ORIGINAL PAPER

Vol. 27 no. 23 2011, pages 3259-3265
doi:10.10983/bioinformatics/btr562

Sequence analysis

Advance Access publication October 13, 2011

Fast scaffolding with small independent mixed integer programs

Leena Salmela*, Veli Makinen, Niko Valiméaki, Johannes Ylinen and Esko Ukkonen
Department of Computer Science, Helsinki Institute for Information Technology, University of Helsinki, Helsinki, Finland

Associate Editor: Alex Bateman

ABSTRACT

Motivation: Assembling genomes from short read data has become
increasingly popular, but the problem remains computationally
challenging especially for larger genomes. We study the scaffolding
phase of sequence assembly where preassembled contigs are
ordered based on mate pair data.

Results: We present MIP Scaffolder that divides the scaffolding
problem into smaller subproblems and solves these with mixed
integer programming. The scaffolding problem can be represented
as a graph and the biconnected components of this graph can be
solved independently. We present a technique for restricting the size
of these subproblems so that they can be solved accurately with
mixed integer programming. We compare MIP Scaffolder to two state
of the art methods, SOPRA and SSPACE. MIP Scaffolder is fast and
produces better or as good scaffolds as its competitors on large
genomes.

Availability: The source code of MIP Scaffolder is freely available at
http://www.cs.helsinki.fi/u/Imsalmel/mip-scaffolder/.

Contact: leena.salmela@cs.helsinki.fi

Received on March 2, 2011; revised on September 14, 2011;
accepted on October 6, 2011

1 INTRODUCTION

Present high-throughput sequencing machines can produce hundreds
of millions of short reads in a single run. Initially, this technology
was targeted at resequencing applications but is nowadays also
deployed in de novo sequencing projects. Apart from single reads,
the sequencing machines can also produce mate pairs, i.e. pairs of
reads whose approximate distance in the target genome is known.
Although there are good methods to assemble reads produced by the
older Sanger technology, new approaches are needed to deal with
data from the second-generation sequencing machines, because the
characteristics of the data like read length and sequencing errors are
different (Pop, 2009).

In a de novo sequencing project, the read data is typically
first quality trimmed and filtered to ensure high-quality data for
subsequent processing. A method to correct sequencing errors may
also be used. The next step is to assemble the reads into contigs,
which are gapless sequences of nucleotides. In the last step, the
contigs are ordered into scaffolds based on mate pair reads (Pop,
2009).

Here we consider the scaffolding problem. The input to the
scaffolding problem is the contigs produced by a contig assembler,
the mappings of the mate pair reads to the contigs and the insert

*To whom correspondence should be addressed.

sizes of the mate pair libraries. The objective is to find a linear
ordering of the contigs, which maximizes the number of mate pairs
whose pairwise distance equals the insert size. In practise, a linear
ordering of all the contigs is not achieved, because the data may
be incomplete and the organism may have several chromosomes.
Instead each contig is assigned to a scaffold and given an orientation
and position within the scaffold.

Kececioglu and Myers (1995) have shown that even determining
the orientation of the contigs is NP-hard. Therefore, all practical
methods to solve the scaffolding problem use heuristics and achieve
only an approximate solution.

Many assemblers like Velvet (Zerbino and Birney, 2008), Allpaths
(Butler et al., 2008) and SOAPdenovo (Li et al., 2010) contain a
scaffolding module. Some stand-alone scaffolders have also been
developed. Bambus (Pop et al., 2004) is designed for Sanger data,
and SOPRA (Dayarian et al., 2010) and SSPACE (Boetzer et al.,
2011) are developed for second-generation sequencing data. Bambus
and SSPACE are based on a greedy method, whereas SOPRA
relies on statistical optimization and partitioning the scaffolding
problem. Our new approach uses a partitioning scheme similar to
SOPRA but unlike SOPRA we restrict the size of the partitions
and thus we can solve the subproblems exactly with mixed integer
programming.

The rest of the article is outlined as follows. In Section 2, we
present a theoretical framework for scaffolding based on mixed
integer programming and partitioning the scaffolding problem.
Section 3 presents a practical implementation of this framework. We
compare the new scaffolder to SOPRA and SSPACE in Section 4.
Finally, we conclude in Section 5.

