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Background: CXCL12/CXCR4 signaling is essential in cardiac development

and repair, however, its contribution to aortic valve stenosis (AVS) remains

unclear. In this study, we tested the role of endothelial CXCR4 on the

development of AVS.

Materials and methods: We generated CXCR4 endothelial cell-specific

knockout mice (EC CXCR4 KO) by crossing CXCR4fl/fl mice with Tie2-Cre

mice to study the role of endothelial cell CXCR4 in AVS. CXCR4fl/fl mice were

used as controls. Echocardiography was used to assess the aortic valve and

cardiac function. Heart samples containing the aortic valve were stained using

Alizarin Red for detection of calcification. Masson’s trichrome staining was

used for the detection of fibrosis. The apex of the heart samples was stained

with wheat germ agglutinin (WGA) to visualize ventricular hypertrophy.

Results: Compared with the control group, the deletion of CXCR4 in

endothelial cells led to significantly increased aortic valve peak velocity and

aortic valve peak pressure gradient, with decreased aortic valve area and

ejection fraction. EC CXCR4 KO mice also developed cardiac hypertrophy

as evidenced by increased diastolic and systolic left ventricle posterior wall

thickness (LVPW), cardiac myocyte size, and heart weight (HW) to body weight

(BW) ratio. Our data also confirmed increased microcalcifications, interstitial

fibrosis, and thickened valvular leaflets of the EC CXCR4 KO mice.

Conclusion: The data collected throughout this study suggest the deletion

of CXCR4 in endothelial cells is linked to the development of aortic

valve stenosis and left ventricular hypertrophy. The statistically significant

parameters measured indicate that endothelial cell CXCR4 plays an important

role in aortic valve development and function. We have compiled compelling

evidence that EC CXCR4 KO mice can be used as a novel model for AVS.
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Introduction

Aortic valve stenosis (AVS), also known as aortic stenosis
(AS), is the narrowing of the left ventricular outflow tract.
It is among the most common valvular heart diseases and
affects around 2–4% of the human population 65 years and
older (1–3). As the human population rapidly ages, there is
a marked increase in AVS worldwide (4). Patients with AVS
are often asymptomatic for years before developing what
is known as irreversible late-stage calcification, or calcific
aortic disease (CAVD) (1). This advanced stage of valvular
thickening and calcification can cause symptoms such as
angina, syncope, dyspnea, and heart failure, being a significant
cause of morbidity and mortality among the elderly population
(2, 3). The morbidity rate of severe, symptomatic AVS is around
50% within 2 years of diagnosis (2). Risk factors such as bicuspid
aortic valves (BAV), diabetes, mechanical injury, hypertension,
maleness, smoking, and hypercholesterolemia all contribute to
the development and progression of this disease (2, 3, 5, 6). It
is important to note that AVS accounts for 3–6% of congenital
heart defects in neonates and infants, often developing during
the first trimester and evolving throughout gestation (7). With
the only successful treatment option for AVS being surgical
valve replacement, there is an urgent need to develop new target
therapies (3).

CXCL12, also known as stromal cell-derived factor-1 (SDF-
1), is a homeostatic chemokine expressed in many cell types
throughout the body, especially in the presence of tissue damage
(1, 8–10). Its receptor, CXCR4, is a G-protein coupled receptor
expressed on the surface of cell types such as endothelial cells,
platelets, neurons, and stem cells (9, 11, 12). Evidence has linked
CXCR4 to biological processes such as stem cell recruitment,
tissue regeneration, angiogenesis, tumor metastasis, cancer
development and progression, CNS disease, and cardiovascular
diseases (9, 11, 13). CXCR4 is upregulated under conditions
of hypoxia, stress injury, and in damaged vascular tissues
(10). Our previous studies have demonstrated the importance
of the CXCL12/CXCR4 axis in myocardial repair (14, 15).
The CXCL12/CXCR4 axis plays an important role in tissue
repair (16) and inflammation (1, 17–19). However, the role of
endothelial CXCR4 on the development of AVS remains unclear.
In the current study, we provide evidence that the endothelial
knockout of CXCR4 leads to the early onset of AVS.

