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Abstract: Ischemic stroke (IS), the leading cause of death and disability worldwide, is caused by
many modifiable and non-modifiable risk factors. This complex disease is also known for its multiple
etiologies with moderate heritability. Polygenic risk scores (PRSs), which have been used to establish
a common genetic basis for IS, may contribute to IS risk stratification for disease/outcome prediction
and personalized management. Statistical modeling and machine learning algorithms have con-
tributed significantly to this field. For instance, multiple algorithms have been successfully applied to
PRS construction and integration of genetic and non-genetic features for outcome prediction to aid in
risk stratification for personalized management and prevention measures. PRS derived from variants
with effect size estimated based on the summary statistics of a specific subtype shows a stronger
association with the matched subtype. The disruption of the extracellular matrix and amyloidosis
account for the pathogenesis of cerebral small vessel disease (CSVD). Pathway-specific PRS analyses
confirm known and identify novel etiologies related to IS. Some of these specific PRSs (e.g., derived
from endothelial cell apoptosis pathway) individually contribute to post-IS mortality and, together
with clinical risk factors, better predict post-IS mortality. In this review, we summarize the genetic
basis of IS, emphasizing the application of methodologies and algorithms used to construct PRSs and
integrate genetics into risk models.

Keywords: genome-wide association study; ischemic stroke; stroke subtypes; cerebral small vessel
disease; polygenic risk score; mendelian randomization; machine learning; artificial intelligence;
electronic health records; gene ontology; least absolute shrinkage and selection operator (LASSO);
all-cause mortality; survival analysis; cox proportional hazards regression

1. Polygenic Nature of Ischemic Stroke

Ischemic stroke (IS) is a highly complex and heterogeneous disorder caused by multi-
ple etiologies with moderate heritability. Monogenic forms of IS are rare. Some studies have
reported 30% to 40% phenotypic variability explained by common genetic variation [1]. All
main classification methods stratify IS subtypes into the five major categories: large artery
atherosclerosis (LAS), cardiac embolism (CES), small artery occlusion (SVS), uncommon
causes, and undetermined causes [2]. The focus of this article is to dissect the etiology of IS
through pathway analyses and highlight how statistical methods and machine learning
algorithms have contributed to the integration of genetic information into risk models. A
flow chart summarizing the topics covered by this review to guide the reader is presented
in Figure 1. We first briefly review the genetic basis of monogenic stroke and then turn our
attention to the polygenic nature of sporadic IS using polygenic risk scores (PRSs) derived
from large-scale genome-wide association studies (GWAS) and meta-analyses of GWAS as
a tool to establish a common genetic basis for IS. We will discuss how the polygenic risk for
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cardiovascular disease may also contribute to the risk for sporadic IS. We will show how
PRS may augment IS subtyping and review the polygenic basis of IS subtypes, such as car-
dioembolic stroke, cerebral small vessel disease (CSVD), and cerebral vascular amyloidosis.
Our main focus is pathway-specific PRS analyses. We will show how this approach can
leverage information to confirm known and identify novel etiologies related to IS. Some of
these specific PRSs may contribute to IS risk stratification for disease/outcome prediction
and personalized management. Finally, we will discuss the challenges of integrating PRS
into clinical decision support systems and risk stratification procedures.
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most prevalent monogenic CSVD and is caused by a cysteine-altering mutation in one of 
the 34 epidermal growth factor-like repeat (EGFr) domains of NOTCH3 gene at 19q1 [3–
5]; (2) cerebral autosomal recessive arteriopathy with subcortical infarcts and 
leukoencephalopathy (CARASIL), which is caused by missense mutations in HTRA1, 
encoding a serine protease, located at 10q26.13 [6]; (3) Fabry disease (FD), a rare X-linked 
inborn error of glycosphingolipid metabolism resulting from reduced production of 
lysosomal α-galactosidase A (α-Gal A), resulting in the accumulation of 
glycosphingolipids [7] in various cellular compartments, causing structural damage and 
cellular dysfunction and triggering a secondary inflammatory response, resulting in 
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related angiopathies; COL4A1/A2, located at 13q34, encodes the most abundant and 
prevalent protein in the basement membrane of all tissues, including cerebral vasculature; 
type IV collagen helps the basement membrane interact with other cells, playing a role in 
cell migration, proliferation, differentiation, and survival; and (6) hereditary cerebral 
amyloid angiopathy (CAA), characterized by cerebrovascular amyloid deposition, mainly 
observed in leptomeningeal and cortical vessels; it can be classified based on accumulated 
amyloid proteins, such as amyloid β (APP), cystatin C (CST2), integral membrane protein 
2B (ITM2B), prion protein, transthyretin (TTR), and others [10]. 

Understanding the genetics of monogenic CSVD and lacunar stroke [11] can lead to 
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1.1. Pioneer Studies on Monogenetic Disease

Genetic studies contribute significantly to our understanding of the causality of IS
and its subtypes. With reference to previous linkage studies, several distinct single-gene
variants have been discovered among patients with lacunar stroke and CSVD. CSVD is a
common cause of stroke and cognitive impairment in the elderly and affects small vessels
of the brain, including small arteries, arterioles, capillaries, and small veins. So-called
monogenic cerebrovascular diseases include: (1) cerebral autosomal dominant arteriopathy
with subcortical infarcts and leukoencephalopathy (CADASIL), which is the most prevalent
monogenic CSVD and is caused by a cysteine-altering mutation in one of the 34 epidermal
growth factor-like repeat (EGFr) domains of NOTCH3 gene at 19q1 [3–5]; (2) cerebral autoso-
mal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL),
which is caused by missense mutations in HTRA1, encoding a serine protease, located
at 10q26.13 [6]; (3) Fabry disease (FD), a rare X-linked inborn error of glycosphingolipid
metabolism resulting from reduced production of lysosomal α-galactosidase A (α-Gal A),
resulting in the accumulation of glycosphingolipids [7] in various cellular compartments,
causing structural damage and cellular dysfunction and triggering a secondary inflamma-
tory response, resulting in progressive organ dysfunction [8]; (4) retinal vasculopathy with
cerebral leukodystrophy, an autosomal dominant disorder caused by C-terminal frameshift
mutations in the Three Prime Repair Exonuclease 1 (TREX1) gene located at 3p21.31 [9];
(5) COL4A1/COL4A2-related angiopathies; COL4A1/A2, located at 13q34, encodes the most
abundant and prevalent protein in the basement membrane of all tissues, including cerebral
vasculature; type IV collagen helps the basement membrane interact with other cells, play-
ing a role in cell migration, proliferation, differentiation, and survival; and (6) hereditary
cerebral amyloid angiopathy (CAA), characterized by cerebrovascular amyloid deposition,
mainly observed in leptomeningeal and cortical vessels; it can be classified based on accu-
mulated amyloid proteins, such as amyloid β (APP), cystatin C (CST2), integral membrane
protein 2B (ITM2B), prion protein, transthyretin (TTR), and others [10].

Understanding the genetics of monogenic CSVD and lacunar stroke [11] can lead to
precise diagnosis and prognosis, aid in the development of a targeted treatment plan, and
ultimately lead to an improved phenotype definition. Monogenic diseases are rare, and
the causal variants have a minor allele frequency (MAF) of less than 0.005 (ultra-rare) in
the stroke population. Sporadic IS, which dominates the disease population, cannot be
explained by these rare inheritances despite some success in identifying common risk loci
at the gene level (e.g., COL4A2 and HTRA1) by the GWAS [11–15].



J. Clin. Med. 2022, 11, 5980 3 of 31

1.2. Genome-Wide Association Studies (GWAS)

Large-scale GWAS on IS and its etiological subtypes have gained popularity in recent
years, and some common variants and genes have been identified in the process. A
large-scale, multi-ancestry GWAS meta-analysis led by the MEGASTROKE consortium,
discovered 22 new stroke risk loci, bringing the total number to 32 loci associated with
stroke and stroke subtypes [16]. These genetic variants/genes are mostly subtype-specific,
and their biological relevance to the etiology of stroke needs to be further investigated to
determine their causality in general, as well as a specific subtype [17]. The variation of
effect size observed in different stroke subtypes also poses a challenge for risk stratification.