2 ALGORITHM

The input to a scaffolder is a set of contigs produced by an assembler
and a set of mate pairs. First, we map the mate pairs to the contigs.
This yields links between contigs that we represent as a graph. The graph
is then partitioned into subproblems, which we solve with mixed integer
programming. Finally, we combine the solutions of the subproblems to solve
the whole scaffolding problem. Each of these tasks is discussed in more
detail below. In Section 3, we address practical issues in implementing our
approach.

2.1 Scaffolding graph

The input to the scaffolding problem can be represented as a bidirected
graph called the scaffolding graph. Each contig is represented by a node
in the graph. There is an edge between two contigs if there are mate pairs
linking them. The edge is directed at both endpoints indicating the orientation
of the contigs with regard to each other. Figure 1 shows the four possible
ways of linking two contigs. Here the mate pair ends are oriented as in
SOLID data, where both reads of the pair are from the same strand of the
genome.

© The Author(s) 2011. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

L.Salmela et al.

< .

contig i

< .
< .

contig i

contig j

< .

contig i

contig j

contig j contig j
Fig. 1. The four possible ways of linking two contigs with a mate pair and
the bidirected edge representing each case.

Several mate pairs can induce the same edge in the scaffolding graph. The
total number of these mate pairs is the support si of the edge k. These mate
pairs are used to estimate the distance di between the two contigs.

The scaffolding problem can now be formulated as removing a set of edges
with minimum combined support from the scaffolding graph such that each
node can be assigned a position and orientation that satisfy the constraints
imposed by the remaining edges. Each scaffold can then be constructed in
two equivalent ways: the other way can be obtained by reversing the whole
scaffold.

2.2 Mixed integer programming formulation

In this section, we will develop a mixed integer programming (MIP)
formulation for the scaffolding problem. As a convention, we will use
italic type to denote variables and roman type to denote constants for those
quantities that are present in the MIP formulation. There are n contigs. Let us
denote the length of contig i by a;. Let L be an estimate of the upper bound
of possible scaffold length (e.g. an estimated upper bound of the length of
the entire genome or the longest chromosome).

The solution to the MIP problem will assign values to the following
variables. For each contig i (1 <i <n), we have two integer-valued variables:

e x;€{l,...,L}: the location of contig i in its scaffold. The location is
always the position that aligns with the beginning of the contig. So
if the contig aligns to the scaffold in reverse, the location is still the
position where the beginning of the contig aligns. See Figure 2 for
examples.

* 0;€{0,1}: the orientation of the contig, 0 meaning reverse orientation
and 1 forward orientation.

Additionally, there is one real-valued variable for each edge in the
scaffolding graph:

e I; €[0,1]: how well the distance constraint imposed by edge k is
satisfied. I = 1 means that in the solution the distance between contigs
of edge k is exactly dy.

We have thus 2n+m variables in total where m is the number of edges in
the scaffolding graph.

Each edge k imposes a set of constraints. We give here the constraints for
an edge where the two contigs, i and j, are oriented and positioned with regard
to each other according to the top left case in Figure 1. Figure 2 shows the
two possible placements of the contigs in a scaffold so that the mate pairs
are satisfied. We see that here both contigs are either forward oriented or
reverse oriented. Thus, 0; =0; and we get the following constraints:

0i—0j—(1—I) <0 (D
0i—0j+(1—I) > 0 2)

where the indicator variable I; is used to relax the constraints because if
the mate pairs are not satisfied in the solution, then the orientations may not
match either.

a,

I ! 1l d |

r f 1

_ - _ =

I I

T T

X . X .

L J
d .

I K 11 4 |
I If 1

- -
! :
X X

Fig. 2. The two possible placements of contigs i and j when an edge
with orientation corresponding to the top left case in Figure 1 is used in
a scaffolding. The top figure shows the case when both contigs are forward
oriented and the bottom one shows the case when they are reverse oriented.

From the top case of Figure 2, we see that the following should hold when
both contigs are forward oriented:

xita;+dy =x;
We get the following relaxed constraints:
Xit+ai+dg —C(1—I)—C(1—0;) < x5 (3)
Xi+a;+de +C(1 =) +C(1—0;) > x; (€]

where C is a large enough constant to relax the constraints if either this edge
is not included in the solution or the two contigs are reverse oriented. A
good choice for C is 2L as x; <L and x; <L. Similarly, we get the relaxed
constraints for the case where both contigs are reverse oriented (see bottom
of Fig. 2):

IA

Xi 5
Xi (6)

xj+dk+a,-—C(1 —1I;)—Co;

\%

xj+dg+a; +C(1 —I;)+Co;

The constraints for edges corresponding to the other three cases shown
in Figure 1 are derived similarly. For each edge, we thus get six constraints
corresponding to Equations (1-6). In total, we get 6m constraints where m
is the number of edges in the scaffolding graph.