Materials and methods

Animals

The animal work in this study was approved by the
Institutional Animal Care and Use Committee (IACUC) of
Northeast Ohio Medical University. Tie2-Cre mice (# 008863)
were purchased from Jackson Laboratories. CXCR4fl/fl mice
were reported before (16). Endothelial specific CXCR4 knockout
mice (Tie2-Cre/CXCR4fl/fl mice) were generated by crossing the

TABLE 1 PCR primers used.

Protocol # 28368 CXCR4-Fl primers

C-F (5′-3′) CAC TAC GCA TGA CTC GAA ATG
WT-lox C-F (5′-3′) GTG TGC GGT GGT ATC CAG C

Protocol # 41502 Tie2-Cre primers

WT forward (5′-3′) CTG TGA CCT GAG TGC CCA GT
Common (5′-3′) CCA CAC ACG TGC ACA TAT AGA
Mutant forward (5′-3′) GCG TTT AAG TAA TGG GAT GGT C

CXCR4fl/fl mice with Tie2-Cre mice. The deletion of CXCR4
in endothelial cells was confirmed by western blot. Animals
were housed in temperature-controlled conditions allowing
food and water ad libitum in an American Association for
Accreditation of Laboratory Animal Care–approved animal
facility. All animal experiments performed complied with the
NIH guidelines (Guide for the Care and Use of Laboratory
Animals). For this study, the control group, referenced
throughout as “Control,” are CXCR4fl/fl mice. The experimental
group, referenced throughout as “EC CXCR4 KO,” consisted of
Tie2-Cre/CXCR4fl/fl mice. Equal numbers of both males and
females were used throughout the study.

Genotyping

DNA samples used for genotyping were extracted from
tissue samples using standard procedures. Briefly, tissue samples
were collected from pups, aged 10 days. Ear clippings or tail
clippings were placed in a 1.5 ml microcentrifuge tube and
kept at −20◦C until processed. Tissue was thawed and then
digested overnight at 55◦C in 675 µl DNA Extraction Buffer
mixed with 25 µl proteinase K (Amresco, #97062-242). Samples
were purified using 700 µl 25:24:1 Phenol/Chloroform/Isoamyl
Alcohol (Fisher, # BP1752I-400), centrifuged at 14,000 rpm for
10 min, then the supernatant was saved. Further purification
using Chloroform (B & J, #24263) was performed, following
the previously listed steps. DNA was precipitated using equal
volume of isopropanol (Fisher, #A451SK-4) and centrifuged
(20 min at 14,000 rpm). DNA pellets were washed with 70%
ethanol and resuspended in 1× TE Buffer (65–70 µl). PCR was
set up using TAKARA polymerase kit (TAKARA, #RR0062) and
Jackson Laboratories protocols (Table 1). Genotyping primer
pairs are detailed in Table 1. PCR products were analyzed using
gel electrophoresis on 3% agarose gels (MidSci, #BE-GCA-500,
Fenton, MO, United States).

Tissue harvest and fixation

Mice were euthanized and hearts were thoroughly perfused
using cold 1× PBS (Sigma, #P4417, Burlington, MA, United
States). The heart was removed, washed in 1× PBS, weighed, and
sectioned into thirds using a heart matrice (Braintree, #BS-SS-H
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5005, Chicago, IL, United States), to ensure the valves were not
damaged. The apex and base were fixed in 10% Neutral Buffered
Formalin (Fisher, #22-110-683) overnight at room temperature.
The midsection of the heart was snap frozen and stored at
−80◦C for later use. Tissue samples were then fixed, processed,
and 5 µm sections were prepared using a Leica microtome.

Histology

All samples were stained using Hematoxylin and Eosin
(H&E) for general morphology. Base samples containing the
aortic valve were stained using Alizarin Red (Sigma, #A5533,
Burlington, MA, United States) for detection of calcification.
Masson’s trichrome (Scytek, #TRM-1, Logan, UT, United States)
staining was used for the detection of fibrosis and excess
collagen deposition. Images were obtained using the slide
scanner (Olympus BX61VS, Webster, TX, United States) at 40×
magnification. Quantification and calculations for calcification,
collagen deposition, and leaflet thickness were performed using
ImageJ software (NIH website).