1.3. Polygenic Risk Score (PRS) Construction

PRSs have been used to establish a common genetic basis for complex traits, indepen-
dent of whether single markers with a significant association or not, and contribute to risk
stratification for disease/outcome prediction and personalized management. Although
an increasing number of stroke risk loci have been identified, their effect sizes are quite
small. [16] In most diseases with a polygenic etiology, genome-wide significant markers
explain a small proportion of the heritability of complex traits. However, converging
evidence supports the notion that a considerable proportion of phenotypic variation can be
explained by the ensemble of individual markers not achieving that level of significance.

A genetic risk score (GRS) derived from multiple loci with genome-wide significant
association has a limited power to predict IS [18,19] or its subtypes [20], possibly due to
the relatively few identified stroke susceptibility loci and the genetic heterogeneity of IS
patients. A GRS from genome-wide loci was shown to be superior to a multi-locus GRS in
the prediction of IS in a small Japanese population [21].

To improve the predictive power, the GRS was been extended to loci with small effects
and without significant genome-wide association in the form of PRS [22]. There are many
ways to construct a PRS. These variations are mainly the result of which genetic variants
are included and how their effect sizes are estimated. Thus, PRS can be calculated directly
based on individual-level genotyping data or indirectly according to the summary statistics
of an ancestry-matched reference panel. Whichever implementation approach is applied
for the construction of PRS, the weight of each variant has to be estimated based on a
single or multiple large-scale GWAS. These variants can be integrated into a single score by
statistical modeling/machine learning approaches, a field that is still growing.

PRSice-2, [23] a p-value selection threshold approach with clumping and thresholding
(C + T) to filter out SNP in linkage disequilibrium (LD), is a classical way to construct
PRSs when assuming a uniform distribution of SNP effect size. PRSavg [24] is constructed

by PRSice-2 [23], with the algorithm PRSj = ∑
i

Xij β̂i
mj

, which is calculated according to the

number of observed effective alleles (Xij) for each variant multiplied by the corresponding
effect size (β̂i) derived from MEGASTROKE, divided by the number of alleles (mj) included
in the PRS from that individual, and the sum of all alleles from that individual (j).

The emerging methods could allow the user to specify different heritability models [25].
Because a universal reduction in the effect size of all SNPs could generate a biased PRS,
a Bayesian approach to shrinkage of the effect estimates of all SNPs can be applied by
calculating a posterior mean effect for each variant based on a prior and subsequent
shrinkage based on the extent to which this variant is correlated with similarly associated
variants in the reference population. PRS was calculated with the linkage disequilibrium
pred algorithm (LDpred) [26], which is adjusted for LD between markers and further
rescales allelic effects based on the likelihood of each marker belonging to the fraction of
markers assumed to be causal. The prior has two parameters: the heritability explained
by the genotypes and the fraction of causal markers with non-zero effects. The heritability
parameter is estimated based on GWAS summary statistics and accounts for sampling
noise and LD (approximated by a reference panel). Because the causal variant fraction (ρ)
is unknown for any given disease, a range of ρ values (i.e., 1, 0.3, 0.1, 0.03, 0.01, 0.003, and
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0.001) is typically tested during PRS construction. This process helps to determine which
fraction of causal variants produces the best prediction of phenotypes. The PRS calculated
by LDpred based on the non-infinitesimal distribution (Gaussian mixture prior) of effect
sizes is compared to that from the infinitesimal distribution of effect sizes. As expected,
non-infinitesimal modeling of effect size can improve polygenic prediction with larger odd
ratios (ORs) than those obtained through infinitesimal modeling (Figure 2), suggesting that
only a small fraction of variants are causal.
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Figure 2. LDpred (nonuniform shrunk) to determine which fraction of causal variants provides
the best prediction of the phenotype (ischemic stroke). (A) Layout of the PRS construction BASE
files collected from the MEGASTROKE consortium used to estimate the effect size for each variant;
the TARGET file is referred to as the genotyping file from the Geisinger Stroke Registry (GNSIS).
(B) PRS calculated by LDpred based on the non-infinitesimal distribution (Gaussian mixture prior) of
effect sizes compared to that based on infinitesimal distribution of effect sizes. PRS was normalized
and, a logistic regression adjusted according to the covariates, including sex, PC1–5 was performed to
determine the association with IS. Because the causal variant fraction (ρ) is unknown for any given
disease, a range of ρ values (i.e., 1, 0.3, 0.1, 0.03, 0.01, 0.003, and 0.001) was used. This process helped
to determine which fraction of causal variants provided the best prediction of phenotypes. The
seven candidate LDpred scores vary with respect to the tuning parameter (ρ) which is the proportion
of variants assumed to be causal. The PRS generated from MEGASTROKE AS and AIS predicted
Geisinger achieved better IS prediction results with larger ORs (i.e., a fraction of causal variants at
0.003 resulted in the largest ORs using AIS summary statistics, as indicated by the arrow) than the
PRS generated from MEGASTROKE subtypes, such as LAS, SVS, and CES. Overall, these LDpred
scores based on the non-infinitesimal distribution of effect sizes were larger than those obtained using
infinitesimal distributions.

PRS-CS [27] utilizes a high-dimensional Bayesian regression framework for multivari-
ate modeling of local LD patterns by placing a continuous shrinkage (CS) prior to SNP effect
sizes. The user must specify a global shrinkage parameter (φ) that reflects the proportion of
causal variants, although the program can estimate φ based on GWAS results. This method
outperforms some existing methods across a wide range of genetic architectures.

Other methods of PRS construction are varied by the prior assumption of the distribu-
tion of SNP effect sizes estimated in joint models that account for LD [25]. Methods also
vary in terms of whether they use individual-level data or summary statistics. The methods
taking summary statistics into consideration are more appealing, as many institutions share
only their summary statistics for collaborative studies to protect patient confidentiality
and reduce the risk of data leakage and deanonymization. Lassosum is a method used to
compute LASSO/elastic net estimates of a linear regression given summary statistics from
GWAS and genome-wide meta-analyses, accounting for LD based on a reference panel [28].
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Users often choose multiple methods for PRS construction to determine the robustness and
consistency of PRS in association/prediction studies. As a non-modifiable variable, PRS
does not provide a baseline or change with the progression of a disease/phenotype. PRS
can only explain the relative risk for a disease.

Through a risk stratification by PRS derived from a large-scale GWAS by MEGASTROKE,
a recent study showed that the risk of incident stroke in the UK Biobank (UKB) cohort is
35% higher among those in the top third of PRS; this association is independent of lifestyle
factors [29]. Genetic overlaps between stroke risk, early neurological changes, and some
cardiovascular risk factors (diabetes and hypertension) have also been identified [30].

1.4. Low-Frequency Variants Explain More Phenotypic Variation

Previously identified IS risk loci with significant genome-wide association are enriched
with low-frequency variants [31]. The partition of SNPs by MAF can provide deep insight
into the mechanisms of heritability. If a genetic variant is associated with fitness, selection
would drive one allele to low frequency [32]. The latter is the case even for traits without
any obvious connection to fitness. The functional architecture of low-frequency variants
(0.5% < MAF < 5%) highlights the strength of negative selection across coding and non-
coding variants; this effect is also obvious with respect to many cardiometabolic traits [33].
Low-frequency variants bridge the gap between rare variants with putatively larger effect
sizes and common variants with smaller effect sizes. Because the loci for cardiovascular
diseases are significantly enriched for lifetime reproductive success by natural selection [34]
and identified IS subtype-specific loci are more likely to be low in MAF [24,31], we propose
that genetic variants with lower MAF may contribute more to the phenotypic variation in IS.
When we partitioned the variants by MAF ≤ 0.01, 0.05, 0.1, 0.2, or to all, PRSLAS, PRSCES,
and PRSSVS derived from low-frequency common variants (0.01 < MAF < 0.05) provided
the best-fit modeling for our IS cohort (Figure 3), suggesting that low-frequency common
variants, when taken together, could contribute more to the risk for matched IS subtypes.
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constructed based on the summary statistics of TOAST subtypes, such as LAS, SVS, and CES. PRS was constructed by PRSice-2. High-resolution plots were used to
select the consistent cut-off value for the MAF threshold for PRS construction and the gene-set analyses. Discovery cases (n = 1184) vs. controls (n = 19,806). This
figure adapted from Li J (2021) [24] with CC BY-NC-ND.
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2. Polygenic Risk for Cardiovascular Disease May Also Contribute to the Risk for
Sporadic IS

Genetic risk factors for IS and its subtypes demonstrate pleiotropism, manifested by
varied genetic correlations with many modifiable vascular risk factors, such as hypertension,
atrial fibrillation, dyslipidemia, peripheral vascular diseases, diabetes, and perhaps other
comorbidities promoting hypercoagulability, such as autoimmune diseases and DVT.