When defining the constraints imposed by edge k, we allowed the distance
di to vary by C(1—1;). Our objective is to minimize the amount by which
we need to stretch these constraints:

min Y s C(1—1x)
k

where the sum is over all edges in the scaffolding graph. This is equivalent
to the objective function:

mastka (7
k

where again the sum is over all edges in the scaffolding graph. Note that if
I, were integer-valued, this would correspond to maximizing the number of
satisfied mate pairs.

The solution to the MIP problem assigns values to the variables x;, o;
and I. We then remove from the scaffolding graph those edges that are
stretched or contracted by >1000 bp (i.e. I is not close to 1). Each connected
component of the graph then forms a scaffold and the variables x; and o; give
the position and orientation of each contig i within its scaffold.

The above formulation allows two contigs to be positioned in the solution
so that they overlap. As post-processing, we detect such overlapping contigs
and remove one of them from the scaffold if the overlap is long and the
overlapping sequences of the contigs are not similar.

2.3 Partitioning the scaffolding problem

Dayarian et al. (2010) noticed that the scaffolding problem can be partitioned
into subproblems that can be solved independently. If the removal of a contig
divides the scaffolding graph into two components, then the scaffolding
can be solved independently for these two components both of which also

3260

Fast scaffolding with mixed integer programs

include the removed node. Since the two parts of the graph only share one
contig, the independent solutions can be easily combined. In graph theoretical
terms, this corresponds to dividing the scaffolding graph into its biconnected
components, and the contigs whose removal disconnects the graph are the
articulation nodes.

If there are no errors in mate pairs or their mappings, all contigs longer
than the insert length of the mate pair library are articulation nodes in the
scaffolding graph, because no mate pair spans over them. Thus, long contigs
should divide the other contigs into those that come before them and those
that come after. In real data, there are chimeric mate pairs and mate pairs
that map to several locations in the genome. Therefore, not all long contigs
in real data are articulation nodes.

When combining the scaffolds from independent solutions, overlaps
between contigs have to be observed. If combining two solutions would
cause two contigs with sequence similarity <90% to overlap, we do not
combine the solutions. Instead we keep one solution as it is and remove the
contig corresponding to the articulation node from the other solution and
split that solution into two scaffolds, those contigs that are placed before the
removed one and those that are placed after.

3 IMPLEMENTATION
3.1 General

MIP Scaffolder is implemented as a set of C++ programs. We use Lemon
graph library (http://lemon.cs.elte.hu/) to implement the scaffolding graph
and Ip_solve (http://Ipsolve.sourceforge.net/) to solve the MIP problems.

As input MIP Scaffolder takes the contigs as FASTA files and the
alignments of the mate pairs to the contigs as SAM files. MIP Scaffolder
can use several mate pair libraries with different insert sizes simultaneously.
The output of MIP Scaffolder is the scaffolds in a FASTA file.

3.2 Filtering mate-pair mappings

We first use a read mapper like the readaligner tool by Mékinen et al. (2010)
to map the mate pairs to the contigs. For further processing, we use only
those mate pairs whose both ends map to a unique position in the contig
collection.

To improve the quality of the mate pair mappings, we filter the mappings
so that we only keep mappings that are consistent with other mate pairs
mapping to approximately the same location. We call a mate pair mapping
(w,p)-consistent if for both ends of the mate pair the following holds: if a
mate pair end maps to a contig, then there exists a window of length w on
this contig such that if in total » mate pair ends map into the same window
and link the contig to the same direction, then at least p-r of all these mate
pairs link the same pair of contigs as the original mate pair. We only keep the
mate pairs mappings that are (w,p)-consistent for some w and p which are
parameters of our method. Figure 3 shows examples of (w,0.5)-consistent
and inconsistent mate pair mappings. Consistent mate pair mappings can
be found by sliding a window of length w on each contig. If the window
contains r mappings and p-r of these link the same pair of contigs, then the
p-r mate pair ends are marked consistent. We then scan all the mate pair
mappings and keep those whose both ends are marked consistent.