Immunohistochemical staining

Apex sample sections were stained with rhodamine-
conjugated wheat germ agglutinin (WGA, Vector Laboratories,
#RL1022), which labels myocyte membranes to visualize
ventricular hypertrophy, as previously described (16).
Images were acquired using a confocal microscope. All
quantitative evaluations were performed with ImageJ
software (NIH website).

Echocardiography

Echocardiography was performed on mice aged 3–
40 weeks under 1.5–2% isoflurane using the VEVO 770
machine. Left ventricular wall thickness, ejection fraction, and
fractional shortening were calculated with VEVO LAB 3.0
software. Aortic velocity and pressure were measured via the
echocardiogram and the aortic valve area was measured using
the continuity equation.

Endothelial cell isolation and culture

Mouse cardiac endothelial cells (ECs) were isolated as
previously described (20). Briefly, mouse hearts were dissected
and minced into small pieces. After the digestion of the
heart using Collagenase I (Worthington, Lakewood, NJ, United
States), cells were washed and incubated with Dynabeads
conjugated with anti-CD31 antibody (Thermo Fisher Scientific,
Oakwood, OH, United States). The beads with endothelial cells
were washed several times and cultured in a mouse endothelial

culture medium (Cell Biologics, Chicago, IL, United States).
When confluent, cells were purified with Dynabeads conjugated
with anti-Mouse CD102 (ICAM2) antibody.

Western blot

Protein was isolated from endothelial cells with a RIPA
Kit (Sigma Aldrich, R0278, Burlington, MA, United States)
supplemented with protease and phosphatase inhibitors. Protein
concentration was determined via BCA protein assay (Thermo
Fisher Scientific, 23227, Oakwood, OH, United States) per
manufacturer’s instructions. Protein lysates (40 µg/lane) were
loaded for probing CXCR4 (1:500 dilution; Abcam, Ab181020,
Waltham, MA, United States). Following primary antibody
incubation (overnight at 4◦C), blots were incubated (1 h
at room temperature) with a mouse anti-rabbit IgG-HRP
(1:3,000 dilution; Santa Cruz, SC-2357, Dallas, TX, United
States). Immunoreactive bands were detected using a western
blot imaging system (Cytiva, Amersham ImageQuant 800,
Marlborough, MA, United States). GAPDH was used as a
loading control (1:400 dilution; Millipore Sigma, MAB374,
Burlington, MA, United States).

Statistical analysis

Data are represented as mean ± SD. Statistical significance
between the two groups was determined using a 2-tailed
Student t-test. One- or two-way ANOVA was used for multiple
comparisons where appropriate. A probability value of P ≤ 0.05
was used to establish statistical significance.

Results

Role of endothelial cell CXCR4 on the
development of aortic valve stenosis

To evaluate if endothelial cell CXCR4 deletion affects the
function of aortic valves, echocardiography was performed on
EC CXCR4 KO and control mice, spanning an age range of 3–
40 weeks old. AV pressure gradient and velocities between the
EC CXCR4 KO group and the control group were significantly
different in different aged mice (Figures 1A,B). We observed
that 50% of 3-week-old EC CXCR4 KO mice (n = 11) presented
with significant increase in aortic valve peak velocity and aortic
valve peak pressure gradient (Figures 1A,B,F). By 6 weeks
old, 90% of EC CXCR4 KO mice (n = 11) presented with
AVS of varying severity (Figures 1A,B). Forty-five percentage
of 6-week-old EC CXCR4 KO mice developed severe AVS
(aortic valve pressure gradient ≥ 40 mmHg, peak aortic
velocity ≥ 4 m/s). Interestingly, our data also show significant
difference in the aortic peak pressure gradients and velocities
between the male and female EC CXCR4 KO mice at 3 weeks
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FIGURE 1

