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A B S T R A C T  

Anaphylaxis represents non-atopic immediate hypersensitivity, whereas manifestations of 
atopic immediate hypersensitivity include bronchial asthma, hay fever, allergic rhinitis, chronic 
urticaria, and atopic dermatitis. In spite similar antigen exposure, only a minority of the popula- 
tion shows some form of atopic disease. Atopic disease with its spontaneous pattern of familial 
occurrence cannot be induced at will. 

The exact pathogenesis of atopy is yet to be elucidated. Two theories prevail: 1) atopy is a 
primary disorder of the immune system with sequelae in the various effector tissues; and 2) a 
concept of atopy as a primary autonomic imbalance, essentially beta adrenergic in character, 
with sequelae in effector cells, including those engaged in the production of antibodies. The 
autonomic imbalance is perceived as caused not by some disorder of the autonomic nervous 
system itself but by a defector functioning of its effector cells. These two concepts are not mutu- 
ally exclusive. The IgE antibody, which mediates allergic reactions, is essentially identical with 
atopic reagin in various animal species. 

The beta adrenergic theory regards atopic disorders (i.e., perennial and seasonal allergic 
rhinitis, bronchial asthma, and atopic dermatitis) not as immunologic diseases but as unique pat- 
terns of altered reactivities to a broad spectrum of immunologic, psychic, infectious, chemical 
and physical stimuli. The antigen-antibody interaction is given the same role as that of a broad 
category of nonspecific stimuli that function only to trigger the same defective homeostatic 
mechanism in the various effector cells involved in immediate hypersensitivities. Current evi- 
dence favors the possibility that there are inherited and/or acquired multiple abnormalities in 
the receptor - adenylate cyclase - cyclic AMP system of all effector cells that are critical in the 
organization of immune reactivities. 

Atopic abnormality may be 1) acquired by functional receptor regulatory shifts caused by 
hormonal changes, infection (viral, bacterial, etc), allergic tissue injury or other event; 2) geneti- 
cally determined; or 3) caused by autoimmune disease. One, two or all three of these effector 
mechanisms may be operative in a particular disease. 

There is an important relationship between asthma and viral respiratory infection. A history 
of childhood viral respiratory illness is a risk factor for the development of chronic obstructive 
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airway syndromes in later life. Asthmatic attacks occurred only when the infection produced 
fever, malaise, cough or coryza. The dominant role of fever in these episodes immediately sug- 
gests the profound involvement of adrenergic effector mechanisms. The presence of autoanti- 
bodies to beta-adrenoceptors in patients correlated well with a reduced beta - and an increased 
alpha-adrenergic responsiveness. Virus infections can elicit autoantibody formation. 

In patients with atopic dermatitis an increased susceptibility and abnormal host response to 
viral infections in general. Defective cytotoxic T cells, abnormally functioning macrophages 
and natural killer cells, a reduced production of IFN~ in children, and of IFNqt in atopic patients 
with food allergy has recently been demonstrated. Lymphocytic cyclic AMP-phosphodiesterase, 
that destroys cyclic AMP, is increased in atopic dermatitis and in allergic respiratory disease 
of adults, and this increased activity correlated closely with histamine release from basophils. 
Peripheral blood leukocytes and lymphocytes in atopic dermatitis have frequently demonstrated 
impaired beta adrenergic reactivity. 

Allergic tissue injury may be initiated by antigen-specific IgE antibodies that combine with 
Fce receptors on various cell types and trigger mediator release upon encounter with the antigen. 
Various noxious agents that are capable of triggering asthma are capable of releasing inflam- 
matory mediators from the same target cells. Accounting only for those pharmacologic media- 
tors where the cell-type has been identified, the spectrum of mediator-storing, synthesizing, or 
transporting cells includes neutrophil leucocytes, basophilic leucocytes eosinophilic leucocytes; 
mast cells, "chromaffin-positive" mast cells, enterochromaffin cells, chromaffin cells ; platelets, 
neurosecretory cells and nerve cells that potentially produce all amine-mediators as well as 
prostaglandins and kinins. 

1. INTRODUCTION 

This chapter describes some immune and pharmacologic mechanisms associated with viral 
infections in certain immunologic diseases that belong into the group of the so-called immedi- 
ate hypersensitivities. The term immediate hypersensitivity denotes an immunologic sensitivity 
to antigens that manifests itself by tissue reactions occurring within minutes after the antigen 
combines with its appropriate antibody. Such a reaction may occur in any member of a species 
(non atopic immediate hypersensitivity) or only in certain predisposed or hyperreactive members 
(atopic immediate hypersensitivity). 

The prototype of the non-atopic immediate hypersensitivity is localized or generalized anaph- 
ylaxis, whereas manifestations of atopic immediate hypersensitivity include bronchial asthma, 
hay fever, allergic rhinitis, chronic urticaria, and atopic dermatitis. 

The discussions that follow shall be confined to the atopic form of immediate hypersensitivi- 
ties in general, and to their respiratory and cutaneous manifestations, in particular. Of the latter, 
bronchial asthma, and its cutaneous equivalent, atopic dermatitis, shall serve as the "model" 
immunologic manifestations for our analysis below. 

. ATOPIC IMMEDIATE HYPERSENSITIVITIES (DISEASES OF ATOPIC 
ALLERGY) 

Only a minority of the population shows some form of atopic disease in spite of the fact that, 
by and large, identical conditions of antigens must be presumed to exist for all members of the 
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population. The nature of the constitutional basis of atopy, that is, of the underlying determinant 
for the development of atopic disease, is as yet unexplained. 

Many theories of the constitutional basis of atopy have been proposed since Coca and Cooke's 
original definition. Only two general ideas, however have survived: 1) the perception of atopy 
as a primary disorder of the immune system with sequelae in the various effector tissues; and 2) 
a concept of atopy as a primary autonomic imbalance, essentially beta adrenergic in character, 
with sequelae in effector cells, including those engaged in the production of antibodies. The 
autonomic imbalance is perceived as caused not by some disorder of the autonomic nervous 
system itself but by a defector functioning of its effector cells. 

These two concepts are not mutually exclusive. In fact, they may be interdependent. Although 
the immune features of atopic disease can be understood within the framework of a basic adren- 
ergic disorder of various effector cells, many if not most of the nonimmune features of atopic 
conditions are not readily explicable of the basis of the primary immune abnormality. 

3. THE ORIGINAL CONCEPT OF ATOPY 

At the time when the original concepts of atopy were being developed, it had long been known 
that hay fever and asthma often occurred together in the same individual and both of them 
showed a marked familial tendency. Similarly, it has been recognized that acute and chronic 
urticaria as well as gastrointestinal manifestations of idiosyncrasy to a specific food were more 
common in patients with these diseases than in the general population, and a relation to infantile 
eczema (Besnier's prurigo, neurodermatitis) also was observed. Eczema was found to occur 
more frequently in the children of patients with hay fever or asthma, and individuals who had 
eczema in infancy showed an usual incidence of hay fever and asthma later in life. 

These diseases were, therefore, considered together by Cooke and Vander Veer as a special 
group of diseases of human sensitization with a hereditary background, and these authors con- 
cluded that such "sensitized individuals transmit to their offspring not their own specific sensi- 
tization, but an unusual capacity for developing bioplastic reactivities to any foreign proteins". 
With further progress in determining additional characteristics of "human sensitization" in 
contrast to those of experimental anaphylaxis in laboratory animals, Coca and Cooke concluded 
that a clear distinctions must be made between two types of hypersensitivity manifestations: 1) 
the anaphylactic type of allergic response to abnormal substances 2) the atopic type of response 
to substances that are generally innocuous. As they stated: 

"This latter sub-group evidently needs a special term by which it may be conveniently des- 
ignated and this need is satisfactorily met with the term atopy, which was kindly suggested by 
Professor Edward D. Perry of  Columbia University. The Greek word, from which the term was 
derived, was used in the sense of  a strange disease. However, it is not, on that account, necessary 
to include under the term all strange diseases; the use of  the term can be restricted to the hay 
fever and asthma group." 

To these, Wise and Sulzberger then added neurodermatitis under the new designation of 
"atopic dermatitis". Based on the close association of this condition with other atopic mani- 
festations, Wise and Sulzberger concluded that the skin lesions of this disorder were cutaneous 
analog of hay fever and asthma and suggested that the name atopic dermatitis replace dissemi- 
nated neurodermatitis. 

Several characteristics of the atopic state emerged from these early concepts: atopy was felt 
to be a hereditary manifestation, subject to a dominant gene, a peculiarly human disorder with 
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reacting serum element different from classic antibodies and reminiscent of the Wasserman 
eagin (hence the name, atopic reagin). Atopic antibodies, furthermore, seemed to occur only 
n humans, many times without any demonstrable prior exposure to incitant substances and 
nduced by agents that often appeared to be nonantigenic (atopens of Grove and Coca) 

Over the years, most of these postulated differences between atopy and anaphylaxis were 
~radually eliminated. Thus, Ishizaka discovered an antibody, which is essentially identical with 
Ltopic reagin in various animal species. Moreover, atopic disease was shown by Patterson to 
~ccur in animals. Some of the other distinctions between anaphylaxis and atopy were also ame- 
nable to various alternative explanations, indicating that these conditions may not be separated 
~y wide and irreconcilable differences, as the originators of the concept of atopy believed it. 
qevertheless, some differences remained, and other important new differences remain, and other 
~ew differences emerged, making it imperative that a concept of atopy be reformulated. 

~. THE REFORMULATED CONCEPT OF ATOPY 

;ince the 1960's, it has become increasingly evident that in addition to some of the remaining 
mmunologic difference between anaphylaxis and the immediate hypersensitivities of the atopic 
Lnd non-atopic type. Thus, it appears that in anaphylaxis we are dealing with a normal (physi- 
ologic) antibody response to an unnatural exposure to antigen, whereas in atopic allergic an 
'abnormal" antibody response to natural antigenic exposure seems to be involved. Anaphylactic 
eactivity of the sensitized individual depends on the release of an amount of pharmacologically 
Lctive effector molecules sufficient to be toxic for most members of the same species. In con- 
fast, individuals with atopic disease possess a quantitatively and qualitatively abnormal reactiv- 
ty to otherwise nontoxic concentrations of endogenously released or exogenously administered 
)harmacologic mediators. Furthermore, the quantitative change consistently is in the direction 
)f a decreased response when beta-adrenergic agents are the agonists and consistently in the 
tirection of an increased response when any one of the other pharmacologically active effector 
nolecules are involved. 

