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Abstract: Metal-enhanced fluorescence (MEF) is a unique phenomenon of surface plasmons, where
light interacts with the metallic nanostructures and produces electromagnetic fields to enhance the
sensitivity of fluorescence-based detection. In particular, this enhancement in sensing capacity is of
importance to many research areas, including medical diagnostics, forensic science, and biotechnology.
The article covers the basic mechanism of MEF and recent developments in plasmonic nanostructures
fabrication for efficient fluorescence signal enhancement that are critically reviewed. The implications
of current fluorescence-based technologies for biosensors are summarized, which are in practice
to detect different analytes relevant to food control, medical diagnostics, and forensic science.
Furthermore, characteristics of existing fabrication methods have been compared on the basis of
their resolution, design flexibility, and throughput. The future projections emphasize exploring the
potential of non-conventional materials and hybrid fabrication techniques to further enhance the
sensitivity of MEF-based biosensors.

Keywords: plasmonic nanostructures; metallic nanostructures; metal-enhanced fluorescence;
localized surface plasmon resonance; low-dimensional materials; nanofabrication; biosensors

1. Introduction

Nanostructures were investigated extensively over the past two decades due to numerous
characteristics associated with unique phenomena that happen at the nano-size scale [1–3]. Localized
surface plasmon resonance (LSPR) is one of the distinctive phenomena of nanostructures, where light
produces strong oscillations of electrons when it interacts with the surfaces or structures of dimensions
lower than its wavelength [4]. This unique phenomenon further involves localizing the light within
the sub-wavelengths by breaking the light diffraction limit corresponding to dimensional features,
which produces a strong localized electromagnetic (EM) field.

Metals have a proven history as materials for fabricating plasmonic nanostructures/nanoparticles
with remarkable properties, including enhancement in photothermal/photocatalytic activity,
surface-enhanced Raman scattering (SERS), and metal-enhanced fluorescence (MEF) [5,6]. Among said
applications, enhancement in MEF is an area of particular interest due to its wide-range usability
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in photonics, medical diagnostics, and nanobiotechnology [7–9]. Variations in the type of materials,
composition, and geometric design of nanostructures significantly affect the photodegradation
resistance, fluorescence intensity, and fluorophores photostability [10,11].

Coinage metals like silver (Ag), gold (Au), and copper (Cu) are common materials used for MEF
applications due to their desired characteristics, i.e., high reflection, electron conductivity, suitability,
and biocompatibility [10,12,13]. However, many other materials such as aluminium (Al), palladium
(Pd), and platinum (Pt), as listed in Table 1, were also investigated over the past decades to enhance
MEF [14,15]. Table 1 enlists the plasmonic features and chemical reactivity of each material and refers
to relevant investigations for detailed study. Ag and Au are materials widely reported for MEF-based
applications due to their broad working range of wavelengths (visible (VIS) to near-infrared (NIR)) and
high quality (Q) factor [10,16]. The Q-factor represents the strength of the surface plasmons generated
over the material surface, which is a driving factor for enhancing the electromagnetic field and the
MEF factor [16]. Therefore, the Q-factor is an essential criterion to determine the potential of a specific
material used for MEF applications. Other materials, i.e., Pd and Pt, exhibit the spectral properties in
the visible region with low Q-factor and high surface plasmon damping, thus their usability is limited
due to their low MEF factor [14–17].

Table 1. Characteristics of various metals used for metal-enhanced fluorescence (MEF) applications.

Metals
Plasmonic Characteristics

Chemical Reactivity Reference
UV VIS NIR IB Q Factor

Silver (Ag) - - High Biocompatible; easily oxidized [12]

Copper (Cu) -
<600 nm Low Easily oxidized [13,16]

Gold (Au) - - -
<500 nm High Biocompatible; Stable [18,19]

Aluminium (Al) - - Low Stable after surface passivation [17]
Palladium (Pd) - Low Stable [14,15]
Platinum (Pt) - Low Stable [15]

UV: ultraviolet; VIS: visible, NIR: near-infrared; IB: inter-band; Q factor: quality factor.

In addition to the materials and compositions, the MEF characteristics (i.e., intensity and electrons
oscillation) critically depend on the shape and size of the nanostructures [7,10,20]. The size of the
nanostructures governs the scattering and absorption ratios, active surface plasmon (SP) mode, the
peak position of the plasmon mode, and localization of the plasmons [21]. Previous investigations [22]
showed that the variations in size of the nanostructures can boost the MEF enhancement factor (MEF-EF).
MEF-EF is defined as the ratio of fluorescence intensity between nanostructured and conventional glass
substrates, measured at the same wavelength and under the same experimental conditions. The shape
of the nanostructures is another critical parameter for describing the plasmonic characteristics [20].
Different shapes of nanostructures such as nanowires [10], spheres [13], rods [19,22,23], cubes [24,25],
triangles [26,27], and crescent-like structures [28], were developed with multiple methods to tune the
spectral properties, i.e., to boost the efficiency and MEF-EF [9,29,30].