2.1. Candidate Gene Approach

Genetic variants from cardiometabolic risk genes directly or indirectly contribute to IS.
These candidate genes can be categorized into multiple biological pathways, including the
coagulation system (F5, F2, FGA, FGB, F7, F13A1, VWF, and F12), the fibrinolytic system
(SERPINE1), platelet receptors (ITGB3, ITGA2B, ITGA2, and GP1BA), the renin-angiotensin-
aldosterone system (ACE and AGT), homocysteine and eNOS metabolism (NOS3, MTHFR,
CBS, and MTR), and lipoprotein metabolism (APOE2, APOE3, APOE4, LPL, and PON1),
among others (PDE4D and ALOX5AP), which have been reviewed by others [35]. The
angiotensin-converting enzyme (ACE) deletion allele is associated with increased risk for
IS, particularly lacunar stroke [36,37].

2.2. Genetic Correlation between Cardiometabolic Risk Factors and IS

A MEGASTROKE analysis identified several genes predisposing to conventional
cardiovascular disease, which also increases the risk for stroke [16]. Based on PRS analysis,
genetic variants predisposing to thrombosis have been associated with an increased risk of
thromboembolic stroke secondary to large artery disease and cardiac embolism, although
this genetic predisposition does not apply to small artery stroke, suggesting that thrombotic
factors may be less important for CSVD.

Interestingly, shared polygenic risk between small artery stroke and cardiovascular
traits, such as systolic/diastolic blood pressure, HDL (inverse correlation), type 2 diabetes
(T2D), and coronary artery disease (CAD), has been identified by either or both PRS
association study and linkage disequilibrium score regression (LDSC) [16], suggesting that
the management of cardiovascular risk factors is important to reduce risk for CSVD in lieu
of genetically-based precision medicine.

The shared genetic architecture between white matter hyperintensity (WMH), a surro-
gate imaging marker for CSVD, and cardiometabolic traits has been evaluated by genome-
wide (LDSC [38]) and regional (GWAS-PW [39] and HESS [40]) methods in a large-scale
GWAS on WMH volume [15]. A significant genetic correlation has been identified between
high WMH volume and high SBP, DBP, SMKindex (lifetime smoking index), body mass
index (BMI), and increased risk of venous thromboembolism (VTE). Some genomic regions
harbor shared genetic risk variants with at least one other vascular trait, predominantly BP
traits, but also BMI, lipid levels, and SMKindex.

2.3. Mendelian Randomization for Causal Inference

Genetic correlation between phenotypes (exposure and outcome variable) does not
necessarily imply a causal relation. To confirm the causality to the outcome of interest be-
yond a simple association, causal inference has to be determined according to the Bradford
Hill criteria [41]. The causal relationship identified by randomized controlled trials in per-
spective studies can be simulated via a genetic approach using mendelian randomization
(MR) in observational studies.

MR is a method that involves the use of measured variation in known genes to
examine the causal effect of a modifiable exposure on disease in observational studies. It
is an efficient way to determine causal inference by controlling the known or unknown
confounding effects in observational studies. The purpose of MR is to treat genotypes as
instrumental variables and to infer the causal effect of an exposure on an outcome variable
based on a critical assumption of “instrument strength independent of direct effect” or,
alternatively, no direct effect from the genotype to the outcome variable (no pleiotropy) [42].
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Three assumptions should be assessed in MR analysis [43]: (1) relevance assumption: the
genetic variants associated with the risk factor of interest; (2) independence assumption:
there are no unmeasured confounders of the associations between genetic variants and
outcome; (3) exclusion restriction: the genetic variants affect the outcome only through
their effect on the risk factor of interest.

In an MR study on blood lipids, a genetically elevated level of HDL cholesterol was as-
sociated with a reduced risk of small vessel stroke but not with that of large artery stroke and
cardioembolic stroke [44]. In the same study, a genetically elevated level of LDL cholesterol
was associated with risk of large artery stroke but not small vessel stroke and cardioembolic
stroke. Therefore, the genetic risk factors for cardiovascular disease can have differential
effects on etiological stroke subtypes [45]. In a large multi-ancestry meta-analysis of GWAS
on WMH volume [15], the robustness of MR was demonstrated to confirm the causal asso-
ciation of increasing WMH volume with stroke and Alzheimer-type dementia, as well as
of increasing blood pressure with high WMH volume. Similarly, the positive association
between cardiovascular risk factors (diastolic, systolic, and pulse pressure; type 2 diabetes;
and ever smoking) and lacunar stroke was confirmed [11]. No evidence of pleiotropy was
observed in this study, as assessed by MR-Egger without a significant non-zero intercept.
There was no evidence of an association with BMI, LDL, or triglycerides.

3. Polygenic Risk Scores (PRSs) Augment IS Subtyping

PRSs derived from stroke subtypes may augment the predictive power for patients
with a similar etiology. PRSs for atrial fibrillation can significantly explain cardioembolic
stroke (CES) risk, independent of other clinical risk factors [46].

We previously showed that PRSLAS, PRSCES, and PRSSVS, which were constructed by
the variants with effect size estimated according the MEGASTROKE IS subtypes (LAS,
CES, or SVS), explained the most variance of the corresponding subtypes of IS among
MEGASTROKE subtypes (larger and warmer dots for the significant level and Nagelkerke
pseudo-R2, respectively, as indicated by the arrow in Figure 4 using variants from the base
file with p < 0.1). To determine the robustness of this subtype-specific PRS, a synthesized
group (ASL) with more LAS cases (n = 120) than SVS cases (n = 70) was created. We
observed that the predictive power (R2) and significance was the highest using PRSsvs,
suggesting that there is a lack of a clear boundary between LAS and SVS. However, PRSCES
differentiated LAS from CES and SVS from CES (yellow arrows), suggesting that CES has a
unique polygenic architecture that separates it from other subtypes. Furthermore, none
of the PRSs could significantly explain the phenotypic variation of our ‘Undetermined’
subtype. In summary, some clinical IS subtypes may have distinct or shared polygenic
architecture. The effect sizes from low-frequency variants estimated by the summary
statistics of GWAS on clinical subtypes contribute more to the polygenic inheritance of the
matched subtype.
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4. Genetic Basis of Cardioembolic Stroke

Atrial fibrillation (AFib) is a leading and independent risk factor for the cardioembolic
subtype (CES) of ischemic stroke [47,48]. AFib may be underdiagnosed due to paroxysmal
episodes and its asymptomatic nature. Prophylactic anticoagulation therapy remains the
standard for IS prevention and outcome improvement for AFib patients. However, AFib
undertreatment is a long-existing healthcare concern. Identifying patients at high risk for
AFib and subsequent IS could aid in adherence to anticoagulant guidelines [49]. Both AFib
and CES are complex disorders with a polygenic nature and top risk loci associated with
both disorders are overlapping. For example, the top loci at 4q25 near PITX2 and 16q22 near
ZFHX3 are also the top risk loci for AFib [50–52]. A strong genetic correlation was identified
between a previous genetic study of AFib [53] and AFib in the presence of CES [46] in a
cohort of the NINDS-Stroke Genetics Network (SiGN), with a Pearson r = 0.76 across SNPs
with p < 4.4 × 10−4 [53]. PRS for AFib is an important independent determinant of overall
CES risk after adjustment for clinical AFib risk factors, with OR = 1.40, p = 1.45 × 10−48

AFib PRS was associated with stroke of undetermined cause (OR = 1.07, p = 0.004) but not
with other primary stroke subtypes, suggesting the specificity of this AFib PRS for CES [46].