Another essential difference between the atopic and non-atopic varieties of immediate hyper- 
~ensitivities is the major contributory role played by infection in atopy, whereas infection has 
~ot been shown to be causally related to anaphylactic allergy anaphylaxis, the Arthus reaction, 
)r serum sickness. Moreover, atopic conditions can be precipitated by a number of unrelated 
.timuli, whereas only the specific antigen can bring about anaphylaxis. Finally, the latter condi- 
ions may be produced artificially, but atopic disease with its spontaneous pattern of familial 
)ccurrence cannot be induced at will. Acute human pulmonary anaphylaxis, which can include 
tsthmatic features, for example, has never been reported to lead to the development of bronchial 
tsthma or atopic disease. 

In the reformulation of the original concept of atopy by Szentivanyi [ l] the essential differ- 
'~nce between immediate hypersensitivities of the non-atopic and atopic varieties is that the 
"ormer conditions are mediated by normal immune and pharmacologic mechanisms, whereas 
ttopy is based on abnormal immune and pharmacologic mechanisms. This difference between 
maphylaxis and atopy is regarded as fundamental. In this view, furthermore, it is the altered 
~harmacologic reactivity that is considered as the uniformly present, single atopic characteris- 
ics of pathognomonic significance. 
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. THE DEVELOPMENT OF THE BETA-ADRENERGIC APPROACH TO THE 
STUDY OF THE CONSTITUTIONAL BASIS OF ATOPY 

Authentic atopy cannot be produced at will in animals or humans, neither induced directly 
nor transferred passively. In addition to animal models of anaphylaxis, there are a number of 
experimental models simulating human atopy as well as isolated systems suitable for studying 
segmented areas of atopic reactivity. As such, they are useful for the analysis of some of the 
individual events (i.e., mediator release in the human reaction). Nevertheless, these in vivo and 
in vitro models are anaphylactic variants and represent immunologically and pharmacologically 
normal reactivities. Therefore, they cannot be used for the study of the constitutional abnormal- 
ity in atopy. 

. THE TWO EXPERIMENTAL MODELS FOR THE STUDY OF THE CONSTITU- 
TIONAL BASIS OF ATOPY 

The search for a laboratory model was guided by the premise that, if it is to be meaningful, the 
model must be able to imitate not only the immunologic but also the pharmacologic abnormality 
of the atopic state. The latter is manifested against substances that, in mammalian physiology, 
serve as the natural chemical organizers of autonomic action. It seemed likely, therefore, that an 
abnormal reactivity to these agents could be most effectively produced through some alteration 
of normal autonomic regulation significant enough to result in an autonomic imbalance. 

7. THE HYPOTHALAMICALLY "IMBALANCED" ANAPHYLACTIC GUINEA PIG 

The first attempts to establish a more meaningful experimental counterpart of the atopic state 
were made by Filip and Szentivanyi in the years from 1952 to 1958 during studies of hypotha- 
lamically "imbalanced" anaphylactic guinea pigs. Briefly, by electrolytic removal of one 
hypothalamic division or electric stimulation of the antagonistic division, it was possible to alter 
profoundly the anaphylactic reactivity of guinea pigs both immunologically and pharmacologi- 
cally. From both the immunologic and pharmacologic standpoints, the conditions so produced 
more closely approximated those of the human atopic state than does anaphylaxis. Nevertheless, 
it was felt that the artificiality of such surgically induced hypothalamic imbalance is far removed 
from the natural setting, (involving various inherited or acquired factors or both) that may sur- 
round the development of an atopic state. In their efforts to discover an accurate representation 
of those naturally occurring conditions some of which (i.e., infection) may conceivably serve as 
a developmental background for atopy. Szentivanyi and Fishel in the early 1960's found that the 
Bordetella Pertussis- induced hypersensitive state served as a more appropriate model. 

THE BORDETELLA PERTUSSIS-INDUCED HYPERSENSITIVE STATE OF MICE 
AND RATS 

Injection of live or killed Bordetella Pertussis organisms into certain strains of mice and rats 
modifies the normal reaction of these animals to a number of various stimuli. The possible 
applicability of the results of these investigations to atopy is implied by the following principal 
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features of the B. Pertussis induced altered responsiveness: l) hypersensitivity to endogenously 
released or exogenously administered histamine, serotonin, bradykinin, slow-reacting substance 
A, some prostaglandins, and at least in two strains, to acetylcholine; 2) hypersensitivity to less 
specific stimuli, such as cold, changes in atmospheric pressure, and respiratory irritants; 3) in 
contrast to these increased sensitivities, a reduced beta adrenergic sensitivity to catecholamines 
and concerning some metabolic parameters, a reversal of normal beta-adrenergic activity; 4) 
enhanced antibody formation in general (adjuvant activity) and facilitated production in quantity 
of antibodies of the IgE class; and 5) presence of a marked eosinophilia. 

As described by Szentivanyi, the major advance in these experiments that has paved the way 
for a meaningful analogy to atopic disorders has been the finding that hypersensitivity of the 
pertussis-sensitized mouse to pharmacologic mediators may be due to an acquired or genetically 
determined autonomic imbalance caused primarily by a reduced functioning of the adenylate 
cyclase coupled beta adrenergic receptors and the associated cyclic AMP system. 

, THE BETA-ADRENERGIC THEORY OF ATOPIC DISORDERS: UPDATED FOR- 
MULATION AND POSSIBLE EFFECTOR MECHANISMS 

The previously discussed considerations and conclusions of the two consecutive series of animal 
experiments have culminated in the postulation of the original beta adrenergic theory of atopic 
disorders as published by Szentivanyi in 1968 [ ]. This theory regarded those disorders (i.e., 
perennial and seasonal allergic rhinitis, bronchial asthma, and atopic dermatitis) not as immuno- 
logic diseases but as unique patterns of altered reactivities to a broad spectrum of immunologic, 
psychic, infectious, chemical and physical stimuli. This view gives to the antigen-antibody 
interaction the same role as that of a broad category of nonspecific stimuli that function only to 
trigger the same defective homeostatic mechanism in the various effector cells of the biochemi- 
cal reaction sequence of immediate hypersensitivities. 

Activation of the same defective mechanism by such a broad spectrum of unrelated stimuli is 
believed to be made possible by the unusual character of the pharmacologic mediators as bio- 
logical distinct class of natural substances. These mediators, when viewed from the standpoint 
of their probable physiologic function, are the chemical organizers of autonomic action as well 
as of immunoregulation, that is, of homeostatic control. Consequently, regardless of the immu- 
nologic or non-immunologic nature of the triggering event, its chemical realization would be 
expected to be brought about by essentially the same mediators. 

Homeostatic adjustment to these influences requires, among other things, mobilization of 
the adrenergic neurotransmitters and their balanced (uninhibited) interaction with their effector 
systems. The theory postulated that the constitutional basis of atopy lies in the reduced function 
of the beta adrenergic effector system, irrespective of what the triggering event may chemi- 
cally be in a particular case (e.g., immunologic, infectious, or psychic). In this situation, the 
adrenergic neurotransmitters are released in the face of relatively unresponsive beta-adrenergic 
effector system, and the resultant autonomic imbalance deprives the effector tissues of their 
normal counter regulatory adjustment. This constellation of mediators and effectors then lead to 
a unique pattern of quantitatively and qualitatively altered reactivity to the chemical organizers 
of autonomic action, mostly in response to trivial trauma. 

When the theoretical scheme is applied to respiratory or cutaneous atopy, at least six levels 
of responses critical in these diseases are expected to be influenced by the beta-adrenergic sub 
sensitivity in question: 
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1. A reduction in the normal beta adrenergic inhibition of lysosomal enzyme release, chemo- 
taxis, phagocytosis, antibody dependent cellular cytotoxicity, increased expression of FC IgE 
receptors, and prostaglandin E synthesis to stimulation with histamine-induced suppressor 
factor, that is effector mechanisms that are known to play an important role in immunologic 
inflammation. 

2. A reduction in lymphocytic beta-adrenergic sensitivity resulting in abnormality decreased 
(lymphocyte transformation, E-rosette forming cells, T cells, suppressor cell function) and 
abnormally increased (IgE-producing B cells, Fc receptor-bearing lymphocytes) lymphocyte 
reactivities. 

3. Mast cell mediator release to immunologic or non-immunologic stimuli, ordinarily sup- 
pressed by beta-adrenergic stimulation would become sub sensitive to the same, while both 
cholinergic and alpha-adrenergic enhancement of mediator release would be exaggerated. 

4. Beta-adrenergically mediated bronchial smooth muscle dilation is reduced, while cholinergi- 
cally and alpha- adrenergically mediated constriction is augmented. 

5. Increased mucous secretion in response to alpha adrenergic and cholinergic stimulation, 
while sodium and water fluxes into tracheobronchial secretions in response to beta-adrener- 
gic stimulation would be reduced. 

6. The beta adrenergically mediated eosinopenia would be reduced and replaced by eosi- 
nophilia. 

All these theoretically predictable manifestations do in fact exist, and represent the cardinal fea- 
tures of atopic disease. Similarly, they all point to the most critical of the malfunctioning effec- 
tot system that is to the adenylate cyclase-coupled beta-adrenergic receptor and the associated 
cyclic nucleotide complex. It follows, therefore, that the fundamental abnormality common to 
all atopic persons may lie in an inherited or acquired lesion that causes defective functioning of 
this intracellular messenger system. 