Understanding and controlling the fluorescence properties in certain types of materials, as well
as the materials’ nanostructures design and their optimization resulted in substantial improvement
in many areas, from optoelectronics to biological sensing [9,21,29–31]. This article briefly describes
metal enhanced fluorescence, its fundamental mechanism, and critically reviews the manufacturing
methods to fabricate plasmonic nanostructures to enhance the MEF characteristics. Although many
reviews have been published on surface plasmon resonance (SPR) sensing, this review focuses on
morphology-dependent plasmonic nanostructures with MEF biocompatible platforms, in order to
consolidate knowledge in its category.
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2. Metal Enhanced Fluorescence

2.1. When Metal Enhanced Fluorescence Occur?

MEF is also known as plasmon-enhanced fluorescence or surface-enhanced fluorescence. It was
first reported in the 1970s [32], and later adopted as a sensing technology, which was recognized
in recent years due to the emergence of plasmonic nanostructures [9,33]. Various theoretical and
experimental approaches have been published recently on MEF [30,34]. It is perceived that MEF occurs
when fluorophores are excited near the metal surface at a distance ranging from 5 to 90 nm [34–36].
However, the fluorophores are quenched due to direct contact or being within the proximity (<5 nm)
of the metallic surface. Thus, the interplay between the fluorophores distance and quenching effects
either dominates or overwhelms the MEF enhancement factor [22,34]. Metallic nanostructures can
enhance the fluorescence intensity to a scale of several hundred. However, there are inconsistent
reports regarding the actual distance that delivers the maximum enhancement.

Similarly, numerous mechanisms of fluorescence enhancement have been reported; however,
the precise mechanism is still debatable because of the complexity of the interactions between the
metallic surface and the fluorophores. MEF is a complex phenomenon involving surface plasmon (SP)
and the near optical field, which leads to enhancement in fluorescence intensity and photostability, but
degrades the analyte life-span [37–39].

2.2. Metal Enhanced Fluorescence Mechanism

Considering the electromagnetic interactions, enhancement of MEF occurs due to several factors
such as: (1) the localized surface plasmon effect, (2) the plasmon effect due to non-radiative interactions,
and (3) the intrinsic lifetime [40,41]. As a first factor, the metallic structures or particles generate
the LSPR effect, which strengthens the localized electromagnetic field, as shown in Figure 1a [8,42].
When incident light interacts with the metallic structures, it produces localized surface plasmon
oscillations, which generate a highly concentrated electromagnetic field effect around the structures.
This field-effect modifies the absorption characteristics of localized fluorophores by increasing their
physical size [43,44], which results in enhanced fluorescence intensity due to their coupling with the
nano-particles or -structures [45]. It is well-known that the geometry of the nanostructures is crucial
in determining the MEF-EF. The fluorescence emission intensity from fluorophores increases under
resonance condition due to the enhanced field effect at the edges and corners of the nanostructures,
which enhances the MEF-EF [22,23,36,46].

As a second factor, non-radiative interaction mediates the SP coupling effect, as shown in
Figure 1b [36,47]. This phenomenon results in excitation enhancement due to spectral overlap between
the SP and fluorophores absorption band near or over the surface of the metallic nanostructures [40,41].
This overlap determines the dominant factor to be either Forster resonance energy transfer or the
Purcell effect, and further, how this factor leads to quenching or fluorescence enhancement [48–50].
At the optimal distance, the fluorescence intensity is increased due to energy transfer between the
SP and the fluorophores; this energy transfer is known as Forster resonance energy transfer (FRET).
FRET is also known as a process of electron transfer through molecules [51,52]. Consensus is in
place among researchers that the optimal distance between the metallic surface and fluorophores is
critically important [34–36]. Recent theoretical and experimental studies have shown that non-radiative
energy transfer not only depends on the EM field strength, but also on the spectral properties (i.e.,
absorption, scattering, emission) overlap, which leads to efficient fluorescence enhancement [37,47,48].
It is deduced that the fluorescence enhancement achieved within ~10 nm to metallic nanostructures
surfaces, can be explained through FRET. The enhancement achieved through larger separations
(10–50 nm) elucidates on the basis of the Purcell effect, which justifies the enhancement on the basis
of controlled modification of the coupling between the light and matter [8,34,49]. The excitation
enhancement is maximized using the metallic structures, which absorb light rather than scattering it,
and with a concentrated electromagnetic field confined in narrow gaps or sharp edges of the metallic
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nanostructures, as shown in Figure 1d,e [50,53]. A few nanometers change in the geometry of the
metallic structures significantly affect the excitation enhancement, which facilitates the development of
MEF-based sensors with high sensitivity.
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Figure 1. Metal enhanced fluorescence mechanism: (a) the localized surface plasmon resonance (LSPR)
effect on metallic structures, (b) the plasmon coupling effect due to non-radiative interactions, modified
from [47], (c) the intrinsic radiative decay effect, modified from [47], (d) fluorescence enhancement as a
function of the bowtie structures gap size (adapted with permission from [50]), and (e) fluorescence
enhancement (emissions, absorption, and total enhancement) as a function of the structure radius
(adapted with permission from [53], Copyright 2009, Optical Society of America).

For the third factor of an intrinsic lifetime, the fluorophores and metallic nanostructures stay in
close vicinity to each other. Therefore, the excited fluorophores couple together with the SP band of
metallic nanostructures, generating new MEF decay pathways for energy transfer. The said phenomena
facilitate the non-radiative energy transfer from the metallic nanostructures to fluorophores, allowing
the fluorophores to excite and transmit energy to the far-field as radiative transfer, thus enhancing the
fluorescence intensity (Figure 1c) [54,55]. The radiative rate of energy transfer from fluorophores can
be modified by fine-tuning the metallic structures, which further decreases the fluorophore’s lifetime,
due to the enhanced rate of radiative decay. In general, these coupling interactions correspond to the
spectral overlap between SP and the emission band of the fluorophores. Therefore, quenching or a
fluorescence emissions enhancement is possible depending upon the separation distance between
fluorophores and metallic structures [47,53,54]. It is reported that if fluorophores are within a few
nanometers of the metallic surface, the emissions will be quenched [44]. However, SP can still re-radiate
the sufficient amount of quenched energy, which enhances the emission intensity [56,57]. However,
this effect is minimized in the near-field region due to higher-order SP oscillations, which do not
allow fluorophores to re-radiate; thus, the overall emission is quenched [56–58]. At larger distances
where the Purcell effect dominates, it leads to an enhancement in the radiative rate rather than the free
space. Whereas, if the SP scatters more than absorption, then it will lead to fluorophores emissions
enhancements [50,53]. It is difficult to achieve a pure emissions or excitations enhancement because
of the wider SP scattering and absorption lines relative to fluorophores and a limited Stoke’s shift of
dye. Therefore, a balance is required to present the overall enhancement effect. In general, quenching
dominates at a few nanometers scale, which evolves into a too large enhancement (10–1000×) at the
range of 10 to 50 nm separation. Thereafter, there is a turn to normal fluorescence emissions as the
distance between the nanostructures further increases [59–61].