Filtering out mate pairs that are not consistent has two benefits. First,
it ensures that mate pairs mapping to repeat regions are not used in the
scaffolding process even if the repeat region is present only once in the contig
collection. If all repeat regions would be present several times, keeping only
unique mappings should suffice. Second, the insert length distributions tend
to have long tails. Mate pairs whose insert length deviates significantly from
the mean may be filtered out allowing us to estimate the distance between
contigs more accurately.

3.3 The scaffold graph

To estimate the distance di associated with an edge & linking two contigs, we
use edge bundling (Pop et al., 2004) combined with a maximum likelihood

Fig. 3. Examples of (w, 0.5)-consistent and inconsistent mate pair mappings.
The arrows denote contigs and the short lines mate pairs. The mate pair ends
are connected with arcs. The mate pairs with solid line arcs connecting them
are consistent and the mate pairs with dashed line arcs connecting them are
not consistent.

method (Gnerre et al., 2011; Simpson et al., 2009). For each mate pair
library, we estimate the mean insert size gmean and the insert size range
[gmin,&max] and using these values we compute minimum and maximum
suggested distances between the contigs based on each mate pair. We then
find a maximum set of mate pairs such that the intersection of the suggested
distance ranges is a non-empty range. The final distance dy is then computed
as a maximum likelihood estimate based on the mean insert size.

Contigs from repeat regions complicate the scaffolding process, because
they do not have a unique placement in the genome. Like previous approaches
(Dayarian et al., 2010), we attempt to recognize such contigs based on
their high degree in the scaffolding graph or much higher than expected
coverage and remove them from the scaffolding graph. By default, contigs
with coverage >2.5 times the average coverage of contigs or degree >50 are
classified as repeat contigs. Both thresholds can be adjusted by the user.

3.4 Restricting the size of partitions

If the biconnected components of the scaffolding graph are large, it is not
feasible to solve the corresponding MIP problem. Furthermore, solutions to
MIP problems of such large partitions often place many contigs so that they
overlap with other contigs even if the overlapping sequences are not similar.
This complicates the post-processing of the solutions.

Therefore, we restrict the size of the biconnected components by using
a suitable subgraph of the scaffolding graph. We use the technique by
Westbrook and Tarjan (1992) to keep track of the biconnected components
dynamically as new edges are added to the scaffolding graph. We measure
the size of a biconnected component by the number of edges. First, we sort
the potential edges of the scaffolding graph in decreasing order according to
their support s;. We then add the edges to the graph in this order but only if
the addition of an edge does not create a too large biconnected component.
This allows us to demand high support edges for those parts of the genome
that are well sampled by the mate pair library, while also being able to utilize
lower support edges for those parts of the genome that have a lower coverage
in the mate pair library. We show in our experiments that a relatively small
threshold for the component size yields the best scaffolding results.

4 RESULTS AND DISCUSSION

4.1 Mate pair libraries and contigs

The read sets used to test our approach are summarized in Table 1.
The first two read sets are SOLID reads from the Escherichia coli
DH10B substrain and the Caernorhabditis Elegans genome. The
E.coli read set is produced by Applied Biosystems, and we used the
filtered subset available at http://hts.rutgers.edu/. This set is quality
filtered and trimmed to 35 bp. We used the mean filter distributed
with SOPRA to filter the C.elegans read set and kept reads with
average quality at least 19 and no indeterminate colors. The third
read set is an Illumina paired end library for Pseudomonas syringae

3261

L.Salmela et al.

Table 1. The test datasets

E.coli C.elegans

Psyringae H.sapiens

Reference organism

Name Escherichia coli Caenorhabditis elegans Pseudomonas syringae Homo sapiens

Genome size (Mbp) 4.6 100.3 6.1 3080

Dataset

Accession number (SRA/ERA) NA SRR033650 ERR005143 SRR067771 SRR067773
SRRO67777 SRR067779
SRR067781 SRR067778
SRR067776 SRR067786

Read length (bp) 35 25 36 36 36

Number of reads 2x 7.4M 2x 24M 2x 3.6 M 2x 298.6 M 2x 342.0M

Coverage 110x 10x 42x 7x 8x

Spanning coverage 1930 % 427 % 236x 223x 311x

Insert size 1200 1785 400 2300 2800

Sequencing platform SOLiD SOLiD Ilumina Illumina Ilumina

The statistics are given for the sets after trimming and filtering. The spanning coverage is the total coverage of the read pairs and the bases in between them.

and the fourth read set consists of two Illumina mate pair libraries
for the human genome. The human Illumina mate pair libraries were
first trimmed to 36 bp and then we filtered out all reads where >30%
of the bases had quality score < 10. The statistics in Table 1 are for
the filtered sets.