These reduced responses to catecholamines would reflect alterations to any of a number of 
sites, including 1) changes in the affinity of catecholamines and their receptor sites; 2) decreases 
in the number or reactivities of beta receptors; 3) "interconversion" of adrenergic receptors from 
beta to alpha; 4) alterations in the efficiency of coupling of activated receptors to the catalytic 
units of adenylate cyclase; and 5) reductions in the concentrations of adenylate cyclase. Alterna- 
tively, the postulated lesion may occur at a point beyond the cAMP generation step in the bio- 
logical sequence leading to the adrenergic end response; in a cAMP related pathway; in a com- 
plementary interacting or modulating system such as that provided by acetylcholine, histamine, 
the prostaglandins, leukotrienes, the interleukins, and a large group of lymphokines, monokines, 
and cytokines; or in an intracellular messenger system with counter regulatory potential, such as 
that associated with cyclic GMP. The currently available evidence seems to favor the possibil- 
ity that there are inherited and/or acquired multiple abnormalities in the receptor- adenylate 
~yclase-cyclic AMP system of essentially all effector cells that are critical in the organization of 
immune reactivities. 

Progression of the disease process from subclinical to a clinical form conceivably requires 
the operation of preparatory or triggering factor. The preparatory factor involves the postulated 
abnormality, and it may be familial (presumably hereditary) or acquired in nature; however, in 
either case, it must set the stage for a functional imbalance. The triggering event must be appro- 
priate to result in an increase in the rate of firing of adrenergic neurons, or in any conceivably 
mediator constellations suitable to make the latent abnormality clinically manifest. However, the 
preparatory and triggering factors need not be separate or unrelated entities. Infection (probably 
viral), for example, could serve in both capacities. 
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With the exception of non-nucleated erythrocytes, the adenylate cyclase system has been 
found in all animal cells examined to date. Its ubiquitous character suggests, that the ultimate 
clinical manifestation of the fundamentally same atopic abnormality will be determined by 
the type of cell primarily involved, that is, by effector cell system that primarily harbors the 
postulated abnormality (cells of bronchial tissue versus those of nasal mucosa and skin and the 
circulating cells of blood). 

For the extensive analysis of the experimental evidence supporting the validity of the beta- 
adrenergic theory of atopic disorders, and its updated formulation, the reader is referred to major 
reviews [2,3]. 

10. DEVELOPMENTAL MECHANISMS OF BETA ADRENERGIC SUBSENSITIVITY 
IN RESPIRATORY AND CUTANEOUS ATOPY 

With respect to the apparent central feature of the atopic abnormality, that is the beta-adrener- 
gic subsensitivity of the effector cells that participate in the cellular organization of the atopic 
response, the question could be raised as to how such an abnormality could develop. At present, 
at least three major developmental mechanisms can be envisaged. The abnormality may be l) 
acquired by functional receptor regulatory shifts caused by hormonal changes, infection (viral, 
bacterial, etc) allergic tissue injury or other event; 2) genetically determined; or 3) caused by 
autoimmune disease. In case of a given atopic disorder, one two or all three of these effector 
mechanisms may be operative. Because of the orientation of this chapter only the role of viral 
infection, the allergic tissue injury, and auto-immunity due to anti-receptor antibodies will be 
discussed below. 

11. VIRAL INFECTIONS AS A DEVELOPMENTAL MECHANISM OF BETA ADREN- 
ERGIC SUBSENSITIVITY IN BRONCHIAL ASTHMA 

Upper respiratory tract infection has frequently been shown to precipitate or exacerbate the 
asthmatic condition and to produce or increase airway hyperreactivity to bronchospastic agents 
[4]. In an earlier era when whooping cough was common, Bordetella Pertussis infection was 
considered a frequent cause of asthma or recurrent bronchospasm. Even today, there is evidence 
of that Hemophilus influenzae infection is present in the deeper respiratory tract of asthmatic 
patients [5]. Since this bacterium was shown to produce in animal experiments [6-8] beta adren- 
ergic impairment and/or an increased cyclic GMP level, the relationship between H. influenzae 
infection and the pharmacologic abnormality in asthma may be an authentic one. 

In the meantime, in contrast to bacterial pathogens, viral respiratory infection was shown to 
have a more significant role in the pathogenesis of asthma. During the Asian Pandemic in the 
late 1950s severe exacerbations of bronchial asthma were found to be among the more frequent 
complications of this infection [9]. Since then numerous reports have appeared describing an 
important relationship between asthma and viral respiratory infection. Recent refinements in 
epidemiologic methods, microbiologic isolation techniques, and pulmonary function testing 
have provided new opportunities to characterize the relationship more precisely [10] 

A review of the available information indicates that: 1) experiments in animal models [ 11 ] and 
observations in children [ 12] suggest that the expression of atopy occurs during a period termed 
"allergic breakthrough" which may follow viral infections; 2) a history of childhood viral res- 
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,iratory illness is a risk factor for the development of chronic obstructive airway syndromes in 
~ter life; 3) if such infection lead to obstructive airway disease, the resultant manifestation is 
kely to be a "wheezy" or asthmatic type of obstructive airway disease; 4) viral as opposed to 
acterial respiratory pathogens commonly herald the onset of wheezing in childhood and pre- 
ispose to the development of atopy, although bronchial pharmacologic hyperreactivity after 
iral illness may also proceed independent of immunologic mechanisms in bronchospasm; and 
inally 5) no matter what the ultimate effect of respiratory infection in infancy on the subsequent 
evelopment of asthma may be, there is little doubt that respiratory viruses commonly induce 
xacerbations of bronchospasm in the older child, and adults with known asthma. 

The significance of one or another respiratory virus in causing asthma or its exacerbations 
ppears to depend on the age of the patient. Thus, in preschool age (0-4 years) the predominant 
gent is respiratory syncytial virus followed by parainfluenza types 1-3, influenza, rhinovirus 
nd corona virus. In the school age (5-16 years), rhinovirus leads the list followed in descend- 
~g order of incidence by influenza, parainfluenza types 1-3, and respiratory syncytial virus. In 
dults, the order of relative significance changes again with the dominance of the influenza virus 
~llowed by rhinovirus and respiratory syncytial virus [4,10,12]. 

Another dimension of viral influences involves the problem of bronchial hyperactivity or labil- 
:y in asthma. It has been recognized for some time that normal subjects exhibit relatively short 
red bronchial hyperirritability to inhaled histamine when they have a viral respiratory infec- 
on [ 13] and as stated above asthma may worsen during and after viral respiratory infection. In 
ome of these situations the documented release in airway resistance could be partially or fully 
locked by atropine aerosol prompting the hypothesis that damage to the epithelial surface of 
ae upper airways by viral infection exposes and thereby sensitizes the rapidly adapting sensory 
Titant receptors in the upper airways to various inhaled irritants, causing reflex parasympathetic 
agal bronchoconstriction [14]. 

There are, however, several considerations that discount the significance of a parasympatheti- 
ally oriented interpretation of virus induced asthmogenecity: 
) Not all viruses can be implicated in this phenomenon. For instance, adenoviruses herpes virus 

hominis, influenza Type B virus, and enteroviruses do not show a relationship to episodes of 
asthma [15,16]. Studies of rhinovirus suggest that only a few rhinovirus subtypes are asso- 
ciated with asthmogenicity. This is a finding that is difficult to reconcile with the damaged 
epithelium hypothesis (assuming equivalence of infection) and raises the question of other 
possible mechanisms related to the biochemical properties of the virus [17,18]. 

)-Conversely, influenza Type A virus that is clearly associated with increased asthma [16] 
affects lung function largely through an effect on small ways [4] whereas the aforementioned 
rapidly adapting sensory irritant receptors are primarily distributed in the larger upper air- 
ways [ 19]. 

) The hypothesis of a cholinergic hyperactivity as a consequence of epithelial damage presup- 
poses the de facto presence of an active viral infection, which is the cause of the respiratory 
inflammation, leading to the disruption of the airway epithelial barrier and activating of the 
subepithelial rapidly adapting sensory irritant receptors. Indeed, the characteristic histologic 
finding in viral respiratory infection is epithelial destruction. Welliver et al. [20] has shown 
that IgE was bound to exfoliated nasopharyngeal epithelial cells in most patients during the 
acute phase of infection with respiratory syncytial virus. They also found that a continued 
presence of cell bound IgE was more common in patients with bronchiolitis or asthma than 
in those with mild upper respiratory tract infection. In this regard, it has been established 
in avian species that experimentally induced viral laryngotracheitis results in disruption of 



airway epithelium, with resultant increased permeation of horseradish peroxidase [21 ] and 
possibly increased uptake of inhaled antigens. Furthermore, Ida and associates [22] have 
demonstrated that interferon elaborated during viral infections from leukocytes harvested 
from patients with ragweed allergy may induce histamine release suggesting that atopic 
patients may experience bronchial hyperreactivity, if specific antigen exposure occurs at the 
time of viral infection. 

Under these circumstances, it is important to mention that evidence is available that actual 
respiratory infection with influenza Type A virus is not a necessary condition for the develop- 
ment of increased airway irritability in patients with asthma. Thus, administration of killed 
influenza virus vaccine to asthmatic patients caused a significant increase in bronchial sen- 
sitivity to methacholine aerosol, reaching a maximum after one day and persisting for three 
days [23]. Normal subjects did not develop the heightened response to methacholine, and no 
evidence of allergy to the vaccine was detected. These investigators suggested that the effect 
might be explained by an endotoxin-like action of influenza vaccine. Indeed, endotoxin sen- 
sitization of human bronchial smooth muscle to alpha-adrenergic agonists has been reported. 
Phenylephrine-induced contractions were enhanced two to ten times in normal lung and 
1000 times in lungs from a patient with chronic bronchitis. Endotoxin also caused a decrease 
in cyclic AMP of the tissue [24]. These observations are complemented by recent findings 
obtained through vaccination with a purified LPS preparation from E. coli that resulted in a 
decreased number of beta-adrenergic receptors in guinea pig lung [25]. 