The size of the nanostructures affects the SP spectral properties, i.e., absorption and scattering
cross-sections. The SP absorption is dominant for nanostructures smaller than 20 nm, whereas,
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scattering dominates for larger dimensions and increases with the increase in the size of the structures.
This behavior is defined as “ratio of scattering to absorption”, which is size-dependent and independent
of the nanostructures aspect ratio [62]. Spectral properties are greatly affected by the shape of the
nanostructures [63]. For example, anisotropic morphologies, i.e., nanorods, nanotriangles, and cubes
reported for enhancement of the LSPR effect [64,65]. However, their performance is reported as:
highest sensitivity for nanorods, followed by nano triangles, and then nanospheres [62]. The selection
of the shape depends on the creation of “hot spot” regions, where the electromagnetic field is enhanced
due to the localized SP effect, which concurrently enhances the fluorescence intensity.

2.3. Metal Enhanced Fluorescence from Plasmonic Nanostructures

2.3.1. Conventional Plasmonic Nanostructures for Metal Enhanced Fluorescence

Since flat glass slides coated with metallic island films has demonstrated [66] MEF, MEF has
had exceptional growth in biosensing, biotechnology, and bioimaging applications [9,67,68]. Metallic
island films were commonly grown for fabricating MEF nanostructured surfaces due to their intrinsic
characteristic of supporting the SPs in the visible (VIS) and near-infrared regions [12,21]. In addition to
the conventional metallic island films, colloidal nanoparticles were used extensively over the years
for MEF applications, including for cellular imaging or paper-based MEF substrates for one-time
usage [69,70]. To achieve significant MEF enhancement, researchers fabricated different nanostructured
surfaces, including nanotriangles, fractals, and cube-like structures using various materials [71–73].
In each case, the resulting nanostructures showed significantly higher enhancement than the planar
island films.

2.3.2. Recent Developments in Plasmonic Nanostructures for Metal Enhanced Fluorescence

The recent developments in nanostructure fabrication for MEF applications over the past 10 years
have evolved for broadening the spectral range due to the need for MEF-based analyses. These analyses
required a substantial overlap between the plasmon absorption band of the plasmonic nanostructures
and the fluorescence excitation band of the fluorophores. Nanostructures have the potential to tune
the spectral properties at a specific wavelength; most of the recent developments focus on tuning the
plasmon absorption band over a broad spectral range (VIS to NIR) by utilizing different materials with
different structural geometry and shapes, and by maintaining an optimal distance [64,74,75].

In this section, the recent developments in plasmonic nanostructures for enhancing the MEF factor
are described, with details in further subsections. These sections highlight the different shapes and
geometries of plasmonic nanostructures and their optimal enhancement. All the quantitative and
deduced data have been adopted from the referred publications, with proper citations.

Metal Enhanced Fluorescence from Nano-Particles and Nanoclusters Fabricated by Chemical
Synthesis Methods

Since the first attempt was taken to produce a MEF sensing platform using the Ag core–shell and
silica core–shell particles [76], there has been an increasing demand to achieve an ideal MEF substrate for
a better understanding of the MEF phenomenon with solution-based suspension methods. A summary
of such structures with the MEF-EF is given in Table 2. It is reported that the MEF enhancement forms
the metallic nanoparticles that critically depend on shape, interparticle distance, dielectric constant,
and physical dimensions [7,57,77]. For metallic nanostructures/nanoparticles, the surface plasmon
polarization (SPP) cannot exit, while the whole excitation happens because of strong LSPR. Hence,
in nanoparticles- or nanocluster-based sensors, LSPR is used to enhance fluorescence by enhancing
the fluorophores excitations or emissions [44,53]. In the case of enhanced excitations, the SP band
overlaps with the fluorophores absorption band [78], and the separation distance should be minimized
between the metal nanoparticles and the fluorophores [44,53]. In case of enhanced emissions, the
SP band overlap with the fluorophores’ emissions band [59–61], and the separation distance should
be maintained at around 10 to 30 nm [53]. Controlling these factors can significantly enhance the
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MEF performance for specific applications due to an enhanced electric field generated at the edges of
the fabricated nanoparticles. Many researchers have performed studies to improve the MEF-EF by
controlling the above-stated factors, especially the relationship between orientation and distance of
fluorophores from the metallic surfaces [77,79,80]. Due to the coupling effect between the SPR band of
the metallic nano-particles array surfaces and the fluorophores emissions, the fluorescence intensity
from the nano-particles arrays was influenced by the distribution of the nanoparticles [81]. The metallic
nanoparticles or clusters fabrication onto the substrate often generates randomly distributed “hotspots”,
which help to attain a high fluorescence signal [60,82–85]. However, these structures have limited
ability to achieve a high and uniform enhancement factor over a large area. Nanospheres, as depicted
in Figure 2, fabricated by chemically synthesized silica spheres with thermally deposited Cu, show
significant enhancement due to the tuning of LSPR modes [13]. It was found that the fluorophores’
quenching effect was enhanced at the longer wavelengths near the metallic surface, however with
the fine-tuning of the nanostructures, the LSPR mode overcomes the quenching effect, and target
molecules achieve an enhancement factor 89.2-fold compared with the reference substrate [13].
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Recently, newly developed surfaces with anisotropic morphologies have gained more attention
than the sphere-like morphologies due to their sharper pinnacles or vertices, which leads to the
generation of stronger LSPR and local electromagnetic field effects [64,86,87]. In addition, these
anisotropic structures also provide an opportunity to tune the wavelength over a wide range,
from visible to near-infrared (NIR) [65]. For example, AuNRs, Ag, and AuNCs have rod-shaped,
triangular-shaped, and nano-crescent structures, respectively. These structural features are used for
tuning the LSPR characteristics over a wide range of wavelengths from visible to NIR, including
the transparent biological window by adjusting the aspect ratio [28,88–90]. Therefore, anisotropic
structures have great potential to be applied for constructing a highly sensitive MEF system for
biological sensing.