A study focusing on patients with cardiometabolic disease from five large clinical trials
showed the power of multi-loci GRS derived from 32-SNP as an independent predictor of
IS [54]. All these 32 SNPs were reported as genome-wide association with IS by MEGAS-
TROKE [16]. The predictive value of this GRS appeared the strongest in subjects without
previous stroke and subjects with fewer clinical risk factors. Moreover, in patients with
AFib but lower CHA2DS2-VASc scores, the GRS identified patients with risk comparable to
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those with higher CHA2DS2-VASc scores, suggesting that this GRS could help to identify
patients with AFib but with lower CHA2DS2-VASc scores in whom high genetic risk might
inform decisions about initiating anticoagulation.

A recent study of the UK Biobank Prevalent cohort showed that combining a clinical
risk tool (CHA2DS2-VASc scores) and PRS constructed by lassosum method [28] using
summary statistics derived from MEGASTROKE significantly improved the predictability
of IS patients with AFib relative to the clinical risk tool alone [55]. This PRS showed
no correlation with clinical risk factors and is an independent predictor, with HR = 1.13,
95%CI: 1.06–1.23.

5. Genetic Basis of Sporadic Cerebral Small Vessel Disease (CSVD)

CSVD is a syndrome with specific clinical and neuroimaging characteristics, such as
WMH, widened perivascular spaces, lacunar infarcts, micro/macro cerebral hemorrhage,
and brain atrophy. Heterogeneity in the pathology of CSVD challenge presents with a
uniform definition. CSVD can be etiologically classified into six subtypes [56], including
(1) arteriolosclerosis (or age- and vascular risk factor-related SVD); (2) cerebral amyloid
angiopathy (sporadic and hereditary); (3) inherited SVD (distinct from cerebral amyloid
angiopathy (e.g., CADASIL, CARASIL, Fabry disease, and COL4A1/A2 mutations, among
others); (4) inflammatory and immune-mediated SVD (systemic and cerebral vasculitis,
central nervous system vasculitis, and central nervous system vasculitis secondary to in-
fection); (5) venous collagenosis; and (6) other SVDs (e.g., post-radiation angiopathy and
non-amyloid microvascular degeneration in Alzheimer’s disease). The general neuropatho-
logical presentation includes focal atherosclerosis at the small perforating arteries, diffused
deposition of fibro-hyaline material, and loss of smooth muscle cells in the tunica media
with fibrinoid necrosis [57–59]. All these pathological changes result in the thickening of
the vessel wall and increased blood–brain barrier (BBB) permeability, evidenced by the
presence of plasma proteins, such as fibrinogen in the brain parenchyma and cerebrospinal
fluid, as well as the leakage of contrast agents across the BBB by MRI.

5.1. Heritability of CSVD

CSVD patients may share vascular disease-related risk factors. However, not all cases
with known risk factors for vascular diseases present with the clinical symptoms of CSVD;
CSVD can be observed in the absence of vascular disease-related risk factors [60]. Thus,
the mechanisms underlying these pathological changes cannot be fully explained by the
clinical risk factors or using traditional statistical methods.

The most commonly used (endo)phenotype to investigate the heritability of CSVD is
the quantitative trait derived from WMH [61]. Heritability for WMH has been estimated to
be 55% to 80% based on twin and family studies [62–65], suggesting that a moderate to a
large proportion of variation in WMH can be attributed to genetic effects. Based on GWAS
studies, the heritability contributed by common variants has been estimated to be between
13% and 45% [66]. The discrepancy in heritability can be at least partially explained by
the contribution of rare variants with larger effect sizes and high penetrance in familial
monogenic CSVD versus the heritability contributed by common variants with smaller
effect sizes and polygenic inheritance. Several genetic loci have been identified for sporadic
CSVD, which are listed in Table 1. However, functional validation should be conducted to
determine their exact role in the pathogenesis of CSVD.
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Table 1. CSVD-associated SNPs identified in genome-wide association studies.

SNP Locus Gene Phenotype p-Value Reference

rs2230500 14q22-q23 PRKCH Lacunar
infarct 5.1 × 10−7 [67]

rs2230500 14q22-q23 PRKCH ICH 5.4 × 10−3 [68]

rs4646994 17q23 ACE WMH NA [69]

rs1055129 17q25 TRIM47 WMH 4.1 × 10−8
[70]

rs3744028 17q25 TRIM65 WMH 4.0 × 10−9

rs4646994 17q23 ACE Lacunar
infarct 6.0 × 10−3 [36]

rs2984613 1q22 PMF1
SLC25A44

Non-lobar
ICH 1.6 × 10−8 [71]

rs72848980 17q25.1 NEURL1 WMH 2.7 × 10−19

[72]rs7894407 10q24.33 PDCD11 WMH 2.7 × 10−19

rs12357919,
rs7909791 10q24 SH3PXD2A WMH 1.6 × 10−9

rs78857879 2p16.1 EFEMP1 WMH 1.5 × 10−8
[72]

rs11679640 2p21 HAAO WMH 4.4 × 10−8

rs72934505 2q33.2 NBEAL1 WMH 2.2 × 10−8

[73]rs941898 14q32.2 EVL WMH 4.0 × 10−8

rs962888 17q21.31 C1QL1 WMH 1.1 × 10−8

rs9515201 13q34 COL4A2 WMH 6.9 × 10−9

rs10744777 12 ALDH2 Small artery
stroke 2.92 × 10−9 [74]

rs12204590 6p25 FOXF2 WMH 2.17 × 10−6 [17]

rs12445022 16q24 ZCCHC14 WMH 5.3 × 10−5 [75]

rs13164785,
rs67827860 5q14.3 VCAN MD, FA 3.7 × 10−18

1.3 × 10−14 [76]

rs275350 6q25.1 PLEKHG1 WMH 1.6 × 10−8 [77]
Abbreviation: ICH, intracerebral hemorrhage; WMH, white matter hyperintensity; MD and FA, mean diffusivity
and fractional anisotropy, respectively, two common DTI (diffusion tensor imaging) measures.

5.2. Genetic Variants from Extracellular Matrix (ECM) Genes May Contribute to the Risk for
Sporadic CSVD

It is possible that ECM genes, such as COL4A1/A2 and NOTCH3, mentioned earlier
with respect to monogenic CSVD, are involved in the pathogenesis of sporadic CSVD. In
a candidate gene study of 888 stroke patients and dementia-free controls, four common
variants in NOTCH3 in high LD with each other were associated with the presence and
progression of WMH only in patients presenting with hypertension [78]. These findings
were also replicated in the CHARGE cohort (n = 8545). However, the association with WMH
was not replicated in a meta-analysis of GWAS datasets from IS cohorts in 3670 cases and
7397 controls [78]. All these findings suggest that genetic variation in known monogenic
causes of CSVD may contribute to increased risk in a subset of sporadic CSVD.

Common variants from COL4A1/A2 may also contribute to the risk for sporadic
CSVD and intracerebral hemorrhage (ICH). A candidate gene-based meta-analysis of
GWAS in a subtype of stroke patients and controls with European ancestry identified three
common variants, rs9521732, rs9521733, and rs9515199, from the intronic regions of COL4A2
that were significantly associated with deep ICH. They have a moderate significance in
association with lacunar stroke and WMH in symptomatic ischemic stroke patients [13].



J. Clin. Med. 2022, 11, 5980 12 of 31

Multi-ethnic, genome-wide meta-analyses of dementia- and stroke-free subjects revealed
that an SNP, rs9515201, at an intronic region of COL4A2 is associated with WMH in
community populations, as well as stroke patients. This SNP is in strong LD with three
SNPs previously identified to be associated with sporadic ICH [73]. We recently confirmed
the association of rs9515201 with WMH, particularly in a subgroup of extreme cases versus
controls in an independent cohort with European ancestry [12]. Other previously identified
WMH risk loci, such as rs3744028 (TRIM65) and rs1801133 (MTHFR677 cytosine/thymine),
have also been validated in this cohort.

A large population-based GWAS from the UK Biobank further explored the role
of common genetic variants contributing to cerebral microvascular health according to
the measure of microstructural integrity of the white matter [76]. A significant genome-
wide locus associated with both mean diffusivity (MD) (rs13164785; p = 3.7 × 10−18) and
fractional anisotropy (FA) (rs67827860; p = 1.3 × 10−14) was identified at an intronic region
of VCAN. This locus was nominally associated with WMH in the same study. VCAN
encodes ECM proteoglycan versican, a versatile protein that plays a role in intercellular
signaling and connecting cells with ECM [79].