(A–F) Deletion of CXCR4 in endothelial cells led to Aortic Stenosis. (A) Aortic Valve Peak Velocity and (B) aortic peak pressure gradient
(n = 10–13). (C) Aortic valve peak velocity and (D) aortic valve peak pressure gradient (n = 5–6), males and females are represented separately to
show the difference in disease onset for EC CXCR4 KO mice. (E) Aortic valve area (n = 10–13) calculated using continuity equation.
(F) Representative pulsed wave (PW) Doppler images of aortic flow for the control and EC CXCR4 KO groups, with images being from mice of
the same sex and age. Note the different scales outlined in the white box. (G) Western Blot analysis of the CXCR4 knockout on endothelial cells.
We observed a significant decrease in endothelial CXCR4 expression in EC CXCR4 KO mice compared with control mice. Data shows the
average for mice aged 3–40 weeks. Calculated using Echocardiogram measurements on a VEVO 770 system. *Indicates a p-value ≤ 0.05 vs.
control group.

old (Figures 1C,D). However, such a sex significance was
lost by 6 weeks old (Figures 1C,D). Moreover, the aortic
valve area (AVA) of the EC CXCR4 KO mice was notably
smaller than the control mice at 3–8 weeks old measurements
yielded (p < 0.05, Figure 1E). The efficiency of knockdown
of CXCR4 in endothelial cells was confirmed by western blot.
A significant decrease in endothelial CXCR4 expression was
observed in the EC CXCR4 KO mice compared with the control
mice (Figure 1G).

Role of endothelial cell CXCR4 on
cardiac function and cardiac
hypertrophy

The EC CXCR4 KO mice have a significantly decreased
ejection fraction (EF) compared to the control mice at the age of
20–40 weeks (Figure 2A). There was no statistically significant
difference between the EC CXCR4 KO and control mice in the
left ventricular mass (Figure 2B) or the left ventricle posterior
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FIGURE 2

(A–D) Echocardiogram results indicate decreased Ejection Fraction and ventricular hypertrophy in EC CXCR4 KO mice. (A) Endocardial ejection
fraction (B-mode) (B) Left ventricle mass (C) LVPWd, diastolic thicknesses of the LV posterior wall (D) LVPWs, systolic thicknesses of the LV
posterior wall. Data shows the average for mice aged 3–40 weeks (n = 10–13). Calculated using echocardiogram measurements on a VEVO
770 system. *Indicates a p-value ≤ 0.05 vs. control group.

wall systolic (LVPWs) although there was a trend (Figure 2D).
Interestingly, the left ventricle posterior wall diastolic (LVPWd)
between the EC CXCR4 KO and control mice was significantly
different at the age of 4–8 weeks (Figure 2C). There was
no significant difference in heart rate between the groups
(data not shown).

We also evaluated the effects of endothelial cell CXCR4
KO on cardiac myocyte size with WGA immunostaining. Our
results showed a significant increase in cross-sectional area
of cardiomyocytes from EC CXCR4 KO mice compared to
control mice (Figures 3A,B). We also found that the EC
CXCR4 KO mice had a significantly larger heart weight (HW)
to body weight (BW) ratio compared to the control group
(Figure 3C), indicating enlarged heart, which is consistent
with the immunofluorescence staining and the echocardiogram
findings for LV hypertrophy.

Endothelial cell CXCR4 KO led to
increased microcalcifications,
interstitial fibrosis, and thickened
valvular leaflets

The H&E staining and Masson’s trichrome staining show
that valvular leaflets were thicker in the EC CXCR4 KO mice
compared to the control mice (Figures 4A,C). Alizarin Red
staining shows the deposition of calcium on the aortic valves of

the EC CXCR4 KO mice (Figures 4B,D). Masson’s trichrome
staining shows significant increase in interstitial fibrosis in
the EC CXCR4 KO mice compared to the control groups
(Figures 4E,F).