Peng et al. [88] recently reported fluorescence enhancement from nanorod structures. Two DNAs
were immobilized through their 5′ ends onto the edges of the nanorods, making the bond of Au-S,
followed by the complementary target DNA immobilization, which was labeled with cyanine-5 (Cy5)
as shown in Figure 3. The presence of nanorods demonstrated a large fluorescence enhancement when
compared with a reference substrate without nanorods. This enhancement was attributed to the dual
amplification phenomena. Firstly, there is an end-to-end coupling, which helps to tune and achieve
an excellent spectral overlap at 660 nm between the LSPR band of AuNRs and Cy5 fluorophores;
this further provides the opportunity for fluorescence enhancement due to a “hotspot” region, which
typically occurs at the corners. Secondly, the DNA strand displacement helps to overcome quenching.
Nanorods conjugated with fluorophores have also been reported as dual-modal nanoprobes for MEF
and SERS enhancement [84]. Despite this, the dual-modal performance of nanorods structures was
reported with an MEF-EF of only 2.2. There could be two possibilities for the lower MEF-EF, either:
(1) inactive spectral overlapping of the plasmon and fluorophores absorption band, as the LSPR band
generated at 510 nm, or (2) the growth of specific fluorophores dimeric species on the surface of
the nanorods.
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Table 2. Summary of various nanostructures and nanoparticles fabricated via chemical synthesis methods with different shapes and geometries, and their experimentally
determined enhancement factor (EF), with feature size, excitation wavelengths, used fluorophores, and publication information such as year and reference, for
further reading.

Material Configuration of
Structures

Structures
Feature Size (nm)

Wavelength λ

(nm) Fluorophore EF Year Ref.

Au Nanocomposite Dia: 20 nm 375 nm Amantadine hydrochloride 1.4 2018 [91]

Au Nanorods Dia: 17 nm
Length: 43 nm 532/785 nm Rhodamine B 2.2 2012 [84]

Au Nanoshells Dia: 200 nm 760 nm Rhodamine 610 2.4 2011 [92]
Au Nanoparticle Dia: 33 nm 450 nm PPQ-Zn2+-PPQ 3 2019 [41]

Ag@SiO2@PMOs Nanocubes Dia: 50 nm 465 nm Cu2+ 3 2016 [93]
Ag 2D nanoparticle arrays Dia: 20 nm 532 nm Rhodamine 6G 3 2012 [94]

Ag@SiO2-Au Nanoclusters Dia: 50 nm 610 nm AuNCs 3.2 2019 [95]
Au@SiO2-NH2@Au Nanoclusters Dia: 99 nm 610 nm AuNCs 3.7 2018 [60]

Au Nanorods - 753 nm Cy7 4.36 2020 [96]
Au Nanobipyramids - 751 nm Cy7 5.63 2020 [96]
Ag Colloidal nanoparticles Dia: 123 nm 560 nm Rhodamine 700 7 2019 [97]
Ag Nanowires on template Pores Dia: 200 nm 550 nm Rhodamine B 7.5 2018 [98]
Ag 3D nanoparticle arrays Dia: 20 nm 532 nm Rhodamine 6G 8.5 2012 [94]

Au@SiO2 Core-shell nanoparticles Dia: 89.7 642 nm Alexa 9 2020 [99]

Ag/Au@Silca Nanoclusters Dia: 37 nm
Thickness: 13 nm 635 nm Cy5 9.4 2010 [100]

CuNCs Nanoclusters Dia: 40–50 nm 574 nm CS-GSH-CuNCs 10 2020 [101]
Ag@SiO2 Nanoparticle Dia: 90 nm 370 nm Au25 12 2017 [102]

Ag Nanoshells Dia: 5 nm 420 nm Rhodamine 123 20 2010 [103]
Ag/Au Nanocluster Dia: 25 nm 548 nm Cy5 35 2010 [82]

Au Nanorods Dia: 13 nm 635 nm Cy5 40 2010 [85]
Ag@SiO2 Core-shell nanoparticles Dia: 89.7 642 nm Alexa 70 2020 [99]

Cu Nanospheres Dia: 462 nm 650 nm Porphyrin 89 2013 [13]
Ag Nanoshells Dia: 50–80 nm 514.5 nm Rhodamine B 94 2012 [83]
Au Nanorods Dia: 18.1 760 nm streptavidin-CW800 100 2018 [104]
Au Nanocluster Dia: 20 nm 365 nm Eu3+-EUTC 100 2014 [105]

Ag@Au Naprisms - 532 nm Ir-Zne 110 2017 [89]
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Figure 3. An illustration of the plasmon coupling and MEF enhancement due to end-to-end coupling
and the distance effect (adapted with permission from Reference [88]).