) There are other observations calling into question the requirement of an active viral infection 
in the production of bronchial hyperactivity as mediated by cholinergically activated irritant 
receptors. Thus, pulmonary function abnormalities in adults with viral respiratory illness 
are generally more pronounced seven to ten days after the onset of symptoms, a time when 
the clinical manifestations and manifestations of viral inflammation are waning [26]. Also, 
the abnormalities of pulmonary function are generally prolonged well beyond what we now 
recognize as the period of viral shedding. Furthermore, administration of the antiviral agent, 
amantadine hydrochloride, although clinically effective, has no effect on the magnitude or 
duration of airway hyperactivity [27] 

) In one longitudinal study, Minor et al. [16] found that simple colonization of the respira- 
tory tract by virus was not sufficient to provoke asthma: such attacks occurred only when 
the infection produced symptoms of fever, malaise, cough or coryza. The dominant role of 
fever in these episodes immediately suggests the profound involvement of adrenergic effector 
mechanisms. 

Additional support for the important effect of viral infections on adrenergic mechanisms 
in asthmatic patients came from the extensive studies of Busse and his associates [ 18]. In their 
experiments human granulocytes served as a convenient in vitro model for the systematic 
study of virus incubation on the pharmacologic agonist response. At first, it was described 
[18] that an impairment of the inhibitory action of a beta adrenergic agonist (isoproterenol), 
normally observed on lysosomal enzyme release, occurred in granulocytes taken from 
asthmatic patients (lysosomal enzymes are known to play a major role in bronchial immu- 
nologic inflammation) [28]. The beta adrenergic impairment of lysosomal enzyme release 
was significantly greater if the cells were obtained during upper respiratory infection. Fol- 
lowing these observations, Busse and colleagues have consistently reported virus-induced 
impairment of several neutrophil mechanisms, which normally mediate inhibition of enzyme 
release. Impairment occurred after incubation in vitro with live influenza virus [29] and with 
live rhinovirus 16 (RV 16) [30], a finding also observed following infection of normal sub- 
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jects with RV 16 [31 ]. Both studies reported an impairment of the normal functioning of the 
beta adrenergic, histamine H 2 and PGE receptors, all responsible for inhibition of lysosomal 
enzyme release through stimulation of adenylate cyclase, resulting in cyclic AMP formation 
[32]. Interference with granulocyte beta-adrenergic receptor activity by influenza virus has 
subsequently been confirmed by Lee [33] and extended to include lymphocytes, resulting in 
decreased inhibition of E-Rosette formation to beta-adrenergic stimulation by isoproterenol. 
Another important study by Buckner et. al. [17] showed that parainfluenza 3-virus infec- 
tion in vivo causes a selective blockade of the beta-adrenergic inhibition of antigen induced 
contraction of isolated airway smooth muscle. These abnormalities moreover are not limited 
to those with known atopy but may also be demonstrated in cell systems from normal sub- 
jects. Viral infections therefore, may have important inhibitory effects on beta-adrenergic 
responsiveness in the course of bronchoconstriction. This area has recently been extensively 
reviewed by Norris and Eyre [34]. 
Up to this point an analysis of the evidence against a parasympatheticlly (cholinergically) ori- 
ented virus induced asthmogenecity included arguments based on information obtained from 
the current state of our understanding of some aspects of virology, immunology, immunologic 
inflammation, and the cyclic nucleotide system. In the discussion below, these arguments will 
be extended to include some basic principles of neurophysiology and neuropharmacology, 
which also contradict the basic validity of the hypothesis of Nadel and his associates [ 14]. 

For the purpose of establishing an appropriate framework for this discussion, the basic 
tenets for this hypothesis will be restated as follows. In the past two decades, Nadel, Boushey, 
Holtzman, and their associates have accumulated evidence indicating that stimulation of rap- 
idly adapting epithelial nerve receptors of the airways by mechanical, chemical and pharma- 
cologic stimuli, reflexly increases the output of acetylcholine by the vagus nerves, causing a 
reflex bronchoconstriction. In particular it was shown that, although histamine is capable of 
constricting airway smooth muscle directly, most of its bronchoconstrictor effect in vivo is 
indirect, and due to this reflex mechanism. This is accomplished both by direct stimulation 
of these epithelial receptors, and also by decreasing their firing threshold to other introduced 
stimuli. Thus, when histamine is injected into dog bronchial arteries, most of the airway 
constriction can be blocked by atropine. In otherwise healthy subjects, viral upper respira- 
tory tract infections, through damage to the bronchial epithelium cause transient bronchial 
hyperactivity to inhaled histamine and citric acid, a phenomenon that is also abolished by 
anticholinergic drugs. On the basis of this and similar observations as well as the fact that 
bronchial hyperactivity is associated with a decrease in cough threshold, these workers sug- 
gested that airway epithelial damage with sensitization of airway nerve endings causes exag- 
gerated cough and bronchomotor responses. With this background, Nadel, Boushey, Holtz- 
man, and their associates, further postulated that bronchial asthma is a constellation involving 
two ingredients: release of pharmacologic mediators, and sensitization of airway epithelial 
nerve receptors providing a positive feedback system for increasing bronchomotor tone. This 
mechanism in fact probably contributes to the bronchial obstructive process in asthma. The 
altered pharmacologic reactivity in atopy, however, is not restricted to airway epithelial effec- 
tots, but it is a universal atopic trait. In fact, as explained earlier, the altered pharmacologic 
reactivity is the uniformly present, single atopic characteristic, which by its very nature must 
be explained by any theory attempting to elucidate the constitutional basis of atopy [3,35, 
36]. For the reasons below, cholinergic overactivity cannot serve in this capacity. Using 
spontaneously breathing, unanesthetized guinea pigs, it has been found that the vagal reflex 
component in histamine bronchoconstriction is small and probably a consequence rather than 
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a cause of the constriction. In histamine-sensitive and histamine-insensitive strains of guinea 
pigs it has been demonstrated that the ease of in vivo histamine-induced reduction in lung 
compliance in the guinea pig is inversely related to its in vitro tracheal sensitivity to isoproter- 
enol, revealing the primary homeostatic importance of the tracheobronchial beta- adrenergic 
receptors rather than that of cholinergic control, in determining the sensitivity of this effector 
tissue to histamine [37-39]. In harmony with these findings are the extensive studies carried 
out in humans in the past 20 years [40-49]. The most recent findings by O'Byrne et al. [50] 
further support the conclusions of these long series of observations indicating not only that 
blockade of the muscarinic cholinergic receptors has only a small effect on the response to 
inhaled histamine but also the observations that such a blockade elicits only a minor degree of 
protection against the response to inhaled allergen [46], exercise [44] and inhalation of cold 
air [48] in subjects with asthma. Taken together, these experiences indicate that the bronchial 
effect of histamine is exerted not by reflex bronchoconstriction but through stimulation of H~ 
receptors on airway smooth muscle. Therefore, hyper-responsiveness to histamine in asthma 
is not primarily caused by a defect in the parasympathetic nervous supply to the airway. 

Furthermore, no reproducible evidence of elevated levels of acetylcholine in tissues or body 
Fluids of atopic individuals is available. This, in fact, is not surprising when the issue of choliner- 
gic overactivity is examined in the broader biologic context of the general nature of cholinergic 
versus adrenergic control. Thus, the sympathetic system is distributed to effectors through- 
3ut the body, whereas the parasympathetic distribution is much more limited. For instance, 
~ympathetic postganglionic fibers also innervate smooth muscles and glands of somatic (non 
visceral) regions; no comparable distribution has been established for the parasympathetic divi- 
sion. Moreover, the sympathetic fibers ramify to a much greater extent, and their preganglionic 
Eerminals make contact with a large number of postganglionic neurons. In general, the ratio of 
?reganglionic to postganglionic axons may be about 1:20 or more. In addition, there is an over- 
lapping of synaptic innervation so that one ganglion cell is supplied by several pre- ganglionic 
fibers. By contrast, the parasympathetics are more discrete in their action, i.e., there is a closer 
Lo a 1:1 relation between pre- and postganglionic neurons [51]. Also the parasympathetic nerv- 
3us system has no reinforcing mechanism comparable to that of the adrenal medulla for the 
sympathetic division. 

Usually, when any part of the sympathetic nervous system is stimulated, the entire system, or 
at least major portions of it, is stimulated at the same time, a phenomenon called mass discharge. 

Norepinephrine and epinephrine, therefore, are almost always released by the adrenal medulla at 
the same time that the different tissues are being stimulated directly by the sympathetic nerves. 
~Fhe two means of stimulation support each other and either can actually substitute for the other. 
Without any stimulation, however, the normal resting rate of secretion by the adrenal medulla is 
sufficient to maintain blood pressure almost to normal even if all direct sympathetic pathways 
to the cardiovascular system are removed. Another important value of the adrenal medulla is 
the capability of catecholamines to stimulate structures of the body that are not innervated by 
sympathetic fibers. In contrast, the characteristics of parasympathetic reflexes are discrete. For 
instance, they usually act only on the heart to increase or decrease its activity, or frequently cause 
secretion only in the mouth or, in other instances, secretion only by the stomach glands. 

Acetylcholine (ACh), i.e., the cholinergic transmitter released by parasympathetic fibers, 
is almost instantaneously destroyed in the junctional clefts by an unusual enzyme, acetylcho- 
linesterase (true cholinesterase, ACHE). The principal evidence for this is the decay time of the 
end plate current, which is more rapid than diffusion of ACh out of a synaptic cleft would allow. 
Also, the most recent preparation of AChE hydrolyzed 960 nmoles ACh per mg of protein per 
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hour, thus placing it among the enzymes having the highest turnover number that is known 
[51]. This powerful destructive capacity is reinforced by a battery of butyryl cholinesterases 
("pseudo" or nonspecific cholinesterases), which destroy most of whatever acetylcholine may 
have escaped into the blood stream. Thus, it is doubtful whether acetylcholine can reach non- 
innervated cells or is present in the extracellular space in regulatory concentrations for cells with 
immunologic significance such as the antigen-sensitive lymphocytes. There is no comparable 
system of rapid destruction for the catecholamines, a fact that accounts in part for the widespread 
nature of sympathetic action. 

