−21 J, the magnetic contribution of a single lipid tail to the total energy turns out to be negligible.
Even strong artificial magnetic fields are not expected to order lipid acyl chains. The magnetic dipole
moment can, however, work to align membranes or bicelles in a magnetic field, when the individual
lipids’ moments add up.

Depending on their structural properties, biological molecules and functional groups may also carry
an electric dipole moment, µel, and electric potentials and dipole moments of lipid mono- and bilayers
are well known [33–36]. In particular, phospholipid fatty acid chains contribute to the membrane’s dipole
moment [37].

A molecular electric dipole is associated with charge separation along a molecule. When these
molecules move in local potentials, the electric dipoles can lead to small currents, which interact with
magnetic fields through the Lorentz force, ~FL = q ~v × ~B.

The torque on a fluctuating electric dipole is defined by:

~τel = ~µel ×
(
~v × ~B

)
(2)

The minimum energy orientation of an electric dipole in an external magnetic field is thus
perpendicular to the field direction and perpendicular to the direction of the fluctuation (τel is zero
in this case). The ballistic velocity of lipid molecules (at T = 310 K) has recently been reported to
be v =87 m/s [38], which can serve as an estimate of molecular velocities. The contribution of CH2

bonds in the lipid tails to the membrane’s electric dipole potential ∆φ was determined to be 20 mV [37].
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The corresponding electric dipole moment can be determined from the relation ∆φ = 12πµel/AT to
µel = 1.1× 10−22 Cm.

With these numbers, τel is calculated to be τel = 3.3 × 10−20 Nm. The energy related to tilting the
electric dipole moment by an angle α of, say, α = 10◦ is then:

Wel = α τel = 10 × 3.3× 10−20 Nm = 3.3× 10−19 J (3)

This energy is in the order of thermal energies and may, therefore, be relevant for the observed effect.
The different mechanisms are pictured in Figure 7.

(a)

τ
m
= (-µ

m
) x B

(b)diamagnetic moment

+

-

B

v
B

+

-

µel
v x B

µm

τ
elτ

m

electric dipole in field

+

-

τ
el
= µel x (v x B)

Figure 7. Interaction between a magnetic moment (a) and an electric dipole moment (b)
and an external magnetic field. The magnetic moment experiences a torque, τm, towards the
direction of the magnetic field. The torque on a fluctuating electric dipole is acting to align
it with the bilayer normal. While the magnetic energy Em = µmB = 5 × 10−32 J is small
as compared to thermal energies (Ethermal = kB T = 4 × 10−21 J), the energy related to a
10◦ tilt of the electric dipole is calculated to Wel = α τel = 3.3 × 10−20 J , comparable to
Ethermal. See text for details

The direction of this torque is parallel to the direction of the applied magnetic field and perpendicular
to ~v. The resulting motion is a fluctuating torque of the lipid tails acting in the direction of the membrane
normal. While a magnetic moment would lead to molecular tilts out of the membrane normal, an
electric dipole moment aligns the tails along the bilayer normal, which may serve to order lipid tails and
further suppress lipid tail fluctuations. The corresponding signal should show an increase in diffraction
experiments, as it was observed in the neutron diffraction data.

We note that it is assumed that all chain segments contribute to the electric dipole moment in the
above calculation, implying straight, well-ordered lipid tails, typical for lipid molecules in their gel
phase. The introduction of gauche defects in the fluid phase may lead to smaller, more randomly oriented
values of the torques on different chain segments such that the overall effect may cancel out. At very
low hydrations, the bilayers form densely packed structures and the molecular motions are strongly
suppressed. The electric torque will be reduced the same way fluctuations decrease. In addition, the
energy to orient molecules or segments will be drastically increased such that much stronger magnetic
fields would be needed to overcome the corresponding energy barriers.
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A magnetic field is, therefore, not likely to have an observable effect on the fluctuation regime, at
high humidities, or on the viscous regime, at very low hydrations. At intermediate levels of hydration,
however, the fluid phase is suppressed and better ordered gel phases form with well-aligned lipid acyl
chains, which may be more susceptible to the ordering effect of an external magnetic field. In the case
of DMPC/DPPC membranes, this level of hydration is found at ∼43% relative humidity using saturated
K2CO3 salt. As humidity could not be controlled continuously in our experiment, at this point the
optimum humidity cannot be determined with higher precision.