Metal Enhanced Fluorescence from Non-Periodic Nanostructures Fabricated by Deposition Methods

This section describes another category of MEF nanostructures which have been significantly
practiced over the past decade due to their inherent characteristics of time-efficient, economical, and
large-area fabrication with the ability to tune the spectral properties [17,22,23]. MEF enhancement
critically depends on the morphology of the nanostructures. Compared to other types of structures,
deposition methods enable control over size, porosity, and importantly, the shape of the nanostructures,
by manipulating the operating parameters, such as evaporation time, deposition rate, and incident
angle [17,106,107]. Using the deposition methods, various functional coinage metals, i.e., Cu, Ag, Au,
and Al, were used as building blocks to construct the numerous structures for enhancing the MEF-EF
as summarized in Table 3. Anisotropic thin-film nanorods-like structures were fabricated by oblique
angle deposition (OAD), to improve the MEF enhancement factor. Ju et al. [108] and Dhruv et al. [109]
fabricated slanted nanorod structures by OAD and they studied the suitability of the structures for
MEF applications. Ji et al. [106] fabricated zigzag structures, as shown in Figure 4a, by employing OAD,
and reported a 28-fold EF for Alexa 488 detection with a 0.01 pM detection limit. Although anisotropic
nanorods made with other methods were previously reported [85,89], Ji’s work has put forward a
pathway for deposition experts in fabricating the MEF-based biosensor using deposition methods.
The plasmonic response from such structures can be tuned by controlling the size of nanostructures,
which helps to overlap the SP characteristics with the excitation of fluorophores. Recently, Badshah
et al. [22] fabricated vertical nanorod structures, as shown in Figure 4b, by using glancing angle
deposition (GLAD) and studied their feasibility for MEF applications. It was reported that increasing
the length of the vertical nanorod structures changes the morphology of the nanorod structures. They
also reported a 200-fold MEF-EF on the nanostructured surface (diameter: 120 nm, and length: 500 nm)
using Cy5 fluorophores, compared to a reference substrate [22]. The researchers believed that the
“illuminating-rod effect”, due to the enhanced electromagnetic field and the LSPR effect, might be the
main contributor for enhancing the MEF-EF, along with the separation distance (20–30 nm) between
the nanostructured surface and the DNA-conjugated fluorophores [22,80]. It was also found that the
controlled porosity, diameter, and length of the nanostructures contribute significantly to enhance the
MEF enhancement factor [22,109].



Nanomaterials 2020, 10, 1749 9 of 22

Table 3. Summary of various nanostructures fabricated via various deposition methods with different shapes and geometries, and their experimentally determined
enhancement factor (EF), with feature size, excitation wavelengths, used fluorophores, and publication information such as year and reference, for further reading.

Material Configuration of Structures Structures Feature Size
(nm)

Wavelength λ

(nm) Fluorophore EF Year Ref.

Cu Structured thin-film nanorods Height: 550 nm 590 nm Rhodamine 123 02 2012 [17]

Au Structured thin-film nanorods Dia: 40 nm
Height: 285 nm 590 nm Rhodamine 123 3.9 2012 [17]

Zno Vertical nanorods Dia: 83.2 nm
Height: 170 nm 645 nm Alexa Fluor 647 5.7 2015 [110]

Au Nanorods Dia: 30 nm
Height: 13 nm 650 nm Alexa 647 10 2015 [111]

Ag Structured thin-film nanorods Dia: 75 nm
Height: 400 nm 590 nm Rhodamine 123 20 2011 [112]

Ag Slanted nanorods Height: 1000 nm 635 nm Cy5 23 2013 [108]

Ag Structured thin-film nanorods Dia: 75 nm
Height: 400 nm 590 nm Rhodamine 123 23 2012 [17]

ZnO Flower shape nanorods Dia: 718.5 nm
Height: 200 nm 515 nm Alexa Fluor 532 25 2015 [110]

Ag Zigzag nanorods Height: 2000 nm 525 nm Alexa 488 28 2016 [106]

Ag Nanocone Diabase: 180 nm
Height: 500 nm 528 nm Rhodamine 6G 30 2011 [113]

Ag Slanted nanorods Length: 635 nm 555 nm Rhodamine 6G 32 2015 [109]

Al Structured thin-film nanorods Dia: 30 nm
Height: 1000 nm 590 nm Rhodamine 123 37 2012 [17]

Zno Flower shape nanorods Dia: 718.5 nm
Height: 200 nm 645 nm Alexa Fluor 647 45 2015 [110]

Ag Structured thin-film nanorods Dia: 75 nm
Height: 400 nm 590 nm Rhodamine 123 71 2012 [17]

Ag Slanted nanorods Dia: 220 nm
Height: 3000 nm - Bovine aortic endothelial cell - 2010 [114]

Ag Vertical nanorods structures Dia: 120 nm
Height: 500 nm 635 nm Cy5 200 2018 [22]

Ag nanorods Dia: 89 nm
Height: 3000 nm 520 nm fluorescein-5-isothiocyanate 494 2014 [115]
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Figure 4. Examples of the MEF substrate fabricated by deposition methods: (a) a zigzag nanorods MEF
array, and (b) a vertical nanorods MEF array. Adapted with permission from references [22,106].

Although significant MEF performance is reported from all these fabricated structures, it is
not possible to predict the performance of the structures precisely through theoretical modeling.
The validity of these nanostructures needs additional experimental investigations to show exceptional
enhancement in MEF and structural optimization, which is not a systematic approach to tune the
spectral properties.