Another way to determine whether we are dealing with a primary cholinergic overactivity 
in atopy is to examine whether there is any evidence for an enhanced guanylate cyclase activ- 
ity in cells obtained from patients with atopic disease. This is all the more necessary, since as 
mentioned earlier, cholinergic and alpha-adrenergic agents activate guanylate cyclase, and mark- 
edly reduced adenylate cyclase-cyclic AMP responses to beta-adrenergic stimulation have been 
shown to be present in atopic individuals. 

Under these circumstances, it is highly significant that the available evidence shows not an 
enhanced but a reduced cholinergic responsiveness in lymphocytes of atopic individuals. Thus, 
it was found that in normal subjects alpha-adrenergic stimulations with norepinephrine plus 
propranolol, and cholinergic stimulation with acetylcholine evoked significant increases in 
cyclic GMP formation. In contrast, the lymphocytic guanylate cyclase activity did not show a 
significant response to the same agents in patients with acute asthma, but the normal guanylate 
cyclase responsiveness was found to be partially restored in patients in remission [52]. Similarly, 
Lang, Goel, and Greico[53], in their study on adrenergic and cholinergic responses of peripheral 
lymphocytes in the "active" E rosette assay, demonstrated not only a subsensitivity of T lympho- 
cytes to beta adrenergic but also to cholinergic stimulation in patients with bronchial asthma. 
In the same experiments, phenylephrine, an alpha-adrenergic agonist, showed no difference 
between the normal and asthmatic groups in enhancing the "active" E rosette formation. A sub- 
sensitive beta adrenergic and cholinergic system with a normal alpha adrenergic effector system 
may produce a state of relatively enhanced alpha adrenergic activity, a circumstance which may 
explain some of the findings showing that by giving alpha receptor blockers one can restore beta 
adrenergic responsiveness toward normal in lymphocytes of asthmatics [54,55]. There are addi- 
tionally at least three major arguments against cholinergic overactivity as the primary mecha- 
nism of atopy. First, neither pulmonary sympathectomy nor pulmonary vagotomy produces any 
lasting improvement in bronchial asthma. Second, as discussed in detail elsewhere [3,35,36] 
it is never the excessive presence of a neurohumor, but if anything, it is its prolonged lack that 
is likely to result in the development of chronic effector hypersensitivities. Consequently, it is 
inconceivable that cholinergic overactivity could produce a hypersensitivity to acetylcholine 
or similar mediators of immediate hypersensitivities. On the contrary, cholinergic overactivity 
would be expected to lead to desensitization of the cholinergic receptors, as has been extensively 
demonstrated in numerous preparations such as the skeletal muscles of the frog, the hearts of 
vertebrates and invertebrates, the Renshaw cells, the neurons of mollusks, etc. [56]. This is in 
harmony with more recent findings obtained in non-obstructed, non-reversibly obstructed, and 
reversibly obstructed (asthma) patients. Using H3-quinuclidinyl benzilate, a stereospecific radio- 
ligand for muscarinic cholinergic receptors a significant reduction in receptor density was found 
in the lung preparations of asthmatics, and no difference in the numbers of such receptors in lung 
specimens derived from the non-reversibly obstructed and non-obstructed groups as shown by 
Szentivanyi et a1.[57] . An important question of course is how can one possibly find a reduc- 
tion in the number of muscarinic cholinergic receptors in lung membranes derived from patients 
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with reversible obstruction (asthma) in the simultaneous presence of an exquisite bronchial 
hyperreactivity to cholinergic agents? At the time of this writing, we can only offer two possible 
interpretations. One is that the bronchial hyperreactivity to cholinergic agents in asthma is not 
mediated through cholinergic mechanisms, but is basically due to the beta adrenergic abnormal- 
ity, which is also responsible for the atopic feature of the disease. The second possibility is that 
:he reduction in muscarinic receptor densities is caused by a heightened vagus activity resulting 
in a cholinergic "downturn" and ultimately producing a pharmacological "denervation supersen- 
sitivity" to cholinergic agents [51,58]. Whether one or the other, or both of these interpretations 
will prove to be correct, it is evident that they represent important evidence against the validity 
3f Nadel's [ 14] reflex hypothesis of the virally induced mechanisms of bronchoconstriction in 
asthma. Finally, if the atopic state were to be due to cholinergic overactivity produced by viruses 
Lhrough the postulated reflex mechanisms, then anticholinergic agents should have a far more 
Jemonstrable therapeutic effect than what we are able to observe in asthma [40-42,44] let the 
3ther atopic conditions were they are useless. 

12. VIRAL INFECTION AS A DEVELOPMENTAL MECHANISM OF BETA-ADREN- 
ERGIC SUBSENSITIVITY IN ATOPIC DERMATITIS 

The most typical viral infection that affects children with atopic dermatitis is Kaposi's herpetic 
eruption. It is caused by herpes simplex, type 1 or 2, and also the virus coxsackie A16 can mimic 
perfectly the eruption caused by a herpetic virus. Other viruses associated with this disease 
include herpes zoster, vaccinia, warts, and molluscum contagiosum. While it has long been 
known that recurrent viral cutaneous infections are more prevalent in atopic dermatitis, there is 
now growing evidence for recurrent cold sores and upper respiratory infections in this condition. 
Serological studies have also revealed that atopic dermatitis patients display significantly higher 
serum levels of antibodies against Epstein Barr virus (EBV) than their non-atopic controls. It 
appears therefore, that the increased susceptibility to viral infections is not restricted to derma- 
totropic viruses but rather reflects an abnormal host response to viral infections in general [59, 
6o]. 

Host defense against most viral infections is dependent to a large extent on cell-mediated 
immune mechanisms, and there is abundant clinical and experimental evidence of defective cell- 
mediated immunity in atopic dermatitis. In early studies, a reduction in the number of T cells 
was found which correlated with the severity of the disease, and these findings were later com- 
plemented by the demonstration of a defective functioning of these cells. Soon it was also shown 
that the T cell defect is particularly evident in suppressor/cytotoxic T cell subsets [61-65]. 

Defective cytotoxic T cells and also the association of abnormally functioning macrophages 
[66] and natural killer cells [67], appear to have an important role in the impaired host defense 
against viral infections in atopic dermatitis. Since these cell types produce, or are capable of 
producing interferon, a deficient production of this agent may at least be partly responsible for 
the increased susceptibility to viral infections in atopic dermatitis. A reduced production of 
interferon alpha in children with atopic dermatitis [68] as well as of interferon-gamma in atopic 
patients with food allergy has recently been demonstrated [60]. 

Central to the immunologic and other abnormalities (discussed later) is the T cell defect, 
which to many workers in this field appears to be a primary, inherited feature of atopic disease. 
In the context of the T cell, therefore, it is important to focus our interest on the gene products, 
primarily enzymes that affect T cell maturation or function in atopic dermatitis. For the first 
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time in 1982, it has been reported that the activity of lymphocytic cyclic AMP-phosphodieste- 
rase (that is the enzyme that destroys cyclic AMP) is increased in atopic dermatitis as well as 
allergic respiratory disease of adults [69], and that this increased activity correlated closely 
with histamine release from basophi|s [70]. When the same enzymatic activity together with 
histamine release was investigated in the newborn using umbilical cord blood, the significant 
elevation of phosphodiesterase activity was reconfirmed in newborns with a positive atopic his- 
tory in first-degree relatives, compared to newborns with a negative history. In contrast to adults, 
however, there was no correlation between phosphodiesterase activity and histamine release 
[71 ]. Elevation of cyclic AMP phosphodiesterase activity in cord blood leukocytes before the 
development of clinical manifestations of atopy strongly suggests that increased cyclic AMP 
phosphodiesterase activity plays a primary role in the pathogenesis of atopic disease. The lack 
of correlation between phosphodiesterase activity and histamine release in neonates further sug- 
gests that elevated cyclic AMP phosphodiesterase activity is a primary, genetically linked defect 
rather than secondary to in vivo desensitization by inflammatory mediators such as histamine 
and prostaglandin E 1 [72]. 

These considerations complete the full circle of the core argument of this chapter and guide us 
back to the primary nature of the constitutional basis of respiratory and cutaneous atopic disease. 
Following the publication of the original beta-adrenergic theory by Szentivanyi, [ 1 ], a series of 
experiments have been carried out to examine the applicability of this theory to atopic dermati- 
tis. Studies of peripheral blood leukocytes and lymphocytes in atopic dermatitis have frequently 
demonstrated impaired beta adrenergic reactivity as revealed by a loss of regulatory effects on 
lysosomal enzyme secretion [73,74], by reduced formation of cyclic AMP to beta adrenergic 
stimulation [74-76], by decreased affinity of binding for radio-labeled beta-adrenoceptor ago- 
nists [77] and by a shift in the numbers of beta adrenergic receptors to alpha adrenergic receptors 
resulting in an increased ratio of alpha to beta binding sites [4,78]. More recently, Hannifin has 
made an extensive effort with his group to determine the lymphocyte and monocyte localization 
of altered adrenergic receptors, cyclic AMP responses, and cyclic AMP phosphodiesterase in 
atopic dermatitis [79-84]. 

In these experiments, the numbers and affinities of beta-adrenergic surface receptors on 
mononuclear leukocyte subpopulations were measured by the binding of propranolol-displace- 
able 3H-dihydroalprenolol to cell surfaces. Unfractionated atopic mononuclear leukocytes 
showed reduced numbers of beta adrenergic receptors per cell together with the absence of a 
normal, lower affinity subpopulation of high affinity beta receptors. This resulted in a linear 
Scatchard plot of beta adrenergic binding to mononuclear-leukocytes from atopic patients, 
instead of the biphasic plot seen in normal control cells. These alterations of surface receptors 
for cyclic AMP-elevating ligands were localized to T cells and monocytes of patients with atopic 
dermatitis, whereas atopic B-cell receptor numbers and affinities were identical to those of 
normal B-cells [79,80]. Of the various subpopulations of T-cells, a lymphocyte subset which is 
activatable by self Ia-antigen (MHC-II) bearing presenting monocytic ceils, has been identified 
as radiosensitive (functionally dependent upon a proliferative step) OKT4 +, T29 + helper/inducer 
T cell [85-87]. A primary abnormality in the numbers and/or in the intracellular regulation of the 
cyclic AMP system of the radiosensitive, T29 +, helper/inducer T-cells generated by the interac- 
tion with autologous Ia antigen presenting macrophages may explain many of the characteristic 
features of immune dysfunction in atopic dermatitis [81 ]. 