Discussion

Deletion of CXCR4 in endothelial cells
linked to the development of aortic
valve stenosis

In this study, we report the effect of endothelial CXCR4
expression on the development of AVS for the first time using
our EC CXCR4 null mice. In human AVS, the aortic valve leaflets
stiffen and are unable to fully open, causing significant increases
in AV peak velocity and pressure gradient. This leads the heart
to have to work harder to pump blood out to the rest of the
body as the AV opening is narrowed. Therefore, as AVS develops
and progresses, the pressure overload within the left ventricle
increases, leading to an increase in left ventricle mass and
eventual left ventricular hypertrophy. We showed a spontaneous
murine model of AVS with significant increases in AV peak
velocity and pressure gradient, decreases in AVA (Figure 1), and
significant increases in valvular microcalcifications (Figure 4).
Such a mouse model recaptures the pathology of AVS
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FIGURE 3

(A–C) Role of endothelial cell CXCR4 on cardiomyocyte hypertrophy. (A) Confocal image of representative immunofluorescent staining with
WGA and DAPI to label myocyte membranes. (B) The average area of one cardiomyocyte was determined using WGA and DAPI staining
(n = 10–12). (C) Heart weight/body weight ratio (n = 11–17). Our results showed a significantly increased cross-sectional area in cardiomyocytes
and HW/BW ratio from EC CXCR4 KO mice compared to control mice. *Indicates a p-value ≤ 0.05 vs. control group.

documented in humans, linking the absence of CXCR4 on
endothelial cells to the development of hemodynamically stable
AVS. Our EC CXCR4 KO mice show increased left ventricle
posterior wall thickness in diastolic, enlarged cardiac myocyte
size, and heart weight (HW) to body weight (BW) ratio, all of
which indicate cardiomyocyte hypertrophy. Progression of the
AVS and hypertrophy combined will cause restricted coronary
flow, possibly leading to myocardial ischemia and fibrosis
(3, 7).

Over the past few years, disruption of the CXCL12/CXCR4
pathway has been studied during embryonic development,
using genetic models to knock out each respective piece of
the axis to examine their effects on cardiac development
and more specifically, valvular development (10, 21–23).
Knockouts involving the CXCL12/CXCR4 axis are known to
cause ventricular septal defects (VSDs), and developmental
disruption of aortic arch, pulmonary artery, and coronary
artery in animal models (10, 19, 21, 22, 24). CXCL12 null
mice also present with malformations and decreased cardiac
function (21). Hyperplasia within the semilunar valve (SLV)
has been observed in CXCR4 knockout models, indicating

the important role this receptor plays during the endothelial-
mesenchymal transition and beyond (24). However, there has
been very little done to analyze the AV function of adult
KO mouse models (10, 21). To the best of our knowledge,
this is the first study that links the deletion of CXCR4 in
endothelial cells to the development of hemodynamically stable
AVS in a murine model.

EC CXCR4 KO mouse presents a new
model for studying the development of
aortic valve stenosis

Our Tie2-Cre driven, endothelial CXCR4 knockout mice
show hemodynamically stable aortic valve stenosis, with
calcification and ventricular hypertrophy. This genetic KO
model develops AVS as early as 3 weeks in females and
6 weeks in males, maintaining increased AV peak velocities
and pressures throughout their lifetime. Our mouse model
of spontaneous AVS presents as a new avenue for AVS
research, with a shorter development time compared to other
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FIGURE 4

(A–F) Endothelial cell CXCR4 KO led to increased microcalcifications, interstitial fibrosis, and thickened valvular leaflets. (A) Modified
Hematoxylin & Eosin staining. Arrows point to valve leaflet thickening. (B) Alizarin red staining. Arrows point to the positive stain results
indicating the presence of microcalcifications. (C) Masson’s trichrome staining results. Arrow indicates the presence of leaflet thickening on
aortic valves of the EC CXCR4 KO group. (D) Alizarin red staining quantification (n = 3–5). (E) Interstitial fibrosis quantification (n = 5).
(F) Representative Masson’s trichrome staining images of interstitial fibrosis (scale bars = 50 µm). *Indicates a p-value ≤ 0.05 vs. control group.
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AVS mouse models which normally take > 20 weeks to
develop hemodynamically stable AVS (25, 26). Also, our AVS
model does not need to feed the animals a special diet
or induce a mechanical injury (25, 27). Even though about
six varieties of dietary modification were used to develop
AVS, they do not consistently develop hemodynamically
significant AVS (25). Mechanical injury induced AVS models
come with the risks associated with surgery (26). Our
EC CXCR4 KO mice develop AVS early, presenting as
a time frame friendly option to AVS without any forms
of intervention.