Metal Enhanced Fluorescence from Periodical Nanostructures Fabricated by Lithography Methods

Modern lithography is a powerful tool to fabricate periodic metallic nanostructures that can be
tailored for efficient MEF studies to understand the underlying MEF concept. Irrespective of the type
of structure, lithographic methods have the advantage of fabricating periodic structures, which can be
utilized to map or predict the MEF performance with efficient process control [18,26,50]. A summary
of such periodic structures with their MEF-EF is arranged in Table 4. The nano-prisms or nanotriangles
fabricated by e-beam lithography has demonstrated a 33-fold MEF enhancement by controlling the
feature size [18]. Levene et al. [116] reported on the fluorescence-based detection of single-molecule
DNA in low volumes (10−18–10−21 L) inside a zero-mode waveguide (ZMW) consisting of holes array
structures fabricated by e-beam lithography. This arrangement enables them to be adopted as a
commercially available platform (Pacific Biosciences) for single-molecule DNA detection with real-time
sequencing [117]. Although ZMWs fluorescence-based platforms gained recognition, the standard
platform has the potential to be improved by robust optimization. Al is a known plasmonic material
with low electromagnetic field enhancement; different structure shapes in conjunction with other
plasmonic materials (Au or Ag) can further enhance the electromagnetic field and fluorescence. Recently,
Paolo et al. [118] have reported the bi-metallic (Au–Al) nano-slots structures with improved sensitivity.
It was reported that the bi-metallic nano-slots structures enhanced the fluorescence by 30-fold compared
with the standard ZMW platform. In a similar study, researchers have fabricated bowtie nanoantenna
structures by e-beam lithography and reported [50] 1340-fold MEF-EF with low quantum yield of
N,N1-bis(2,6-diisopropylphenyl)-1,6,11,16-tetra-[4-(1,1,3,3-tetramethylbutyl)phenoxy] quaterrylene-
3,4:13,14-bis(dicarboximide) (TPQDI) dye. A similar MEF enhancement was reported [119] with an
EF of 1100-fold using the nanoantenna-in-box platform fabricated by focused ion beam milling (FIB).
In spite of the promising results, the widespread implications of the e-beam lithography process are
limited because of the difficulty in producing the nanostructures over a large area.

Nanoimprinting has the advantage of producing periodic structures over a large area, with
homogeneity. Recently, a plasmonic nano-lens array, as shown in Figure 5a was fabricated by



Nanomaterials 2020, 10, 1749 11 of 22

nanoimprinting. The developed structures demonstrated a 128-fold MEF-EF for a biomolecule
streptavidin conjugated with Cy5, by controlling the inter-lens spacing [30]. Recently, ZnO-nanorods
structures with an Au layer were reported to have an EF of ~300-fold [120]. It was deduced that the
optimized geometry of the ZnO structures enhanced the electromagnetic field. At the same time, the
Au layer above the nanorods helps to reduce the absorption and results in enhanced emission [120].
“Disk-coupled dots-on-pillar antenna array” (D2PA) structures, as shown in Figure 5b, reported from
the Stephen chou group at Princeton University, have demonstrated 2970-fold [121] and 7400-fold [122]
MEF-EF for detection of immunoassays of Protein A and Immunoglobulin G (IgG), respectively.
The team has also reported 4 × 106-fold promising enhancement with a single fluorophore located in the
proximity of the “hotspot” region [122]. The fluorescence enhancement occurred due to the generation
of a highly confined electromagnetic field induced by the SP, localized within the “hot-spots”, which
results in enhanced excitation of fluorophores and therefore increases the fluorophores radiative decay
rate, which further enhanced the fluorescence.
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In summary, the fluorophores coupling with the extreme EM fields of the LSPs can enhance
the intensity of fluorescence emission up to several orders of magnitude. The “hotspot” region
demonstrated the highest MEF enhancements, with a single fluorophore. Several researchers have
reported >103 MEF-EF for various nanostructure configurations with a combination of fluorophores
with low quantum yield [121,122].
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Table 4. Summary of various nanostructures fabricated via various lithography methods with different shapes and geometries, and their experimentally determined
enhancement factor (EF), with feature size, excitation wavelengths, used fluorophores, and publication information such as year and reference, for further reading.

Material Configuration of
Structures

Structures Feature Size
(nm)

Wavelength λ

(nm) Fluorophore EF Year Ref.

Ag Nano triangles Dia: 300 nm 525 nm Alexa 488 7.8 2013 [26]

Ag Concentric gratings Width: 200 nm
Height: 65 nm 635 nm Alexa 647 10 2011 [123]

Ag Nano gratings Pitch: 300 nm 532 nm Rhodamine 6G 14 2011 [124]

Al2O3@Ag Nano gratings Dia: 142 nm
Height: 67 nm 400 nm Rhodamine 6G 14 2016 [125]

Ag Nanodots Dia: 100 nm
Height: 30 nm 560 nm Cy3 15 2011 [126]

Au Nanocylinders Dia: 100 nm
Height: 35 nm 580 nm CdSe/ZnS core shells 26 2006 [18]

Ag Nano gratings Pitch: 375 nm 532 nm Rhodamine 6G 30 2011 [124]

Au Nanoprisms Width: 100 nm
Height: 35 nm 580 nm CdSe/ZnS core shells 33 2006 [18]

Au Nanogaps Height: 60 nm
Pitch: 400 nm 670 nm Cy5 47.4 2014 [127]

Ag Nano triangles Dia: 500 nm 780 nm Alexa 790 83 2013 [26]

Ag Nano gratings Height: 44 nm
Pitch: 400 nm 530/550 nm Rhodamine 6G 116 2015 [128]

Ag 3D nanodomes
Dia: 250 nm

Height: 100 nm
Pitch: 500 nm

635 nm streptavidin-Cy5 128 2018 [30]