For instance, soluble mitogen stimulated proliferation is critically dependent on successful 
macrophage/T-cell interaction, and can be reduced in patients with atopic dermatitis [88,89]. 
Development of the pool of blood PWM-recruitable B-cells for in vitro antibody production 
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requires induction by a radiosensitive T-cell inducer [85,90,91], and indeed, B-cells from 
patients with atopic dermatitis demonstrate decreased mitogen- stimulated antibody secretion, 
even when corrected for number or when normal T-cells are used to provide helper function [92]. 
T-cells associated with suppressor and cytotoxic functions, such as T-cells with FcIgG recep- 
tors, OKT8 cells and histamine Hz-receptor-bearing T-cells often show significantly reduced 
values in patients with atopic dermatitis [87,92-94], which is in accord with findings indicating 
that the development of mature suppressor and cytotoxic effector T cells requires induction by 
the aforementioned radiosensitive T-helper cells [95-97]. It may be added that the development 
of cytoxic T lymphocytes is known to be dependent upon Ia + monocyte stimulation of helper 
T-cell factors such as interleukin-2 [95], and a decrease in the production of interleukin 2 as 
well as interferon by these abnormal helper/inducer T-cells, or their altered ability to respond to 
these signals may explain the reduced natural killer activity in atopic dermatitis [67]. Thus, the 
aforementioned multiple abnormalities of the cyclic AMP system in the helper/inducer T-cells 
in question may account for the immune dysfunction in atopic dermatitis. Alternatively, each 
of the immune abnormalities listed could be due to altered immune signal processing by distal 
effector cells with their own malfunctioning intracellular cyclic AMP systems as will be further 
pointed out below. 

In closing the discussion of viral infection as one of the major developmental mechanisms of 
beta-adrenergic subsensitivity in cutaneous atopy, we need to briefly revisit the issue of whether 
the atopic diathesis increases the susceptibility to viral infections, or the viruses themselves 
may produce the atopic disposition. As stated above, the demonstration of higher serum levels 
of antibodies against EBV in atopic dermatitis were interpreted in support of the assumption 
that defective immune mechanisms rather than cutaneous alterations predispose for increased 
susceptibility to viral infections. Although the findings of raised EBV antibody titers in atopic 
dermatitis may in fact reflect on abnormal host response to the virus, it cannot be excluded that 
the cause and effect relationship is the reverse, so that EBV may play a causative role for the 
development of atopic dermatitis. Thus, EBV is a B- cell mitogen, which may stimulate IgE 
antibody formation, and infectious mononucleosis, which is caused by EBV, is associated with 
raised serum levels of IgE [98]. The report of a case of atopic dermatitis developing soon after 
an episode of infectious mononucleosis suggests that EBV may in fact occasionally precipitate 
atopic disease [99]. Essentially the same causative role of viral agents has been described for 
respiratory atopy above. 

13. THE ALLERGIC TISSUE INJURY AS A DEVELOPMENTAL MECHANISM OF 
BETA ADRENERGIC SUBSENSITIVITY 

The allergic tissue injury is another major developmental mechanism of beta-adrenergic subsen- 
sitivity. Advances in knowledge of the immune response and immune reactivity achieved since 
the early 1960's have been accompanied by a more complete understanding of the different 
pathways of immune tissue injury. Based on this new understanding, the various types of immu- 
nopathologic processes have been subdivided by the classification by Coombs and Cell (1962) 
into the following four basic types: 
Type I: Immediate-hypersensitivities 
Type II: Cytotoxic tissue injury 
Type III: Immune-complex tissue injury 
Type IV: Cell-mediated immune tissue injuries 
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This classification is oversimplified because of the complex interrelationships that exist between 
the several events that constitute an inflammatory response. Nevertheless, this view represents 
the closest approximation of the various basic patterns of immune tissue injury, and the clas- 
sification does not depend on the host species or on the method of antigen exposure. Another 
valuable feature of the classification is its integrated emphasis on the important central point that 
in these various patterns of immune injury the tissue damage results from the immune activa- 
tion of cellular and biochemical mediator systems of the host. The combination of the immune 
reactants produces only minimal direct effects, but as a trigger mechanism it sets the destructive 
factors into play. 

Because of the subject of this chapter only the general pattern of immunologic tissue injury 
that occurs in immediate hypersensitivities will be discussed. Furthermore, no distinction will be 
made between the atopic and non-atopic varieties of immediate hypersensitivities since in both 
cases the pattern of tissue injury follows the characteristic triphasic reaction sequence of these 
manifestations. 

In these reactivities, following the initiation of antibody production, the cytotropic antibodies 
(primarily IgE) that are formed disseminate throughout the circulation to become almost selec- 
tively and uniquely attached to the cell membranes of basophils in the circulation and mast cells 
in the tissues. The attachment occurs through a structural area in the Fc part of the antibody mol- 
ecule to a specific receptor on the basophil or mast cell membrane. Although evidence indicates 
that subpopulations of monocytes, macrophages, and lymphocytes also express Fc receptors 
for IgE antibody, of all mammalian cells only basophils and mast cells exhibit an extraordinary 
binding affinity for this antibody. There is a relative abundance of these IgE molecules bound 
along the membrane, and they are located close to each other physically. When the IgE becomes 
attached, the cells are said to be sensitized, and the individual is now in a sensitive state for reac- 
tivity on subsequent exposure to the antigen [ 100]. 

A second, or subsequent, exposure can occur via many routes, such as inhalation, ingestion, 
or injection. The antigen must move across membrane and tissue barriers in order to come to the 
surface of the sensitized cells. When this close encounter occurs with an antigen of sufficient 
size to react with the antigen-binding sites of two closely adjacent IgE molecules, it produces a 
"bridging' effect. In this molecular interaction, one antigen molecule combines with two anti- 
body molecules to form a bridge. This bridging brings together two IgE receptor molecules, 
which results in coformational changes in the receptors, triggering an enzymatic cascade that 
causes the release of pharmacologically active effector molecules responsible for the clinical 
symptomatology of immediate hypersensitivities. Accounting only for those pharmacologic 
mediators where the cell-type has been identified, the spectrum of mediator-storing, synthesiz- 
ing, or transporting cells, includes the neutrophil leucocyte [slow-reacting substance of ana- 
phylaxis (SRS-A), eosinophil chemotactic factor of anaphylaxis (ECF-A), enzymes, vascular 
permeability factors, kinin-generating substances, a complement- activating factor, histamine- 
releasers, and a neutrophil inhibitory factor (NIF)], basophilic leucocyte [histamine, SRS-A, 
ECF-A, neutrophil chemo- tactic factor (NCF) and platelet-activating factor (PAF)], the routine 
basophilic leucocyte (histamine, SRS-A, ECF-A, PAF, and serotonin), the eosinophilic leuco- 
cyte (histamine, PAF, and possibly SRS-A), the mast cell (histamine, SRS-A, ECF-A, NCF and 
PAF), the murine mast cell (histamine, SRS-A, ECF-A, PAF, NCF and serotonin), the "chromaf- 
fin-positive" mast cell (dopamine in ruminants; in other mammals possibly norepinephrine), the 
enterochromaffin cell (serotonin), the chromaffin cell (catecholamines), the platelet (depending 
on species: histamine, serotonin, catecholamines, and prostaglandins), the neurosecretory cell 
(histamine, serotonin, catecholamines, acetylcholine, and prostaglandins), and the nerve cell 
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hese pharmacologically active agents produce an increase in blood flow, capillary permeabil- 
ty, constriction of smooth muscles, and secretion of mucous glands, that is manifestations that 
lominate the clinical picture of immediate hypersensitivities and the associated inflammatory 
esponses. 

o REACTIVITIES OF THE MEDIATOR-STORING CELLS TO ANTIGENIC AND 
PHARMACOLOGIC INFLUENCES AND THEIR RELATIONS TO CYCLIC 
NUCLEOTIDES 

)epending on concentrations and other experimental conditions, pharmacologically active 
drenergic agents can both release as well as inhibit the release of allergic mediators. Thus, 
mphetamine, phenylethylamine, tyramine, and the like-substances that induce sympatho- 
nimetic activity indirectly through the endogenous release of catecholamines are capable of 
iberating histamine. The same can be accomplished by the exogenous administration of cat- 
cholamines and of their specific blocking agents. While all these agents elicit non-immunologic 
Listamine release, they render sensitized mast cells incapable of responding to antigen challenge 
vith histamine release [ 102-104]. 

Analysis of these seemingly contradictory findings suggests that 1) adrenergic agents interfere 
vith binding or release of histamine because of their catecholamine-like intrinsic activity, and 
',) they operate on a cellular system that is antigen activated and thus central to the mechanism 
~f the allergic reaction. 

The first conclusion is supported by the residual agonistic activity of the blocking agents 
mployed, since the only common feature of these directly acting adrenergic compounds is their 
pasic catecholamine structure. The second conclusion is based on the observation that methylx- 
nthine also inhibit immunologic release of histamine [ 104]. Thus, when ragweed antigen was 
nade to interact in vitro with IgE antibody on the surface of leukocytes from ragweed-sensi- 
ive human donors, both methylxanthines and catecholamines inhibited histamine release. The 
ignificance of these findings is seen in the fact that methylxanthines are competitive inhibitors 
if the specific phosphodiesterase that inactivates cyclic 3', 5' AMP; and thereby they may induce 
'adrenergic action" by increasing the intracellular concentration of the compound. Indeed, cat- 
,cholamines and methylxanthines were found to act synergistically in inhibiting histamine 
elease, and the phosphodiesterase-inhibitory potencies of the various methylxanthines cor- 
elated well with their inhibitory effects on histamine release [3]. Of further significance is the 
act that the methylxanthines and catecholamines were shown to inhibit only if added to the cells 
vhen antigen was present; they had no effect if removed from the environment of the sensitized 
:ells before antigen exposure [ 104]. The adenylate cyclase system therefore must be considered 
Ls a critical regulatory system in allergic histamine release. 