We ran the initial contig assembly with Velvet (Zerbino and
Birney, 2008). The reads in the C.elegans dataset were too short and
the coverage too low to assemble the reads into contigs. We were
also not able to assemble contigs for the complete human genome
because of memory constraints. Instead we used the wgsim tool
distributed with SAMtools (Li et al., 2009) to generate synthetic
reads of length 100 from the reference genome and built the contigs
based on these reads. For the human genome, the reads were
generated and assembled one chromosome at a time to keep the
memory requirements on a reasonable level. The coverage of these
synthetic reads was 30x for C.elegans. For the human genome, we
generated paired reads with insert size 500 and 20x coverage. These
reads were not made available for scaffolding.

When running Velvet, we kept contigs >150bp. We used the
following other parameters:

* E.coli: hash length 19 and coverage cutoff 6.

¢ C.elegans: hash length 61 and coverage cutoff 6.

* Psyringae: hash length 21 and coverage cutoft 6.

* H.sapiens: hash length 57, coverage cutoff 6, and expected

coverage 20, no scaffolding.

The E.coli dataset was in color space and we used the contig
translation of SOPRA to get contigs in base space. For the other
datasets, the reads used to build the contigs were in base space
and so we could directly use the contigs produced by Velvet. The
statistics of the produced contigs are included in Tables 3-6.

4.2 Evaluation of scaffolds

The produced scaffolds were compared for the length of the scaffolds
and for their correctness. For length comparison, we used the N50
measure as well as the total length of the scaffolds.

We evaluated the correctness of the scaffolds as follows. Using
swift by Rasmussen et al. (2006), we searched for maximal
approximate local matches between the scaffold and the genome
sequence. With E.coli and P.syringae, we used parameters 11 for
the seed length, 0.05 for the maximum error level and 30 for the
minimum length of a maximal match. With C.elegans, we used
the same seed length, 0.02 for the maximum error level and 35
for the minimum length of a maximal match. With the human
scaffolds, we used 0.01 for the maximum error level, and 100
for the minimal length of a maximal match. This produced a set
of tuples each representing a match between a substring range of
scaffold and substring range of genome. To obtain an alignment
for the whole scaffold inside the genome, we implemented the
colinear chaining algorithm (Abouelhoda, 2007) that finds a subset
of the tuples that retains the linear order in both source (scaffold)
and target (genome), and maximizes the overall coverage of the
source (scaffold). Additionally, we restricted the length of gaps in the
colinear chaining algorithm to 2000 bp on the E.coli and P.syringae
datasets and to 5000 bp on the C.elegans and human datasets. This
way we could obtain a reliable alignment without resorting into
laborious sequence-level dynamic programming.

Three measures were computed based on the colinear chaining.
Genome coverage denotes the proportion of positions inside the
genome taking part into the alignment. Scaffold coverage denotes
the proportion of positions inside scaffolds taking part into the
alignment. We also extracted those parts of the scaffolds that
took part into the alignment and repeated the colinear chaining
computation recursively for the remaining part until no parts having
a maximal local approximate match remained. Finally, we computed
the N50 length statistic for all extracted parts. We call this N50
value the normalized N50 statistic. Note that the extracted parts of
scaffolds do not contain gaps and so the normalized N50 statistic
should be compared to the N50 value computed on the complete
scaffolds excluding gaps.

The validity of scaffolds was additionally measured similarly to
Gnerre et al. (2011). Pairs of sequences separated by a given distance
were extracted randomly from the scaffolds. These pairs were then

3262

Fast scaffolding with mixed integer programs

200000
150000
0.
3 100000
=2
50000
(o)
(=]
©
[}
>
o
I - VPR
[0}
g p=05 —— |
5 p=0.6 ---x---
15 p=0.7 ---%---
0.88 - p=0.8 @ |
p=0.9 - -m--
087 1 1 1 1 1 1 1
10 15 20 25 30 35 40 45 50

Fig. 4. The effect of filtering (w,p)-consistent mappings for the E.coli
dataset. Here we used the maximum component size of 100 edges.

mapped to the reference and we measured the proportion of pairs
whose orientation matched and distance was within 10% of the given
distance. The validity of contigs was not measured in this fashion
as they were not long enough.