Ag 3D nano gratings Height: 30 nm
Pitch: 480 nm 632.8 nm Cy5 170 2017 [129]

ZnO Nanorods
Dia: 230 nm

Height: 1.5 µm
Pitch: 390 nm

532 nm Rhodamine 6G 300 2019 [120]

Au@SiO2 Nanopilllar Dia: 100 nm
Pitch: 200 nm 800 nm IRDye-800cw-labelled

goat antihuman IgG 910 2019 [130]

Au nanoantenna Dia: 76 nm
Height: 50 nm 633 nm Alexa 647 1100 2013 [119]

Au bowtie nanoantenna - 780/820 nm TPQDI 1340 2009 [50]

Au D2PA nanoantenna
Dia: 100 nm

Height: 65 nm
Pitch: 200 nm

785 nm ICG, IgG 2970, 7400 2012, 2012 [121,122]
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2.4. Metal Enhanced Fluorescence-Based Biosensors Applications

Over the decades, an increasing number of studies have reported implementing MEF-based
sensing with pre-established technologies, i.e., fluorescence microscopy, fluorescence microarray
scanners, microplate readers, or with new devices developed for fluorescence signal amplification.
Combining the plasmonic nanostructures with immunoassays or microarrays offers the unique
advantages of detectability, and introduces a wide range of fluorescence-based applications with a
large variety of commercially available analytes, as summarized in Table 5. Various detection analytes,
including biomarkers, pathogens, and toxins, have been reported in the literature with new detection
methodologies and enhanced detection limits to provide a valuable tool for early diagnosis [131,132],
point-of-care (POC) diagnosis [133,134], and forensic applications [122,135]. Metallic nanoparticles
with a silica spacer and a silica core were reported for quantitative detection of the prostate-specific
antigen (PSA) with high sensitivity [133]. The detection antibody was attached to a 50 nm Ag particle
labeled with RuBpy dye to monitor the fluorescence intensity associated with the binding event.
The reported detection time was 30 min for the binding event with a detection limit of 0.20 ng/mL [133].
In another study, the metallic vertical nanorods were used for the quantitative detection of human
semen and vaginal fluids [135]. The sensor chip with Ag-nanorod structures was spotted with the
semenogelin-2 antibody and anti-17 beta-estradiol antibody and blocked with 15% dry milk and 85%
1× PBS solution. For detection, the daylight-conjugated protein sample was incubated and reacted with
the antibodies and washed after 1-h incubation. The sensor chip provides a semen and vaginal fluid
detection limit as low as 0.06 µg/mL and 0.005 µg/mL, respectively [135]. In similar studies, a sensor
chip was developed for detecting the severe acute respiratory syndrome-coronavirus (SARS-CoV)
proteins [134] and swine-origin influenza A (H1N1) viruses (S-OIV) [131] using the LSPs fluorescence
method. The detection limits of 0.1 pg/mL for the SARS-CoV N protein [134], and 13.9 pg/mL for
S-OIV [131] have been documented.

Immunoassay’s fluorescence detects the target analytes in the buffer solution by selective capturing
of the biomarker with tags immobilized over the sensor surfaces. Zhou et al. [122] have reported the
D2PA nanoantenna structures and a molecular spacer to enhance fluorescence intensity of protein A
immunoassay and human IgG. The detection limit of 0.3 fM (1× 10−7 nM) was reported with a detection
time of 1 h. In another study, Zhang et al. [130] have reported on the EBOV immunoassay sensor for the
detection of EBOLA virus using 3D plasmonic nanoantenna arrays. The detection limit of ≈220 fg/mL,
which was ≈240,000-fold higher than the existing FDA recommended EBOV-rapid-immunoassay.

In the current scenarios of the COVID-19 pandemic, rapid and real-time detection is desirous.
Ganguli et al. [136] reported a fluorescence-based sensing platform with a detection limit of 50 RNA
copies/µL in the viral transport medium solution, and 5000 RNA copies/µL in the nasal solution.
The rapid detection has been demonstrated within 40 min, which makes fluorescence-based detection
a viable solution for mass-testing in the current situation.

Table 5. Overview of metal enhanced fluorescence-based biosensors for the detection of various
analytes, with information on detection limit, detection time, and publication information such as year
and reference, for further reading.

Detection Analyte Detection Time Limit of Detection Year Ref.

Mouse IgG antigen - 0.25 µg/mL 2015 [132]
Human Semen 60 min 0.06 µg/mL 2018 [135]

Human Vaginal Fluid 60 min 0.005 µg/mL 2018 [135]
Human immunoglobulins 60 min 0.0008 µg/mL 2019 [137]

FITC-labeled YebF protein from Escherichia coli - 17.2 ng/mL 2020 [138]
Prostate-Specific Antigen (PSA) 30 min 0.20 ng/mL 2017 [133]

S-OIV - 13.9 pg/mL 2010 [131]
17-β-estradiol Real-time 1 pg/mL 2017 [139]

SARS-CoV - 1 pg/mL 2009 [134]
Kidney injury molecule-1 - 500 fg/mL 2018 [104]

Ebola virus 10 s 220 fg/mL 2019 [130]
Neutrophil gelatinase-associated lipocalin - 0.5 fg/mL 2018 [104]
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Table 5. Cont.

Detection Analyte Detection Time Limit of Detection Year Ref.