In addition to beta-adrenergic agents, allergic release of histamine or of other pharmacologic 
nediators of immediate hypersensitivity is also inhibited by prostaglandins of the E series, 
~rostacycline, adenosine, and histamine (i.e., by substances that interact with cell membrane 
eceptors that activate adenylate cyclase [105,106]. Inhibition of allergic mediator release by 
hese agents is generally paralleled by an increase in the intracellular concentration of cyclic 
kMP in the respective cell preparations. Furthermore, since the release-inhibitory activities of 
hese agents are blocked by their specific antagonists, it is presumed that these agents increase 
:yclic AMP by acting on receptors linked to adenylate cyclase. The mechanism by which cyclic 
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AMP blocks mediator release is not known, but current evidence suggests that cyclic AMP acts 
early in the release process, that it is linked to the obligatory inward flux of calcium, and that it 
related to microtubule function [107]. There are, however, exceptions when changes in cyclic 
nucleotide levels do not correlate with inhibition of immunologic mediator release [7,108]. The 
nature of such dissociation between cyclic AMP elevation and inhibition is unclear but may be 
explained if there are functionally separate intracellular cyclic AMP pools [ 109] and if a product 
of the lipoxygenase or some other pathway can block selectively a biochemical sequence link- 
ing adenylate cyclase activation to inhibition of mediator release [ 107]. The effect of changes in 
intracellular cyclic GMP levels on allergic mediator release has been less extensively studied. 
In lung tissue, alpha- adrenergic and cholinergic stimulation increase cyclic GMP levels [110 
111 ], and such effects as well as extracellular cyclic GMP derivatives potentiate antigen-induced 
mediator release [112]. However, cyclic GMP does not enhance release from rat mast cells and 
has minimal or no effect on immunologic mediator release from basophils [ 113]. Furthermore, 
it is not known whether cyclic GMP-induced enhancement of pulmonary mediator release is a 
direct effect of alpha-adrenergic or cholinergic agents on the mast cells or whether it reflects 
their actions on other cell types [57]. Nevertheless, in this context it may be added that pertussis 
or pharmacologically established beta-adrenergic blockade has been reported to cause peritoneal 
mast cell degranulation in rats and mice, whereas beta-adrenergic stimulation protects these cells 
against propranolol induced degranulation [ 114]. As judged by the PCA reaction in guinea pigs, 
propranolol has the same enhancing effect on immunologic mediator release [ 115]. 

15. THE ALLERGIC TISSUE INJURY, BETA ADRENERGIC SUBSENSITIVITY AND 
BRONCHIAL ASTHMA 

Recent studies in patients with extrinsic asthma [ 116,117] and in animal models of experimental 
asthma [ 118,119,120] raised the possibility that the allergic tissue injury itself may result in the 
development of some forms of beta-adrenergic subsensitivity. In the studies of deVries et al. 
[ 116], and Koeter et al. [ 117], patients with complaints of episodic wheezing after exposure to 
allergens, specific IgE and skin tests, and an increased bronchial response to histamine inhala- 
tion were included. Symptoms of these seven patients were mild and well controlled without a 
history of respiratory tract infections or acute asthmatic attacks two months prior to the study. 
No patient was on beta-adrenergic or corticosteroid therapy. 

These studies were designed with the assumption that there might be a relationship between 
the allergic tissue injury and the adrenergic system. Therefore, the latter was studied before and 
after an inhalational allergen challenge. Two parameters were measured: 1) in vivo propranolol 
threshold to assess bronchial beta-adrenergic reactivities and 2) in vitro lymphocytic cAMP pro- 
duction in response to beta-agonist stimulation. The propranolol threshold changed from 1.32 
percent before challenge to 0.86 percent the day after. In the same patients the maximal cAMP 
response of lymphocytes changed from 339 percent above basal level before the challenge to 
194 percent after the challenge. 

Recently, the development of beta subsensitivity of airways smooth muscle was studied in 
greyhound dogs in order to determine its relationship to the hyperreactivity of the same airways 
to aerosols of Ascaris suum antigen [ 119,120]. Using thoracic trachealis smooth muscle, it was 
found that the airways hyperreactivity was statistically significantly inversely correlated with 1) 
beta-adrenoceptor density; 2) isoproterenol stimulated cAMP production; and 3) isoproterenol 
stimulated relaxation. These authors concluded that the beta-adrenergic subsensitivity of airway 
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smooth muscle that is associated with airways hyperreactivity in this canine asthma model is 
clue to a deficiency of beta-adrenoreceptors, since all post receptor beta-adrenergic responses 
that were measured (cAME protein kinase, relaxation) tended to be depressed in animals with 
airways hyperreactivity. 

These studies clearly indicate that the allergic tissue injury may be one of the contributory 
factors in the development of beta-adrenergic sub- sensitivity in some forms of human asthma, 
or alternatively the sole factor in some subsets of human asthma. They may not, however, sup- 
port the interpretations of deVries [ 116] and Koeter et al. [ 117] that these findings suggest that 
1) in the seven asthmatics they studied the beta-adrenergic subsensitivity was due to endogenous 
desensitization by catecholamines released in response to the allergic tissue injury; and 2) in all 
forms of asthma, this same mechanism is responsible for the manifestation of beta- adrenergic 
subsensitivity. 

Several lines of evidence argue against the general applicability of these interpretations 
to human asthma and other manifestations of atopy. First of all endogenous catecholamines 
released from neuronal and adrenal medullary catechol stores would be expected to desensitize 
both alpha- and beta-adrenoceptors more or less evenly. In the foregoing studies alpha-adreno- 
ceptor concentrations or their sensitivities were not measured, but in those studies where they 
were, this was not the case. Thus, pulmonary homogenates of sensitized guinea pigs that had 
been exposed chronically to antigen aerosol showed significant increase in alpha-adrenoceptors 
and a decrease in beta-adrenoceptors [118] reminiscent of the reciprocal adrenoceptor changes 
observed in a number of other human and animal studies described in the literature [121-125]. 
This alpha dominance is also reflected by the demonstration that alpha-adrenergic agonists pro- 
duce bronchoconstriction in asthmatic patients but not in normal subjects [ 126,127]. Similarly, 
in vitro studies show alpha-receptor mediated constriction of bronchial smooth muscle from 
patients with increased airways resistance but not from normal controls [24,128]. In addition, 
increased alpha-adrenergic receptor mediated responses in vascular and pupillary smooth mus- 
cles have been reported in asthmatics [ 129]. 

Furthermore, beta-adrenergic subsensitivity in asthma can be shown to occur in the absence 
of allergic symptoms or beta-adrenergic medication, and under circumstances in which prior 
or concurrent beta adrenergic medication can be only one contributing factor to defective beta- 
adrenergic function. This is also reflected by the presence of beta-adrenergic subsensitivity in 
atopic dermatitis in which beta-adrenergic medication is not used as a therapeutic modality. 
Nevertheless, endogenous release of catecholamines in response to the allergic tissue injury may 
contribute to the development of beta-adrenergic subsensitivity through homologous desensitiza- 
tion of the beta-adrenergic receptors. At the same time the endogenous release of other phar- 
macologic mediators (i.e., histamine) in response to the allergic tissue injury may contribute to 
the beta-adrenergic subsensitivity through heterologous desensitization [36]. The differences 
between these two mechanisms are explained below. 

16. THE ALLERGIC TISSUE INJURY, BETA ADRENERGIC SUBSENSITIVITY, AND 
ATOPIC DERMATITIS 

Differences between homologous and heterologous desensitization resulting in beta-adrenergic 
subsensitivity could be most conveniently explained through the model of Delean and associ- 
ates [ 130] originally used for the interpretation of adrenoceptor-adenylate cyclase interactions 
and based to a large extent on ligand binding experiments. This model envisions three principal 
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components of the system in the plasma membrane, i.e., the receptor (R), a nucleotide-binding 
regulatory protein (N), and adenylate cyclase (C). The binding of an agonist (A) to the receptor 
is believed to bring about a change that either promotes or stabilizes the formation of a ternary 
complex, ARN. The formation of the complex promotes the dislodging of a tightly bound gua- 
nosine diphosphate (GDP) molecule from N and its replacement with guanosine triphosphate 
(GTP), which enables N to activate C, thus stimulating the formation of cAME The GTP is 
subsequently hydrolyzed to GDP by guanosine triphosphatase (GTPase) associated with N, and 
this leads to inactivation of the cyclase. All three components of the system are then capable 
of being reactivated by renewed interactions of R with agonist molecules. The formation of 
the ternary complex ARN is of crucial importance to the functional coupling of the receptor to 
the cyclase in this hypothetical model. Antagonists occupy the receptor but do not promote or 
stabilize the formation of the ternary complex and thus do not activate the catalytic moiety of 
adenylate cyclase. Biochemical experiments indicate that the free form of the receptor (R) has a 
low affinity for agonists, while the complex of the receptor plus the nucleotide protein (RN) has 
a high affinity for agonists. Changes in receptor binding properties showing a lack of high affin- 
ity of R for agonists are thus believed to indicate that the crucial ARN complex is not formed. 
Not surprisingly, there is no activation of the cyclase under these circumstances. This phenom- 
enon resulting in the inability of agonist-stimulated beta-receptors to activate adenylate cyclase 
is referred to as uncoupling. As discussed below, uncoupling is one of the mechanisms by which 
agonist--induced desensitization of beta-adrenergic receptors take place [ 131 ]. 