Male and female difference in disease
progression

Human AVS has shown to progress differently in males
and females. For example, males have a higher risk for
the disease while females often present with more severe
symptoms (28). Female patients often develop severe AVS
with more fibrosis, but less calcification compared to male
patients (4). It has been reported that estrogen may play
a protective role against AVS, leading human females
to develop the disease post-menopause (29). Also, there
are sex differences observed in the development of AVS-
related LV hypertrophy. Human males tend to develop
eccentric hypertrophy while females often develop concentric
hypertrophy (30). Therefore, understanding the relationship
between AVS development and sex differences is important
and to address this, we decided to include equal number
of males and females in our initial study. Knowing these
differences could cause some variation in both groups, we
looked specifically at the male vs. female numbers at each
time point. Interestingly, female EC CXCR4 KO mice show
the signs of AVS as early as 3 weeks of age while the males
did not present until after 5 weeks of age. Although the
underlying mechanism is unclear, this may indicate that
developmental hormones could play a role in the disease
development. Further study such as the relationship between
the CXCL12/CXCR4 axis and the different sex hormones is
needed to address it.

Possible mechanism and future
directions

The goal of this study was to invest the role of endothelial
CXCR4 on the development of AVS and establish the timeline
for disease development. The mechanism to explain why
AVS is occurring in the presence of an EC CXCR4 KO
has not yet been determined. Previous research shows that
CXCR4 is elevated in various organs at different stages in the
developmental process, with CXCR4 KO mice presenting with

defects in hematopoiesis, cardiogenesis, and fetal lethality in
utero (31). CXCR4 is present on the endothelial cells that line
both major vessels and the microvasculature throughout the
body (32). This indicates that CXCL12/CXCR4 plays a key
role in mediating cell migration and angiogenesis throughout
development. Our findings that the endothelial-specific CXCR4
deficiency spontaneously developed AVS confirmed the critical
role of CXCR4 in aortic valve development. It is possible
that AVS developed in CXCR4 KO mice was due to
congenital malformations.

Aortic valve stenosis may be brought on by multiple
mechanisms, including mechanical injury and immune system
activation (2, 3). CXCR4 signaling in blood vessels near calcified
valves is speculated to be the cause of neovascularization and the
promotion of inflammatory cell recruitment (13). Chemokines
and their receptors are known for organizing and distributing
immune responses throughout the body, so it is not surprising
that the disruption of the CXCL12/CXCR4 pathway in any
cell would lead to the development of diseases (9, 19, 32).
AVS occurring in the EC CXCR4 KO mice may also be
due to the role of CXCR4 in the recruitment of progenitor
cells and immune-factor regulation as research has shown
CXCR4 to impact endothelial progenitor cell migration and
homing processes.

One limitation of our study pertains is the use of a
Tie2-Cre for endothelial cell specific knockout. Although
Tie2/Tek promoter are widely used in animal models
that target endothelial cells, Tie2 may also express in
hematopoietic cells (33), therefore, Tie2-Cre KO mice may
affect the expression of CXCR4 in the hematopoietic cells.
An inducible EC CXCR4 KO animal model will address
the embryo developmental or postnatal contribution of
CXCR4 to the AVS.

Conclusion

We demonstrated that mice with deletion of CXCR4 in
endothelial cells develop hemodynamically significant aortic
valve stenosis and left ventricular hypertrophy. This indicates
that CXCR4 plays an important role in aortic valve development
and function. It was also observed that female mice in this
line developed AVS earlier than males. Our results indicate
that Tie2-Cre/CXCR4 fl/fl mice can be used as a novel
model for AVS study.
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