In a transcriptome-wide association study (TWAS) [14] on WMH from the UK Biobank
and other sources, key ECM proteins, such as COL4A2, LOX, VCAN, and ADAMTSL4,
were associated with WMH or two other imaging traits (MD and FA), providing support
for the hypothesis that the disruption of the cerebrovascular matrisome plays a central
role in the pathogenesis of both monogenic (Mendelian vascular disease) and sporadic
CSVD. In a TWAS on WMH (n = 50,970) of older individuals after accounting for modifi-
cation/confounding by hypertension, some WMH risk loci were identified independent
of blood pressure or other known vascular risk factors; two of these risk loci (NID2 and
VCAN), along with COL4A2 and EFEMP1, implicate genes coding matrisome protein [80].

5.3. Genes Associated with Blood–Brain Barrier (BBB) Integrity May Contribute to the Risk for CSVD

A meta-analysis of GWAS with subsequent functional validation identified common
variants near FOXF2 associated with increased stroke susceptibility [17]. Seven of the eight
known loci associated with risk for IS were replicated in this study, and a novel locus
at 6p25 (rs12204590, near FOXF2) was identified to be associated with risk for all stroke
(OR:1.08, 95%CI: 1.05–1.12, p = 1·48 × 10−8). The stroke risk allele of rs12204590 is also
related to increased WMH. Consistently, young patients (aged 2–32 years) with segmental
deletions of FOXF2 have shown an extensive burden of WMH [17].

FOXF2, encoding a transcriptional factor, is expressed specifically in CNS pericytes
and regulates pericyte differentiation and BBB development [81]. FOXF2 knockout mouse
embryos have shown developmental defects in the BBB, and deletion of FOXF2 in adult
mice results in cerebral infarction, reactive gliosis, and microhemorrhage. Pericytes play an
important role in the regulation of BBB permeability, angiogenesis, clearance of cellular
debris, immune cell entry, and cerebral blood flow [82].

Another gene that is expressed in CNS pericytes and as a part of integral components of
the BBB is FOXC1. It encodes a forkhead box transcriptional factor, 225 kb, downstream of
FOXF2. FOXC1 is also expressed in brain vasculature and plays a role in pericyte function,
such as vessel morphogenesis [83]. Patients with FOXC1-attributable Axenfeld–Rieger syn-
drome (mutation or copy number variation of FOXC1) have an increased WMH burden [84].

A meta-analysis of GWAS data in +/− 500 kb of FOXC1 on 6p25 in 9361 individuals
with brain MRI data from the CHARGE consortium identified WMH-associated SNPs
(p = 0.0031–0.048, Bonferroni-corrected) located upstream of FOXC1 [17]. These SNPs are
eQTLs for FOXC1.

5.4. Genetic Basis of Sporadic Cerebral Amyloid Angiopathy

Sporadic cerebral amyloid angiopathy (CAA) is characterized by progressive deposi-
tion of Aβ in the walls of cortical and leptomeningeal small arteries, resulting in vascular
occlusion, rupture, and brain parenchymal damage [85,86].
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Aβ, with peptides of 36–43 amino acids, is the main component of the amyloid plaques
found in the brains of Alzheimer’s patients. These peptides originate from an amyloid
precursor protein (APP), which is cleaved by β and r secretase to yield Aβ. The sporadic
Aβ type of CAA is commonly found in the elderly and patients with Alzheimer’s disease.
Aβ has been identified to cause Alzheimer’s disease, hereditary cerebral hemorrhage with
amyloidosis [87], and CAA without symptomatic hemorrhage [85]. Aβ-induced toxicity
includes the generation of reactive oxygen species, which trigger a signaling pathway
to inflammation and apoptosis [88]. Recent studies showed that CAA-linked β-amyloid
mutations (E22Q and D23N) promoted cerebral fibrin deposits via increased binding affinity
for fibrinogen [89].

Hereditary cerebral hemorrhage with amyloidosis Dutch-type (HCHWA-D), an au-
tosomal dominant disorder, is a hereditary Aβ type of CAA characterized by recurrent
lobar cerebral hemorrhages; leukoencephalopathy has been reported to occur in middle
age in Dutch families [90,91]. Although no neurofilament tangles or neurite plaques were
observed, a point mutation was identified at codon 693 [92], leading to a substitution of Glu
by Gln at position 22 in βAPP, a precursor protein of Aβ. Mutations in the nearby codon
of βAPP were also found in a Dutch family with presenile dementia and CAA-related
hemorrhage. In addition, familial Alzheimer’s disease caused by mutations in PSEN1 and
PSEN2 genes frequently presents with severe CAA of the Aβ type [93].

The involvement of amyloid-ß precursor protein (APP) in the pathogenesis of stroke
has not been emphasized as much as that of atherosclerosis. We also identified “the regu-
lation of amyloid β formation” and “the regulation of APP catalytic pathway” as one of
the top pathways specifically associated with IS beyond current etiological classification.
Increased expression of APP and the production of Aß result in the formation of cerebral
amyloid angiopathy (CAA) [94]. In our study [24,94], minor alleles with decreased risk
for IS exhibited decreased expression of APP (i.e., rs138725707 as eQTL for APP with
β = −0.11/−0.27 and p = 5.4 × 10−6/1.5 × 10−7 from eQTLGEN/Blueprint). APP and
Aß production cause cerebral vascular cell death and enhance expression of matrix met-
alloproteinases and plasminogen activator proteolytic systems, leading to loss of vessel
wall integrity and hemorrhage. Alternatively, elevated Aß levels and CAA cause vasocon-
striction, thrombin production, platelet activation, fibrin deposition, and cerebral vessel
dysfunction, contributing to cerebral ischemia.

Pathway-specific PRS derived from gene sets of APP and amyloid β formation is not
only associated with IS but also post-IS long-term mortality [95]. Results of the subgroup
analysis also highlighted several β amyloid peptide (Aβ)-related pathways associated
with IS and post-IS long-term mortality solely in the elderly subgroup. Therefore, all the
above findings link CAA, Aβ, apoptosis, inflammation, and fibrinolysis-related pathways
identified in this study together. The contribution of common genetic variants from other
amyloid proteins individually or together as PRS to the risk of sporadic CAA, IS, or post-IS
mortality is still unknown and worthy of further investigation.

6. Pathway-Specific PRS Analysis for IS

Instead of creating a single PRS across the genome, the signal-to-noise ratio can
be improved by reducing the noise contributed by irrelevant pathways. The latter can
be achieved by limiting the hypotheses and generating PRS from gene sets. Pathway-
specific PRS analyses may confirm known and identify novel etiologies related to IS and its
subtypes. Advanced algorithms, such as transcriptome-wide association study (TWAS) [96],
sequence kernel association test (SKAT) with optimal unified approach (SKATO) [97], and
the regularization procedure accounting for LD via a reference panel (lassosum) [28], make
this genotype–phenotype association converge at the gene and pathway level. This domain-
knowledge-based approach can largely reduce the hypothesis space and heterogenicity,
thus improving statistical power and generalizability. The effects estimated in large-scale
GWAS serve continuously as building blocks for polygenic modeling. Prioritized genes or
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pathways could become potential drug targets or contribute as features in the predictive
modeling of diseases and outcomes of interest.

6.1. Pathway-Specific PRS Construction

Pathway-specific PRS can be constructed using an array of algorithms, with the exploration
of various modeling efforts still expanding. In the case of ischemic stroke, the PRSavg derived from
gene sets defined by the gene ontology (GO) biological process were calculated to test their associa-
tion with IS under two MAF thresholds (MAF < 0.025 or <1) representing low-frequency common
variants or all variants, respectively. GO pathways of Biological Processes and their related genes
were defined by the Molecular Signatures Database (“msigdb_v7.0_GMTs/c5.bp.v7.0.symbols.gmt”
from https://www.gsea-msigdb.org/gsea/msigdb/index.jsp). The gene sets can be drawn
from curated pathway databases not limited to GO, e.g., subcellular location (e.g., matrix-
some or synaptosome), functional annotation, predefined disease risk genes, coexpression
network genes, drug target genes, protein–protein interaction databases (e.g., STRING or
Reactome), or even self-defined gene sets based on the results of functional studies. In this study,
we used a self-contained p-value to filter but not rank pathway-specific PRSs. However, for the
purpose of gene-set enrichment analysis, a competitive p-value using the permutation approach
is necessary to account for the size difference across pathways. Substantial computational
resources are required, given the thousands of candidate pathways being tested.