The loss of a tissue's responsiveness to an agonist caused by repeated exposure to the agonist 
has been described using a variety of terms including desensitization, tolerance, refractoriness, 
and tachyphylaxis. Su and colleagues [132] have divided these phenomena into two major cat- 
egories, heterologous and homologous desensitization. Heterologous desensitization refers to 
the desensitization that occurs after exposure of cells to a biologically active agent that produces 
tissue refractoriness to itself and to a variety of other pharmacologically different agonists. By 
contrast, homologous or agonist--specific desensitization is a loss of responsiveness to only the 
particular agonist that induced the desensitization (or to a specific group of pharmacologically 
related agonists, all acting at the same tissue receptor site, e.g., the catecholamines). 

The mechanisms by which desensitization is produced are complex and variable depend- 
ing on the tissue. Isoproterenol-induced desensitization of turkey erythrocytes appears to fall 
into the category of heterologous desensitization because loss of sensitivity to fluoride ion and 
5'guanylylimidodi- phosphate (Gpp(NH)p)* (a less hydrolyzable analog that can substitute for 
GTP) is also produced in this situation. There is no decrease in receptor number in the isoprot- 
erenol-desensitized turkey erythrocyte, but rather an apparent uncoupling of the beta-adrenergic 
receptor from adenylate cyclase takes place due to impairment of the ability of occupied recep- 
tors to form a stable high-affinity ARN complex [133]. Similar refractoriness can be produced 
by exposure of the cells to 8-bromo-adenosine 3',5'-cyclic monophosphate, a cAMP analog, 
suggesting that the desensitization to isoproterenol is caused by the agonist-stimulated levels of 
cAMP within cells. Stadel and co-workers [133] suggested that cAMP-dependent phosphoryla- 
tion of the nucleotide regulatory protein (N) may be the mechanism of desensitization in this 
system, and thus no alteration in the receptor per se but rather uncoupling of the receptor from 
adenylate cyclase due to modification of the nucleotide regulatory protein takes place in this 
example of heterologous desensitization. 

Homologous desensitization of beta-receptors has been observed in a number of different 
types of cells including frog erythrocytes and astrocytoma cells and is produced by agonists 
but is blocked by antagonists [134]. Experiments on astrocytoma cells have shown that beta- 
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adrenoceptor desensitization produced by isoproterenol involves at least two steps. The earliest 
change to occur is uncoupling of the receptor from the cyclase, followed by the second step, 
which involves a loss of 80 to 95 percent of the assayable beta-receptors on the cell surface 
[ 135]. More recent studies on catecholamine-desensitized frog erythrocytes have shown that the 
down-regulated (unavailable) beta-receptors are sequestered in cytosolic vesicles apart from the 
guanine regulatory protein and catalytic moiety of the adenylate cyclase which remain in the 
plasma membrane [ 136]. 

The sequestered receptors appear not to be rapidly degraded and, therefore, may be recycled 
later during recovery of the tissue from desensitization [136,137]. Human neutrophils have been 
found to undergo desensitization involving both an uncoupling, which is highly analogous to 
that demonstrated in frog erythrocytes, and also a 40 percent reduction in number of receptors 
[138]. 

Drawing on the information available at the present time, one might formulate the following 
view: heterologous desensitization of beta-adrenoceptors involves uncoupling due to impair- 
ment of the ability of receptors to form the high-affinity ARN complex and consequently to 
activate adenylate cyclase; this impairment is produced by the agonist-stimulated accumulation 
of cAMP within cells. By contrast, homologous regulation is a multistep process involving early 
uncoupling of the receptor from the cyclase followed by later internalization of the uncoupled 
receptors in vesicles. 

With this understanding we can return to the foregoing section on the reactivities of the 
mediator--storing cells to antigenic and pharmacologic influences and their relations to cyclic 
nucleotides. As stated earlier, in addition to beta adrenergic agents, allergic release of hista- 
mine or of many, if not most of other pharmacologic mediators of immediate hypersensitivi- 
ties, is also inhibited by prostaglandins of the E series, prostacycline, adenosine, and histamine 
(i.e., by substances that interact with cell membrane receptors that activate adenylate cyclase). 
Normal physiologic inhibition of allergic mediator release by these agents is kept in check by 
their feedback effect on their respective receptors through the mechanisms of homologous and 
heterologous desensitization. In atopic disease, however, where there are multiple abnormalities 
in the receptor-adenylate cyclase- and cyclic AMP systems, this physiologic balance between 
inhibition versus enhancement of mediator release would be expected to lead to an exaggerated 
release reaction to the allergic tissue injury. 

Indeed, enhanced "releasability" of histamine from basophils and mast cells has been shown 
to occur in atopic dermatitis. "Releasability" is defined in this context as the capacity of media- 
tor secreting cells to release preformed or newly synthesized mediators [ 139-141 ]. Among the 
pharmacologic mediators, histamine is the best-studied substance, and the best-established 
mechanism is the IgE-mediated release reaction. The first study to show enhanced anti-IgE 
induced histamine releasability from basophils was performed by Lebel et al. [142], which was 
confirmed by Ring and his associates [130]. During the last few years numerous, more exten- 
sive investigations have been carried out that further confirmed the de facto existence of altered 
releasability in atopic dermatitis [71,144-146]. Similarly, increased releasability of histamine 
was also found to occur in bronchial asthma [147,148]. 

In a way, in vitro IgE-secretion by peripheral lymphocytes might also be viewed as a form 
of "releasability" too. Therefore, it is important to mention that several authors have provided 
evidence of increased spontaneous in vitro IgE-secretion in patients with atopic dermatitis 

* 5'Guanylylimidodiphosphate is an analog of GTP that contains an imidodiphosphate rather than a 
pyrophosphate linkage. 
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[149-151]. A significant positive correlation between serum IgE and in vitro IgE secretion 
has also been demonstrated [144]. In this connection, it should be noted that although much is 
known about IgE regulation in rodents [150], the mechanisms involved in the regulation of IgE- 
synthesis in man are not well established. It is generally assumed that isotype specific suppressor 
and helper T-cells play an important role, but the relevant subpopulation (perhaps FcE-receptor 
bearing lymphocytes, [152]), is not known at present. Furthermore, the exact pathogenetic role 
of IgEnreactions is atopic dermatitis is still controversial [ 153,154]. 

17. AUTOIMMIUNITY AS A DEVELOPMENTAL MECHANISM OF BETA-ADREN- 
ERGIC SUBSENSITIVITY 

The concept that an autoantibody interacting with a cell membrane receptor of a hormone or 
neurotransmitter could cause functional derangements and subsequent disease is now becoming 
widely accepted, and the number of diseases that may be mediated by antireceptor antibodies is 
rapidly growing [155,156]. 

The leading examples of such diseases include myasthenia gravis, involving autoantibodies 
directed at nicotinic acetylcholine receptors at the neuromuscular end-plates [ 157-159], Graves' 
disease involving autoantibodies to the thyrotropin receptor [160,161] and the severe insulin 
resistance in Type B insulin-resistant diabetes that has been ascribed to autoantibodies to the 
insulin receptor [162-164]. Thus, the foregoing diseases may be viewed as receptor diseases, 
and some subsets of asthma and other atopic diseases may ultimately be recognized as legitimate 
members of this group. Indeed, it has been described that autoantibodies to beta adrenoceptors 
can be identified in the plasma of some subjects with atopic allergy [ 165-167]. Although these 
antibodies appear to be heterogeneous, they share the ability to affect binding of 125I protein A to 
calf lung membranes, to inhibit stereospecific beta-adrenergic radioligand binding to calf lung 
beta 2 adrenoceptors, and to precipitate solubilized calf lung beta-adrenergic receptors in an indi- 
rect immunoprecipitation assay. Furthermore, the presence of autoantibodies to betaz-adreno- 
ceptors in these subjects correlates well with a reduced beta 2 and an increased alpha-adrenergic 
responsiveness. 

It may be added that from the currently available material even the three of the 19 apparently 
normal subjects with circulating antibodies were significantly less responsive to beta-adrenergic 
stimulation than the remainder of the normal controls [ 168]. 

The precise frequency and distribution of these autoantibodies in various subsets of patients 
with asthma and other atopic disease are currently under investigation in several American and 
European laboratories, as is the molecular mechanism by which they produce beta-adrenergic 
subsensitivities. For a general account of the molecular mechanisms that are involved in the 
development of autoimmunities in general, the reader is referred to an analysis by Szentivanyi 
and Szentivanyi [ 100]. In the orientation of this chapter, however, we shall only mention the role 
of virus infections as a developmental-mechanism of autoimmunity produced by anti- receptor 
antibodies specifically directed to beta adrenoceptors. Thus, virus infections can elicit autoan- 
tibody formation by two mechanisms. First, the viral antigens and autoantigens may become 
associated to form immunogenic units. Viral antigens stimulating host T-lymphocytes could 
then function as helper determinants, thereby stimulating B-lymphocyte responses to auto-anti- 
gens. Second, some viruses such as the Epstein-Barr virus (EBV) stimulate proliferation of the 
B-lymphocyte cell line with autoantibody production. There are two ways in which viral and 
host antigens can form immunogenic units. Host antigens can be incorporated in the envelopes 
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of some viruses, and viral antigens can appear on the surfaces of infected host cells [100]. The 
viral antigens also may form complexes with and modify histocompatibility antigens or other 
membrane constituents such as the contractile protein, actin. The modified viral antigens could 
stimulate T-cell helper effect and elicit autoantibody formation [ 100]. 

In humans, infection with viruses such as influenza, measles, varicella, and herpes simplex has 
often resulted in autoimmune manifestations such as platelet and red cell autoantibodies. The 
development of cold autoagglutinins after Mycoplasma pneumoniae infection probably occurs 
by a T-cell bypass mechanism. Following infectious mononucleosis, many patients' sera often 
react against several autoantigens. These include autoantibodies against nuclei, lymphocytes, 
erythrocytes, and smooth muscle. In addition, cross-reactive heterophile antibodies may be 
noted following infectious mononucleosis and other infections. The autoantibody is produced 
by a mechanism similar to that observed in altered self-component with virus or bacteria. 

There has been much speculation about the possible involvement of an oncornavirus in the 
pathogenesis of human systemic lupus erythematosus [ 169]. 
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