4.3 Parameters and runtime of the scaffolders

For the E.coli, C.elegans and Psyringae datasets, we used
readaligner (Mikinen et al., 2010) to map the mate pairs to contigs
and for the human dataset we used SOAP2 (Li et al., 2009). For
the E.coli and P.syringae datasets, the results for SOPRA are for the
version which is integrated with Velvet and thus directly uses the
placement of reads as designated by Velvet. We allowed at most two
edit operations (mismatches and indels) when running readaligner
and at most three mismatches when running SOAP2. We were able
to map 91% of the E.coli reads, 87% of the C.elegans reads and 87%
of the P.syringae reads. For the human dataset, SOAP2 reported a
unique match for 70% of the reads.

We tried several parameter combinations for MIP Scaffolder.
Figure 4 shows how the N50 value and the genome coverage of
the scaffolds for the E.coli dataset evolve as we vary w and p when
determining (w,p)-consistent mappings. The longest scaffolds are
produced with fairly loose filtering but the loosest filtering also gives
less accurate scaffolds. Figure 5 shows how the N50 value and the
genome coverage evolve when the maximum size of the biconnected
component is varied. Here, we notice that the maximum size of
the component does not affect the scaffold lengths or correctness
much. For the analysis of the scaffolds, we used (10, 0.7)-consistent
mappings and maximum component size 100.

We similarly experimented with different parameters on the
other datasets and chose those parameters that produced longest
scaffolds. For the C.elegans dataset, we used (30,0.75)-consistent
read mapping and maximum component size 50, for the P.syringae
dataset (30, 0.5)-consistent read mappings and maximum component

200000
150000 [yonoeemeeessoos Frrsamsssssmansmne R Gt Lr]
O
o
L 100000 - E
50000 - w=10,p=07 —+— |
w=20, p=0.6 ---X---
w=30, p=0.5 ---*---
O | | | | | | |
0 20 40 60 80 100 120 140
Maximum component size
0.93 T T T T T
w=10, p=0.7 —+—
0.92 | w=20, p=0.6 ---%--- |
:,3, w=30, p=0.5 ---*---
5 091 i
>
S
O 09 | FIIIIIIID XTI XTI 3
£
e 089 | . |
S
0.88 | .
087 | | | | | | |

0 20 40 60 80 100 120 140
Maximum component size

Fig. 5. The effect of maximum component size for (w,p)-consistent
mappings for various combinations of w and p for the E.coli dataset.

Table 2. Runtimes (in hours) of the scaffolders

E.coli C.elegans Psyringae H.sapiens
SOPRA 0.17 3.12 0.03 -
SSPACE - - 0.02 9.5
MIP Scaffolder 0.03 0.20 0.004 18.8

size 50 and for the human dataset (50,0.75)-consistent read
mappings and maximum component size 50.

We tried several parameters for running SOPRA and show
the results for those parameters that gave the longest scaffolds
measured by the N50 value. The E.coli and the P.syringae scaftolds
were produced with the version of SOPRA that is integrated with
Velvet, and the C.elegans and human scaffolds were produced using
pregenerated contigs. For the E.coli dataset, we got best results
with support threshold (-w) 6. The original paper reports result with
support threshold 5 but our scaffolds are slightly longer. This might
be due to the stochastic nature of the algorithm which means that
even different runs with the same parameters may produce different
results. For the C.elegans and P.syringae datasets, we got longest
scaffolds with support thresholds 20 and 4, respectively. We could
not run SOPRA on the human dataset because it ran out of memory.

SSPACE does not support mate pair libraries from the SOLiD
technology and so we ran it only on the P.syringae and human
datasets. SSPACE was run with default parameters.

The scaffolders were run on a server with 16 cores operating at
2.93 GHz and 128 GB of memory. Table 2 shows the runtimes of the
different scaffolders. We see that MIP Scaffolder is the fastest of the
scaffolders except on the human dataset. On the human dataset, MIP
Scaffolder spent half of its time preprocessing the read mappings.
As further work, we plan to improve the efficiency of this phase.

3263

L.Salmela et al.