Gene-set analyses illustrated the top pathways enriched for IS when the PRS was
constructed based on each of the five MEGASTROKE summary statistics (color of the bars)
stratified by index age for controls ≥ 69 years or 79 years (Figure 5), as shown in the y-axis
and two levels of MAF for the included variants. Several known or novel pathways related
to IS or its subtypes were identified. Gene set related to negative GO regulation of the
(RNA) biosynthetic process, a downstream metabolic process, were ranked at the top using
PRSLAS, PRSCES, and PRSAS. This suggests that selection may have occurred with respect
to a variety of biological processes underlying metabolic processes in ways that differ
among populations, such as people with cardiovascular diseases [34,98]. Here, we selected
the “VEGF signaling pathway”, “regulation of APP catabolic process”, and “negative
regulation of interleukin 2 production” as examples to highlight the specificity of these
enriched pathways for the PRS constructed by the polygenic architecture of MEGASTROKE
AS or AIS (Figure 5A). A VEGF-related gene network with variants contributed to the
PRS was illustrated by String-db. With a similar approach, we also showed the pathways
specific to SVS (purple bar in Figure 5B), CES (green bar in Figure 5C), and LAS (blue
bar in Figure 5D). Neither “apoptotic process” nor “negative regulation of biosynthetic
process” wasspecific to LAS; only the “cytokine production pathway” was specific to
LAS (blue bar). The enriched pathways, such as “protein-lipid complex assembly” and
“macrophage-derived foam cell differentiation”, confirm the pathology of atherosclerosis
in the pathogenesis of IS and its subtypes. In addition, the phenotypic variation can be
explained more by these relatively rare variants from genes (i.e., ABCA1, PPARG, PRKCH,
and APOB), which were actively engaged in the process of atherosclerosis and became a
drug target for stroke [99–101]. As one of several low-frequency variants associated with IS
in APOB, rs1800480 is an eQTL for LDL cholesterol levels with the same direction for higher
LDL levels (p = 1.6 × 10−127) [102]. High levels of apolipoprotein B/AI ratio are associated
with intracranial atherosclerotic stenosis [103]. The results of the pathway enrichment
analyses, as a proof-of-concept, confirmed several known mechanisms of atherothrombotic
and lacunar stroke [104], which include atherosclerosis, the inflammatory system, lipid
metabolism, endothelial function, thrombosis, and hemostasis, as identified through the
candidate gene approach.

https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
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or 79 yrs, as shown in the y-axis. Here, we selected the VEGF signaling pathway, regulation of 

Figure 5. Pathways specific to any stroke or any ischemic stroke. Gene-set analyses illustrate the
top pathways enriched for ischemic stroke when the PRS was constructed based on each of the five
summary statistics of MEGASTROKE (color of the bars) stratified by controls with index age ≥ 69yrs
or 79 yrs, as shown in the y-axis. Here, we selected the VEGF signaling pathway, regulation of amyloid
precursor protein catabolic process, and negative regulation of interleukin 2 production as examples
to show the specificity of these pathways significantly enriched only for the PRS constructed by the
polygenic architecture of MEGASTROKE AS or AIS. PRS was constructed under two levels of MAF
thresholding. Here, we only chose MAF ≤ 0.025 as an example to show that these pathways were the
top pathways under this condition. All the raw p values in the x-axis demonstrate the significance of
the enriched signals against the background without correction for multiple testing. The gene network
that harbors those genetic risks with a moderate effects size for ischemic stroke (p < 0.1) were illustrated
using String-db. Here, we chose genes included in the VEGF signaling pathway as an example.
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The VEGF signaling pathway was reported to be involved in the pathogenesis of stroke
in two ways [105], with beneficial and deleterious effects. The beneficial effects includes
collateral formation during development, reactive(reparative) angiogenesis toward oxygen
depletion during the early stage of ischemic stroke, and profound neurogenesis. The
deleterious effects comprise vascular leakage, as well as BBB breakdown. In this study,
we found that risk alleles in VEGF gene networks showing increased risk for stroke have
exhibit lower expression of these genes (i.e., rs78305106 as eQTL for FLT with β = −0.396
and p = 5.1 × 10−32 from eQTLGEN; rs34231037 as plasma pQTL for KDR with β = −1.15
and p = 1.0 × 10−70 from Sun et al. [106]). This could reflect the insufficiency of VEGF
signaling as the etiology of IS in some patients.

Using pathway-specific gene sets to construct PRS could help to identify individual
at high risk for a specific pathway and for the development of personalized management
based on risk stratification, especially if a targeted therapy or lifestyle modification becomes
available to manage the specific genetic risk. This process and modeling strategy are also
interpretable, making them more trustworthy in a healthcare system setting with complex
dynamics striving for transparency and confidence.

6.2. A Modified Paradigm of IS Risk Stratification beyond TOAST Subtyping

The primary goal of diagnostic stroke evaluation is to identify the underlying etiology
so that targeted treatments can be designed and implemented to prevent a recurrence [2].
Several classification systems have managed to stratify stroke etiologies into discrete
clinical, radiographic, and prognostic categories. Despite a decade of GWAS on IS and its
subtypes, genetic evidence currently has only been considered under certain circumstances,
in which prothrombotic abnormalities should be considered as a cause of stroke exclusively
in patients with a history of unexplained thromboembolic events in young stroke patients
who have no other explanations for their stroke [107–109]. There is an unmet need for the
etiologic classification of strokes with multiple potential mechanisms into specific etiologic
classes in the absence of evidence-based strategies, such as risk factors, family history, and
medication, and to better quantify multiple competing causes in a given patient [110,111].
How genetic information from GWAS contributes to this etiologic classification of strokes
and may assist in identifying the etiology of strokes of unknown origin, referred to as
cryptogenic strokes, is still unclear. Mechanism-targeted treatments are not available for
cryptogenic strokes, which represent 25% to 30% of IS, increasing the likelihood of have
recurrent events. The quality of etiologic classification depends on the ability to generate
homogenous subtypes with discrete outcomes (discriminative validity) and the clarity
of classification rules to ensure utility in different settings with different investigators
(reliability) [2]. It is necessary to further categorize IS using more homogenous groups
stratified by risk factors, including PRS, and refine the current diagnostic system for
subtyping. Whether PRS may augment the newer clinical classification systems (e.g., ASCO
and CCS) should be determined, as these newer schemes may better stratify the stroke
etiology, at least in some patients.

Based on the pioneer studies by consortia [16,74] and our PRS modeling and that of
others [46,112], we propose a modified paradigm of IS risk stratification beyond TOAST
subtyping to incorporate genetic information into the existing ideological classification
system (Figure 6). According to the preliminary data [24], we simulated five lists of
pathway-specific PRSs that are significantly associated with the corresponding clinical
IS subtypes (TOAST) using the priors (regression coefficients) estimated based on the
TOAST subgroup GWAS(MEGASTROKE). Subtype-specific pathways can be enriched by
ranking the significance and the competitive p-value of the associations. To understand
the relationships between subtypes, it is important to distinguish IS subtypes (unique)
and to identify shared pathways between IS subtypes (shared) (see the vertical bar plot
in Figure 6). The intersect pathways (distinct mode) across some or all clinically defined
subtypes and the unique pathways toward each subtype could help to create new risk
stratification procedures.
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Figure 6. A modified paradigm of IS risk stratification beyond TOAST subtyping using simulated
data. Based on the pilot study, we assume a total of 700 valid pathway-specific PRSs are available
for a subtype-specific association study. The horizontal bar plot represents the size of PRSs with
significant association with the corresponding TOAST subtypes. TOAST subtypes include (1) cardiac
embolism (CES), (2) stroke of other determined etiology (DETERMINED (D)), (3) large artery stroke
(LAS), (4) small vessel stroke (SVS), and (5) stroke of undetermined etiology (UNDETERMINED
(UD)). We assume 100 out of 700 pathway-specific PRSs showed at least minimal significance for LAS,
SVS, and CES. However, this set size was assumed to be dramatically decreased for D and UD due to
small sample size and less heritability for U or advanced heterogenicity for D. The vertical bar plot
represents the number of pathway-specific PRSs shared between at least two TOAST subtypes or
unique to individual subtypes. The intersect pathways (distinct mode) across some or all clinically
defined subtypes and the unique pathways toward each subtype could help to create new risk
stratification procedures.