While we present experimental findings and a first observation in this study, several questions remain
open. Future studies will measure the response of the bilayers at 43% RH relative to magnetic fields in
more detail, as functions of field strength, protocol of exposure, potential history effects and directional
dependence. By using a setup that allows to control humidity continuously, the dependence of the effect
could be determined more precisely and humidities around the maximum could be explored. It will also
be interesting to prepare bilayers made of saturated and unsaturated lipid species, which should stay
fluid even at lower levels of hydration, to investigate the effect of magnetic fields on fluid phase lipids in
more detail.

4. Conclusions

We studied the effect of strong external static magnetic fields of up to 3.5 T on lipid organization
in phospholipid membranes made of DMPC and DPPC. By setting the temperature between the main
transition temperatures of the two lipid species, patchy bilayers consisting of small gel and fluid lipid
patches were created to study the effect of the magnetic field on the respective phases. We measured
the changes in the molecular organization as a function of relative humidity and magnetic field strength
using neutron diffraction. The experiments were mainly sensitive to the contribution of the hydrophobic
membrane core by using selective deuteration and chain deuterated lipid molecules.

The magnetic field did not have an observable effect on the lamellar structure of the membrane stacks.
No effect of magnetic fields on gel or fluid phases was observed at a either a high hydration or very low
hydration of the membranes. However, at a relative humidity of 43%, the gel signal was found to increase
by 5% in the presence of a 3.5 T external magnetic field directed in the plane of the bilayers. The effect
was found to depend on the time of exposure rather than the absolute strength of the magnetic field.

The diamagnetic interaction energy between lipid tails and magnetic field was found to be too small
to compete against thermal disorder or viscous effects in the case of a single lipid molecule. However,
the interaction between the fatty acid chains’ electric dipole moment and the external magnetic field can
likely drive the hydrophobic membrane core into a better ordered state. This state is metastable and
decays slowly with time after the magnetic field is switched off.

5. Materials and Methods

5.1. Neutron Diffraction

Experiments were conducted using the cold triple-axis spectrometer IN12 at the high flux reactor
at the Institut Laue-Langevin (ILL) in Grenoble, France. The three axes of the spectrometers refer to
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the axis of rotation of the monochromator, the sample and the analyzer. The incident and final neutron
energies are defined by the Bragg reflections from pyrolytic graphite (PG) crystals. No collimation was
used but monochromator and analyzer were focused to maximize the number of incident neutrons on
the membranes. A schematic of the instrument configuration is shown in Figure 8a,b. In-plane and
out-of-plane structure can be measured simultaneously on a TAS by simply rotating the sample by 90◦.

monochromator analyzer

incoming 

neturon beam
detector

k
i

k
f

q
z

(b) Out-of-Plane
monochromator analyzer

incoming 

neturon beam
detector

k
i

k
f

q
||

(a) In-Plane

(c) (d)

Figure 8. (a) and (b): Sketch of the scattering geometry to measure in-plane and out-of-plane
structure using a triple-axis spectrometer. (c) Photo of the solid supported membranes on
silicon wafers mounted in a fabricated holder. (d) Photo of the aluminum sample can,
which was inserted into the cryomagnet. Saturated salt solutions were added to the container
underneath the samples to achieve different levels of hydration.

The sample can was installed into a 3.8 T horizontal field cryomagnet. A neutron wavelength
of 0.418 nm was used. This wavelength is beyond the aluminium and silicon cut-off such that
the corresponding Bragg reflections cannot be excited, at least not the first order, which decreases
background contribution and enhances the signal-to-noise ratio. All experiments were conducted at
30 ◦C, (T = 303 K). On a triple-axis spectrometer the analyzer cuts out only the elastically scattered
neutrons. The quasi-elastic contributions of the protons to the background are omitted, further
reducing the background and improving the signal-to-noise ratio drastically. The combination of a low
background, good Q-resolution, the use of an analyzer, and the option for a powerful horizontal magnet
made IN12 highly suitable for diffraction experiments in membranes.