Table 3. The length and validation statistics of scaffolds produced from the E.coli data set by the scaffolders

Scaffolder Number of N50 (bp) Total length (bp) Genome Scaffold Normalized Validity
scaffolds coverage coverage N50 (bp) at 10kb
With gaps No gaps With gaps No gaps
Contigs 4341 - 1499 - 4362035 0.922 0.998 1496 -
SOPRA 168 203 090 185290 4840 884 4354534 0.912 0.988 185227 0.910
MIP Scaffolder 207 182 666 170 864 4558212 4327789 0.889 0.968 170796 0.972
‘When computing colinear chaining to obtain genome coverage, scaffold coverage and normalized N50 values, gaps were restricted to at most 2000 bp.
Table 4. The length and validation statistics of scaffolds produced from the C.elegans dataset by the scaffolders
Scaffolder Number of N50 (bp) Total length (bp) Genome Scaffold Normalized Validity
scaffolds coverage coverage N50 (bp) at 10kb
With gaps No gaps With gaps No gaps
Contigs 31419 - 14717 - 96249 755 0.943 1.000 14717 -
SOPRA 17951 132547 130346 98595934 96243 554 0.945 0.999 130346 0.990
MIP Scaffolder 10721 189704 187796 98273945 95406 856 0.933 0.986 183891 0.973
‘When computing colinear chaining to obtain genome coverage, scaffold coverage and normalized N50 values, gaps were restricted to at most 5000 bp.
Table 5. The length and validation statistics of scaffolds produced from the P.syringae dataset by the scaffolders
Scaffolder Number of N50 (bp) Total length (bp) Genome Scaffold Normalized Validity
scaffolds coverage coverage N50 (bp) at 10kb
With gaps No gaps With gaps No gaps
Contigs 2251 - 6972 - 5925601 0.964 0.981 6982 -
SOPRA 568 75224 74724 5987540 5917490 0.958 0.989 72714 0.998
SSPACE 345 94315 93850 5991990 5910839 0.946 0.978 93850 0.984
MIP Scaffolder 188 103598 103352 5990318 5919596 0.918 0.949 84779 0.983
‘When computing colinear chaining to obtain genome coverage, scaffold coverage and normalized N50 values, gaps were restricted to at most 2000 bp.
Table 6. The length and validation statistics of scaffolds produced from the H.sapiens dataset by the scaffolders
Scaffolder Number of N50 (bp) Total length (bp) Genome Scaffold Normalized Validity
scaffolds coverage coverage N50 (bp) at 50kb
With gaps No gaps With gaps No gaps
Contigs 349514 - 18994 - 2785310070 0.863 0.959 18 185 -
SSPACE 97525 348941 348566 2834193333 2783020651 0.640 0.719 179418 0.869
MIP Scaffolder 83909 328 665 325444 2823814726 2776643640 0.684 0.769 190008 0.870

‘When computing colinear chaining to obtain genome coverage, scaffold coverage and normalized N50 values, gaps were restricted to at most 5000 bp.

4.4 Comparison of scaffolds

Tables 3—-6 show the length and validation statistics of the scaffolds
produced by SOPRA, SSPACE and MIP Scaffolder for the various
datasets. We report the scaffold lengths both including gaps and
without gaps. The length statistics without gaps are more important,
because the statistics with gaps can vary if the insert length of the
mate pair library is estimated incorrectly (Pop et al., 2004).

For the E.coli data, SOPRA produces longest scaffolds that are
also the most accurate as measured by genome coverage. The
validity at 10 kb of these scaffolds is low because SOPRA’s estimate
of the insert size is not accurate. For the C.elegans data, MIP

Scaffolder produces longest scaffolds that are almost as accurate as
those produced by SOPRA. On this dataset, we note that scaffolds
produced by SOPRA have a higher genome coverage than the
contigs which is likely due to our method maximizing the scaffold
coverage instead of genome coverage; contigs can be easier aligned
to the same region in genome than scaffolds. For the P.syringae
data, MIP Scaffolder produces longest scaffolds that are not quite
as accurate as those produced by the other methods. We also note
that SSPACE performs better than SOPRA on this dataset. For the
human scaffolds, the coverage figures are quite low for both MIP
Scaffolder and SSPACE. This is partly due to the strict alignment

3264

Fast scaffolding with mixed integer programs

criteria that was used to make running the validation feasible. Also
the coverage of the contigs is low for this dataset indicating that
a larger portion of the contigs are chimeric. A chimeric contig
incorporated into a scaffold breaks the alignment of the scaffold
against the reference into two parts of which only the longer one is
considered in our validation method when computing genome and
scaffold coverage. Structural variation between individuals may also
cause lower coverage in the human data as the contigs are built on
simulated reads from the reference genome, while the mate pairs
are real data. Also validity at 50 kb is low indicating problems with
scaffolding.