7. Pathway-Specific PRS Analysis of Post-IS Mortality
7.1. Pathway-Specific PRSs Augment Etiologic Subtyping of IS and Outcome Prediction

Risk stratification by integration of genetic and nongenetic risk factors and integration
of multiple genetic architectures derived from stroke-related phenotypes to create so-called
“metaPRS” could be an optimal direction for predictive modeling. Because overall risk
for IS is determined by an interplay between genetic and clinical factors, a metaGRS was
developed via a penalized regression model (Elastic Net) to integrate multiple sets of
GWAS summary statistics on stroke or its modifiable clinical risk factors, which include
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hypertension, diabetes, dyslipidemia, BMI, and coronary artery disease (CAD) [112]. The
hazard ratio of this metaGRS for IS doubles that of previous GRS in the UKB cohort
for individuals with high metaGRS achieving currently recommended risk factor levels.
However, this metaGRS approach remains insufficient to manage risk [112] because the
genetic and phenotypic heterogeneity makes it difficult to stratify the risk based on a single
integrated risk score, i.e., metaGRS. Genomic and phenotypic partitioning could provide
an alternative solution for risk stratification at the subpopulation level.

Exploring the genetic architecture in each disease subtype could augment clinical sub-
typing and help to better define or redefine subtypes. The discovery of pathway-specific
PRS is expected to contribute to efforts to explore the novel pathways related to patho-
genesis and validate therapeutic targets. This approach may assist in drug development
by identifying new drugs with higher efficacy and by informing repositioning of existing
drugs toward new disease indications. By constructing a pathway-dependent polygenic
architecture underlying the known and novel pathogenesis, the predictive power could be
significantly improved for at least a subset of patients harboring those genetic variants.

Applying machine learning algorithms to feature selection and prediction by integra-
tion of pathway-specific PRSs into the disease or outcome predictive modeling [113–115]
may enhance the predictive power. The latter is likely due to the fact that only a limited
number of pathways are responsible for the pathogenesis. Evaluation of effect size of
some pathway-specific PRS (e.g., β amyloid-related) in IS subtypes, as well as post-IS
bleed events (e.g., ICH, CMB, and cSAH) and management, is of interest to determine the
trajectory of IS [116], especially in younger patients, for whom improved management can
lead to decades of improved quality of life.

Post-IS mortality is multifactorial with known or unknown etiologies. Pathway-specific
PRSs individually contribute to post-IS mortality, and together with clinical risk factors, better
predict post-IS mortality. The risk of stroke death and stroke hospitalization in monozygotic
compared with dizygotic co-twins is increased, with the heritability estimated as 0.32 and
0.17 respectively, suggesting that genetic liability contributes to post-stroke mortality [117].
We can prioritize some mortality-related PRSs among these IS-associated, pathway-specific
PRS candidates [24], further demonstrating their independent predictability in an integrated
prediction model, which is superior to that of the base model (clinical risk factors only).
A total of 15 PRSs formed by SNPs with MAF < 1 and 16 PRSs formed by SNPs with
MAF < 0.025 from 31 unique gene sets were treated as disease-relevant, pathway-specific
PRS (praw < 0.1). Kaplan–Meier analyses (Figure 7) showed that all 31 PRS candidates
significantly distinguished the high- and low-risk groups with praw < 0.05.
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Figure 7. Kaplan–Meier plot of the two groups created by the cut point for PRS in the training
dataset. All the pathway-specific PRSs for 3-year mortality identified by univariate Coxph were
dichotomized by the corresponding cut point, and a Kaplan–Meier analysis was conducted for each
binary PRS. A total of 31 PRS candidates significantly distinguished the high- and low-risk groups
with praw < 0.05. Only the results from nine candidate PRSs are presented here due to space limits.
We simulated the null distribution using the conditional Monte Carlo method and compared it with
the exact distribution for the log-rank statistic to determine the lower bound of the p-value for each
pathway-specific PRS. The p-value derived from the log-rank test is labeled. This figure adapted from
Li J (2022) [95] with CC BY 4.0.

7.2. Improved Predictability of Pathway-Specific PRS for Post-IS Mortality Using an Integrated
Cox Proportional Hazards Model

Improved predictability can be achieved by better interrogating the data and by us-
ing methodologies that are carefully aligned with the data characteristics. Owing to the
hierarchical nature of GO biological process terms, multicollinearity of PRSs is common.
There are also extensive correlations within or between PRSs and clinical risk factors. All
these factors can inflate the regression coefficients of predictive variables in the multivari-
ate regression model. An L1 penalization technique (LASSO regression) can handle this
situation by forcing some regression coefficient estimates to be exactly zero, thus achieving
variable selection while shrinking the remaining coefficients toward zero to avoid the
overfitting and overestimation caused by data-driven model selection. The least absolute
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shrinkage and selection operator (LASSO) method [118] in the multivariate Coxph model
was applied for feature selection of prognostic pathway-specific PRSs [95]. A prediction
model including an additional 16 disease-associated pathway-specific PRSs outperformed
the base model (8 clinical risk factors), as demonstrated by a higher concordance index
(0.754, 95% CI: 0.693–0.814 versus 0.729, 95% CI: 0.676–0.782, respectively) in the holdout
sample (p < 0.001 for the median improvement). Compared to the base model, the inte-
grated PRS prediction model differentiated not only the high-risk from the intermediate-risk
(p = 0.006) but also the intermediate-risk from the low-risk (p = 0.001) (Figure 8). Thee PRS
derived from GO negative regulation of endothelial apoptotic pathway was the indepen-
dent predictor for 3-year post-IS mortality (HR = 1.203) [95].

J. Clin. Med. 2022, 11, 5980 23 of 32 
 

 

7.2. Improved Predictability of Pathway-Specific PRS for Post-IS Mortality Using an Integrated 
Cox Proportional Hazards Model 

Improved predictability can be achieved by better interrogating the data and by us-
ing methodologies that are carefully aligned with the data characteristics. Owing to the 
hierarchical nature of GO biological process terms, multicollinearity of PRSs is common. 
There are also extensive correlations within or between PRSs and clinical risk factors. All 
these factors can inflate the regression coefficients of predictive variables in the multivar-
iate regression model. An L1 penalization technique (LASSO regression) can handle this 
situation by forcing some regression coefficient estimates to be exactly zero, thus achiev-
ing variable selection while shrinking the remaining coefficients toward zero to avoid the 
overfitting and overestimation caused by data-driven model selection. The least absolute 
shrinkage and selection operator (LASSO) method [118] in the multivariate Coxph model 
was applied for feature selection of prognostic pathway-specific PRSs [95]. A prediction 
model including an additional 16 disease-associated pathway-specific PRSs outperformed 
the base model (8 clinical risk factors), as demonstrated by a higher concordance index 
(0.754, 95% CI: 0.693–0.814 versus 0.729, 95% CI: 0.676–0.782, respectively) in the holdout 
sample (p < 0.001 for the median improvement). Compared to the base model, the inte-
grated PRS prediction model differentiated not only the high-risk from the intermediate-
risk (p = 0.006) but also the intermediate-risk from the low-risk (p = 0.001) (Figure 8). Thee 
PRS derived from GO negative regulation of endothelial apoptotic pathway was the in-
dependent predictor for 3-year post-IS mortality (HR = 1.203) [95]. 

 
Figure 8. Kaplan–Meier analysis of post-IS cumulative probability for 3-year mortality in the testing 
dataset. Assuming three subgroups with different survival probability in the testing dataset to de-
termine the effect size of each feature included in the multivariate Cox proportional hazards regres-
sion model. The p-value derived from the log-rank test is labeled. For all analyses, p < 0.05 was 
considered statistically significant. For all post hoc pairwise tests, p values were adjusted according 
to the Benjamin–Hochberg procedure. The number at risk is listed in the table. This figure adapted 
from Li J (2022) [95] with CC BY 4.0. 