DNA-oligonucleotides - 2.5 × 104 nM 2015 [36]
CD4-mRNA expression 60 mints 125 nM 2019 [140]

Glucose Real-time 50 nM 2015 [141]
Intracellular Adenosine triphosphate - 35 nM 2020 [96]

Lysozyme in Human Serum Real-Time 1.6 nM 2020 [101]
Human Immunoglobulin G - 10 nM 2014 [79]

Carbohydrate-lectin 5 s 0.87 nM 2015 [111]
DNA aptamer 20 min 0.33 nM 2015 [142]

Acetylcholinesterase - 0.01 nM 2018 [143]
Streptavidin 10 min 0.05 nM 2011 [144]

Hairpin ssDNA 30 min 10 pM 2017 [80]
miRNA-21-Bladder cancer-related biomarker in Urine 120 min 26.3 fM 2019 [145]

Human NOGGIN 25 µs 1.5 × 10−3 nM 2018 [146]
Alexa 488 labelled oligonucleotide - 1 × 10−5 nM 2016 [106]

Human IgG 60 min 1 × 10−7 nM 2012 [122]

2.5. Summary and Future Outlook

The continuous exploration of MEF underlying principles and multiple fabrication approaches
has increased the success factor in plasmonic nanostructures research. During the past decades, various
nanostructures based MEF platforms have been developed and applied in the field of biotechnology
and life sciences. These have added the extra features of incident light confinement, spectral properties
tunability, enhanced electromagnetic field, and improved signal-to-noise ratio to MEF platforms
due to their geometries. This article critically reviews the fabrication methods, material selection,
and dimensional features of nanostructures, which can significantly enhance the EF and sensing
accuracy. It has been observed that each fabrication method exhibits significant MEF performance
due to morphological-specific features. For example, metallic core-shell nanoparticles fabricated by
chemical synthesis methods [97,100] have demonstrated enhancements beyond the MEF standard
approach through controlling the cavity, which concentrates the electromagnetic field [13]. Similarly,
the localization of the electromagnetic field increases with an increase in the length of nanostructures
when fabricated with deposition methods [23,109].

Despite the continuous enhancement in the MEF factor, significant challenges still need to be
resolved in order to achieve widespread usability of MEF-based technology, and to reach its full
potential. One of the potential research domains is to predict the effect of the dielectric medium and
nanostructures geometry on the MEF performance. Maxwell’s equation-based numerical simulations
have the potential to evaluate the structure-based performance. However, due to the complexity of its
nature, there is a need for accurate and straightforward methods to predict and optimize structural
performance. Dipole–dipole coupling methods could be another option, but they have not yet been fully
explored for MEF-based applications. Another research domain is the fabrication of large-area MEF
substrates with uniform structural features, i.e., size, shape, and distribution with control, precision,
and repeatability at the nanoscale resolution, to govern spectral properties. When designing the
nanostructures, a combination of appropriate material selection and state-of-art fabrication methods
is desired. A brief comparison of fabrication methods in terms of resolution, design flexibility, and
throughput is illustrated in Figure 6.

Another potential research domain is the development of new fabrication technologies to develop
nanostructures with high throughput, ultrahigh resolution, and design flexibility in an economical way.
Chemical synthesis and deposition methods presently provide marginal accuracy with high throughput
for nanostructures fabrication, while lithography methods are expensive to apply for large-area
applications. Therefore, new fabrication approaches, combining the existing techniques, are required
to fabricate highly sensitive biosensors for widespread MEF-based applications. Nanoimprinting
lithography (NIL) is notable among other reported methods due to its potential for controlling the
nano-feature size with high throughput and high resolution [122]; it was adapted to achieve an



Nanomaterials 2020, 10, 1749 15 of 22

enhancement factor on the order of > 103. Such a giant MEF enhancement has made the fabricated
platform capable of detecting 0.3 fM (1 × 10−7 nM) human IgG. Recently, Zang et al. [130] reported
on 3D nanoantenna structures fabricated by combining advanced nanoimprinting and deposition
methods with precise dimensional control, for detecting the EBOLA virus with improved sensitivity
of 240,000-fold compared to the FDA-recommended EBOV immunoassay sensor. The advancement
has paved the way for future developments required for early diagnostics of diseases. Recently,
SARC-CoV-2 genome RNA detection was demonstrated for real-time-point of diagnostics using the
fluorescence-based portable platform with a detection limit of 5000 RNA copies/µL. However, further
developments are required to accelerate rapid and real-time detections. These developments would
collectively improve the fabrication of highly sensitive and portable platforms, which will help to
stimulate future developments for real-time diagnostics of SARC-CoV-2 by providing a substitute for
the laboratory-based test.
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apply for large-area applications. Therefore, new fabrication approaches, combining the existing 
techniques, are required to fabricate highly sensitive biosensors for widespread MEF-based 
applications. Nanoimprinting lithography (NIL) is notable among other reported methods due to its 
potential for controlling the nano-feature size with high throughput and high resolution [122]; it was 
adapted to achieve an enhancement factor on the order of > 103. Such a giant MEF enhancement has 
made the fabricated platform capable of detecting 0.3 fM (1 × 10−7 nM) human IgG. Recently, Zang et 
al. [130] reported on 3D nanoantenna structures fabricated by combining advanced nanoimprinting 
and deposition methods with precise dimensional control, for detecting the EBOLA virus with 
improved sensitivity of 240,000-fold compared to the FDA-recommended EBOV immunoassay 
sensor. The advancement has paved the way for future developments required for early diagnostics 
of diseases. Recently, SARC-CoV-2 genome RNA detection was demonstrated for real-time-point of 
diagnostics using the fluorescence-based portable platform with a detection limit of 5000 RNA 
copies/µL. However, further developments are required to accelerate rapid and real-time detections. 
These developments would collectively improve the fabrication of highly sensitive and portable 
platforms, which will help to stimulate future developments for real-time diagnostics of SARC-CoV-
2 by providing a substitute for the laboratory-based test. 

Figure 6. A qualitative comparison of characteristics belonging to different methods for fabricating
the nanostructures.
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