The static structure factor S(Q) was determined in external magnetic fields of 0, 1, 2.5 and 3.5 Tesla.
In order to avoid the risk of quenching the magnet, the highest achievable field of 3.8 T was not used.
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The scattering vector (either qz or q||) was placed parallel to the magnetic field lines such that ~B was in
the plane of the membranes for the in-plane diffraction scans and perpendicular to the bilayers for the
out-of-plane scans. We note that it was technically not possible to measure out-of-plane diffraction with
an in-plane field because of the design of the cryomagnet used.

5.2. Membrane Preparation

Highly oriented multi-lamellar stacks of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and
dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) were prepared on 1 cm×1 cm, 300 µm thick,
single-sided polished Si wafers. The coherent scattering of the lipid hydrocarbon chains was enhanced
by using tail deuterated lipids, i.e., DMPC-d54 and DPPC-d62. A 20 mg/mL suspension of DMPC-d54
and DPPC-d62 in 1:1 chloroform and 2,2,2-trifluoroethanol (TFE) was prepared. The Si wafers
were cleaned by alternating 30 min sonications in dichloromethane (DCM) at 293 K to remove all
organic contamination and leave the substrates in a hydrophilic state. This process was repeated twice.
The wafers were then thoroughly rinsed three times using ∼50 mL of ultrapure water and methanol
alternatingly. The cleaned wafers were placed on a heated sample preparation surface, which was
kept at 40 ◦C (313 K). This temperature is above the main phase transition temperature of DMPC and
DPPC, thus the heated substrates ensured that the lipids were in the fluid phase during deposition and
the self-assembly of the lipids. An 80 µL aliquot of the lipid solution was deposited on each Si wafer in
a titling incubator, which was set to a speed of 15 rev/min and tilt of 1◦ to allow the lipid solution spread
evenly across the wafer. The temperature was kept at 313 K and the solvent was allowed to slowly
evaporate for 10 min. The wafers were kept in vacuum overnight to remove all traces of the solvent and
incubated with heavy water, D2O, at 313 K for 24 h. Following this protocol, each wafer contained
∼3000 highly oriented membranes, which was about 10 in total thickness.

Eighteen sample-containing Si wafers were mounted in an aluminium sample holder fabricated to be
inserted into the 3.8 T horizontal field cryomagnet available at the ILL. A photo of the sample and the
aluminum sample holder is shown in Figures 8c,d. Hydration of the lipid membranes from the vapor
phase was achieved by a water reservoir in the bottom of the sample holder. The well in the aluminum
sample can was filled with saturated solutions of different salts, as listed in Table 2, and the membranes
were hydrated to the respective hydration levels from the vapor phase. Discrete values for the relative
humidity could be prepared using this protocol. The lamellar repeat spacings achieved with this setup are
listed in Table 1. Between measurements of different humidities, samples were placed in an incubator
at 75% RH and 50 ◦C to re-anneal the structure and erase a potential memory to ensure that the starting
point for all the scans remained the same.

The samples were mounted vertically in the neutron beam such that the scattering vector ( ~Q) could
either be placed in the plane of the membrane (~q||) or perpendicular to the membrane(~qz). Out-of-plane
and in-plane structure could be measured by simply rotating the sample by 90◦.

The temperature of the main transition in fully hydrated bilayers made of DMPC was reported
at T = 296.6 K in multi-lamellar DMPC systems [18,19,39]. In multilamellar DMPC-d54
bilayers the transition from the gel into the fluid phase occurs at a slightly lower temperature of
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Tm = 21.5 ◦C = 294.7 K [22,40]. The main transition temperature, Tm, of DPPC-d62 was reported
to occur at 310.5 K [41], a value slightly lower than its protonated counterpart (T = 314.4 K) [41,42].
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