Figure 8. Kaplan–Meier analysis of post-IS cumulative probability for 3-year mortality in the testing
dataset. Assuming three subgroups with different survival probability in the testing dataset to
determine the effect size of each feature included in the multivariate Cox proportional hazards
regression model. The p-value derived from the log-rank test is labeled. For all analyses, p < 0.05 was
considered statistically significant. For all post hoc pairwise tests, p values were adjusted according
to the Benjamin–Hochberg procedure. The number at risk is listed in the table. This figure adapted
from Li J (2022) [95] with CC BY 4.0.

7.3. Validation of Exiting Etiologies and Drug-Targeting Pathways

The identified pathway-specific PRSs highlight the known pathogenesis of IS or post-IS
mortality [95]. These pathways include, (1) amyloid β formation in cerebral small vascular
disease; (2) endothelial apoptosis [119–121], inflammation (interleukin 1 [122–125], and
tumor necrosis factor (TNF) [126,127]) in atherosclerosis; (3) serotonin in platelet aggre-
gation [128–131] and vascular remodeling [132–135] and neuroplasticity in post-stroke
recovery [136–140]; (4) obesity paradoxical in post-IS mortality [141,142]; and (5) coagula-
tion and fibrinolysis in stroke and recurrence.

The results from the correlation between PRSs and modifiable clinical risk factors
indicate that several pathways might also contribute to modifiable clinical risk factors,
suggesting horizontal or vertical pleiotropisms. One of the most clinically relevant findings
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is the association of multiple pathway-specific PRSs with AFib with the same direction for
disease risk and mortality risk, particularly in the elderly subgroup. This includes pathways
related to fibrinolysis, APP and amyloid β formation, T cell differentiation, glomerular
basement membrane development, positive regulation of membrane depolarization, and
response to TNF.

8. Future Perspectives

Development and evaluation of novel methods for PRS construction will continue to be a
driving force to move the field of statistical and epidemiological genetics forward, particularly
for populations with mixed ancestry or underrepresented populations. Determining which
methods can provide better parameter estimation in a polygenic framework is still an area of
ongoing research. Advances in phenotyping using diagnostic codes from electronic health
records have revolutionized phenome-wide association studies (PheWAS) and improved
the quality of feature selection in multivariate predictive modeling of outcomes of interest.
EHR-based phenotyping has also expanded the horizon to increase the sample size of cases
and controls, in addition to providing venues to include multiple types and ratios of controls.
Multiple areas of genetic research will benefit from these advances, including identifying
more (endo)phenotype-specific loci, exploring the genetic correlation between risk factors
and traits, assessing the causal contribution of novel biological pathways to disease risk
through MR approaches, and exploring the disease trajectory for PRS-based risk-stratified
individuals [143]. MR will gain popularity as a way to access the causal effect of exposure
on outcome of interests in observational cohorts. Functional annotation of genetic variants
according to curated QTL databases (eQTLs, methylation QTL, and plasma QTL) [144,145]
will contribute to understanding of regulatory variants and prioritization of potential causal
variants for PRS construction and integration into risk models.

8.1. The Utility of PRS in Mixed or Underrepresented Populations

PRS has to be applicable to all patients in the population, regardless of ethnicity, to
ensure health equity in the distribution of healthcare resource [146]. There is an urgent need
to generalize polygenic scores to patients with non-European ancestry. Due to differences in
variant frequencies and LD patterns between populations with different ancestry, reduced
predictive power in non-European ancestry samples is anticipated, particularly in patients
with African ancestry. [147] In addition, data resources for non-European populations are
currently inadequate, resulting in the rationale for large-scale GWAS in diverse human
populations. Having realized the full and equitable potential of PRS, we should promote
genetic studies on underserved populations [148] and the development of novel strategies to
better estimate the effects on minorities (especially when it is impractical to reach a sufficient
sample size due to a small population size). The American Heart Association recently made
a scientific statement to encourage genetic/genomic research on marginalized ethnic groups
to avoid historical harm in biomedical research due to the neglect of such populations [149].

The predictability of PRSs is expected to be augmented in a more homogenous pop-
ulation as the effect size and their interaction with environmental factors would be more
specific. This could decrease the complexity of the model with a better bias–variance
tradeoff when the discovery and validation cohorts are presumably sampled from the
same population. Whether to create a universal PRS framework applied to a population
with diverse ancestral backgrounds or to create multiple ancestry-specific PRS applied to
matched subpopulations is the subject of ongoing debate.

8.2. The Challenges of Integrating PRS into Clinical Decision Support Systems and Risk
Stratification Procedures

The phenotype variation for cardiometabolic traits can be partially explained by ge-
netic variation from common variants with moderate inheritability [150]. As aging is an
accelerator of cardiometabolic traits, late-onset phenotypes are less likely to be caused by
genetic variation derived from common variants when compared to early-onset counter-
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parts [150]. However, this may not be the case for ultra-rare variants identified from disease
risk genes [5]. The varied expressivity of rare variant carriers could be due to an interplay
between complex (polygenic) and Mendelian (monogenic) genetics for IS [151,152]. PRSs
derived from common variants could modify the outcome of patients with a monogenic
disease [151,153]. To determine the genetic burden at the individual level, it is crucial to
develop genetic risk scores formed by both common and rare variants and variants beyond
single-nucleotide polymorphisms.

How to integrate PRSs derived from informative (endo)phenotypes with high inher-
itability into the prediction model by advanced machine learning approach has yet to
be fully elucidated. The complexity and multifactorial nature of IS and subtype-specific
(poly)genetic markers should be deeply considered with respect to the development of
an implementation approach for outcome prediction, as the effect size of such biomarkers
could vary. It is crucial to apply suitable ML models to account for indirect and nonlinear
associations between predictive variables (genetic or nongenetic), as well as the outcome of
interest. Finally, the real effect size for PRS could vary across subpopulations defined by
demographic features (sex, age, race, and ethnicity) and clinical subtypes. Whether PRSs
can be treated as independent variables in multivariate models should be evaluated in
subgroup analyses.

9. Conclusions

In this paper, we discussed the polygenic nature of IS and emphasized the role of PRS
in risk stratification for disease/outcome prediction and personalized management of IS.
Polygenic risk for cardiovascular disease may also account for the risk of sporadic IS. PRS may
augment IS subtyping. We introduced a pathway-specific PRS analysis and demonstrated
its utility in confirming known and identifying novel etiologies of IS. Some of these specific
PRSs (e.g., derived from the endothelial cell apoptosis pathway) individually contribute to
post-IS mortality, and together with clinical risk factors, better predicted post-IS mortality.
Statistical models and machine learning algorithms have contributed significantly to the
advancement in this field and will continue to drive innovation for genome-based healthcare
decision making striving toward innovation, equity, and transparency.
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Abbreviations

AFib = Atrial fibrillation; APOB = apolipoprotein B; APP = amyloid precursor protein;
BMI = body mass index; CAA = cerebral amyloid angiopathy; CAD = coronary artery disease;
CES = cardioembolic stroke; C-index = concordance index; CI = confidence interval; Coxph = Cox
proportional hazards model; C-statistics = concordance statistics; CSVD = cerebral small vessel disease;
CV = cross validation; EHR = electronic health record; eQTL = expression quantitative trait loci;
EUR = European ancestry; GO = gene ontology; GWAS = genome-wide association study;
HR = hazards ratio; HWE= Hardy–Weinberg equilibrium; ICD = International Classification of
Disease; IS = ischemic stroke; LAS = large artery strokes; LASSO = least absolute shrinkage and selec-
tion operator; LD = linkage disequilibrium; MAF = minor allele frequency; ML = machine learning;
MR = Mendelian randomization; NIHSS = NIH Stroke Scale/Score; OR = odds ratio; QTL = quan-
titative trait loci; PCA = principal component analysis; PRS = polygenic risk score; SNP = single-
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nucleotide polymorphism; SVS = small vessel stroke; TNF = tumor necrosis factor; T2D = type II
diabetes; TOAST = trial of ORG 10172 in acute stroke treatment.
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