5 CONCLUSION

We have presented MIP Scaffolder which partitions the scaffolding
problem into subproblems of restricted size and solves these
subproblems exactly with mixed integer programming. We
compared MIP Scaffolder to SOPRA and SSPACE on four datasets.
On two of the datasets, MIP Scaffolder produced longer scaffolds
that are not quite as accurate as those produced by the other two
methods. For the human dataset, MIP Scaffolder produced slightly
shorter but more accurate scaffolds than SSPACE and on the E.coli
dataset SOPRA outperformed MIP Scaffolder. Our experiments also
showed that our approach is fast allowing the user to try out different
parameter combinations easily to optimize for long scaffolds. It is
also possible to optimize for accurate scaffolds if, for example,
EST data or the sequence of a close relative species can be used
to measure the correctness of scaffolding.

ACKNOWLEDGEMENT

We wish to thank Rainer Lehtonen, Virpi Ahola, Ilkka Hanski, Panu
Somervuo, Lars Paulin, Petri Auvinen, Liisa Holm, Patrik Koskinen
and Pasi Rastas for insightful discussions about sequence assembly
and scaffolding.

Funding: Academy of Finland [Grant numbers 118653
(ALGODAN) and 1140727]; Helsinki Graduate School in
Computer Science and Engineering.

Conflict of Interest: none declared.

REFERENCES

Abouelhoda,M. (2007) A chaining algorithm for mapping cdna sequences to multiple
genomic sequences. In Proceedings of SPIRE’07, vol. 4726 of LNCS, Springer,
Heidelberg, pp. 1-13.

Boetzer,M. et al. (2011) Scaffolding pre-assembled contigs using SSPACE.
Bioinformatics, 27, 578-579.

Butler,J. et al. (2008) ALLPATHS: de novo assembly of whole-genome shotgun
microreads. Genome Res., 18, 810-820.

Dayarian,A. et al. (2010) SOPRA: scaffolding algorithm for paired reads via statistical
optimization. BMC Bioinformatics, 11, 345.

Gnerre,S. et al. (2011) High-quality draft assemblies of mammalian genomes from
massively parallel sequence data. Proc. Natl Acad. Sci. USA, 108, 1513-1518.
Kececioglu,J.D. and Myers,E.W. (1995) Combinatorial algorithms for DNA sequence

assembly. Algorithmica, 13, 7-51.

Li,H.; 1000 Genome Project Data Processing Subgroup (2009) The sequence
alignment/map (SAM) format and SAMtools. Bioinformatics, 25, 2078-2079.
Li,R. et al. (2009) SOAP2: an improved ultrafast tool for short read alignment.

Bioinformatics, 25, 1966-1967.

Li,R. et al. (2010) De novo assembly of human genomes with massively parallel short
read sequencing. Genome Res., 20, 265-272.

Mikinen, V. et al. (2010) Unified view of backward backtracking in short read mapping.
InAlgorithms and Applications: Essays Dedicated to Esko Ukkonen on the Occasion
of His 60th Birthday, vol. 6060 of LNCS. Springer, Heidelberg, pp. 182-195.

Pop,M. (2009) Genome assembly reborn: recent computational challenges. Brief.
Bioinformatics, 10, 354-366.

Pop,M. et al. (2004) Hierarchical scaffolding with Bambus. Genome Res., 14, 149-159.

Rasmussen,K. et al. (2006) Efficient g-gram filters for finding all epsilon-matches over
a given length. J. Comp. Biol., 13, 296-308.

Simpson,J.T. et al. (2009) ABySS: a parallel assembler for short read sequence data.
Genome Res., 19, 1117-1123.

Westbrook,J. and Tarjan,R.E. (1992) Maintaining bridge-connected and biconnected
components on-line. Algorithmica, 7, 433-464.

Zerbino,D.R. and Birney,E. (2008) Velvet: algorithms for de novo short read assembly
using de Bruijn graphs. Genome Res., 18, 821-829.

3265

