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Summary 
Natural killer (NK) cells provide a first line of defense against viral infections. The mechanisms 
by which NK cells recognize and eliminate infected cells are still largely unknown. To test whether 
target cell elements contribute to NK cell recognition of virus-infected cells, human NK cells 
were cloned from two unrelated donors and assayed for their ability to kill normal autologous 
or allogeneic cells before and after infection by human herpesvirus 6 (HHV-6), a T-lymphotropic 
herpesvirus. Of  132 NK clones isolated from donor 1, all displayed strong cytolytic activity against 
the NK-sensitive cell line K562, none killed uninfected autologous T cells, and 65 (49%) killed 
autologous T cells infected with HHV-6. A panel of representative NK clones from donors 1 
and 2 was tested on targets obtained from four donors. A wide heterogeneity was observed in 
the specificity of lysis of infected target cells among the NK clones. Some clones killed none, 
some killed only one, and others killed more than one of the different HHV-6-infected target 
cells. Killing of infected targets was not due to complete absence of class I molecules because 
class I surface levels were only partially affected by HHV-6 infection. Thus, target cell recognition 
is not controlled by the effector NK cell alone, but also by polymorphic elements on the target 
cell that restrict NK cell recognition. Furthermore, NK clones from different donors display 
a variable range of specificities in their recognition of infected target cells. 

N 'K cells are a distinct subset of lymphocytes, expressing a 
CD3-CD56 + phenotype, that can recognize and lyse 

tumor cell lines and virus-infected cells in vitro without MHC 
restriction or prior sensitization (1, 2). In vivo models have 
shown that NK cells accumulate and proliferate at the site 
of active virus replication (3). In scid mice, deficient in T and 
B lymphocytes, depletion of NK cells resulted in higher virus 
titers and reduced survival rate of infected animals (4). The 
absence of a documented memory response in NK cells and 
of complete virus clearance in the absence of T cells suggested 
that NK cells serve as a first line of defense. 

The detection of NK activity within unstimulated, un- 
fractionated PBMC, and the lack of MHC restriction sug- 
gested that NK cells may be relatively homogeneous in their 
target cell specificity. The first evidence for heterogeneity in 
target cell recognition by NK cells came from the analysis 
of NK clones and their ability to recognize alloantigens ex- 
pressed on normal PBL (5). In addition, human NK cells 
have been divided into subsets according to the surface ex- 

pression of molecules defined by the mAbs GL183 (6) and 
EB6 (7). These two mAbs recognize related molecules with 
a relative molecular mass of ,,o58,000 and can regulate cyto- 
lyric activity of NK cells that express these molecules. The 
surface phenotype of NK cells based on the combined use 
of mAbs GL183 and EB6 correlates with NK-defined al- 
lospecificities (7). Another group of NK cell-specific surface 
molecules may be involved in target cell recognition. These 
molecules are type II transmembrane proteins with homology 
to C-type lectins and belong to at least two families of genes 
located in a region of mouse chromosome 6, called the NK 
complex (8-10). A subset of mouse NK cells expressing Ly- 
49, a member of the NK complex expressed as a homodimer 
with a relative molecular mass of "~85,000, failed to lyse cells 
expressing certain MHC class I alleles (11). Thus, NK activa- 
tion and NK-mediated target cell recognition may be con- 
trolled by multiple surface NK molecules that provide either 
positive or negative signals to the lytic machinery. 

Sensitivity to NK allospecific lysis is a recessively inherited 
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trait that maps to the class I region of the M H C  (12-14). 
This finding is consistent with evidence that M H C  class I 
molecules can dominantly protect against NK lysis (11, 15-17, 
reviewed in 18). While NK aUorecognition must be controlled 
by polymorphic target cell elements, it is not yet known 
whether such elements play a role in NK recognition of normal 
cells after virus infection. 

Since the major biological function of NK cells appears 
to be elimination of autologous cells that have been infected 
or transformed, we investigated whether autologous PHA- 
induced T cell blasts, known to be resistant to lysis by autol- 
ogous NK cells, would become susceptible to lysis upon in- 
fection by human herpesvirus 6 (HHV-6).  1 HHV-6 was 
used because it infects with high efficiency normal activated 
T cells and, under appropriate culture conditions, yields a 
homogeneous population of viable infected target cells (19). 
Lysis of HHV-6-infected cells was observed with autologous 
NK clones, but this property was confined to a subset of such 
clones. In addition, we demonstrate for the first time that 
NK recognition of untransformed cells infected by a virus 
is controlled by polymorphic elements expressed by the target 
cell. 

Materials and Methods 
Antibodies and Immunostaining. For the characterization of NK 

cells, the following mAbs were used: Leu4 (CD3), Leu2a (CDS), 
Leu19 (CD56) (Becton Dickinson & Co., San Jose, CA), KD1 
(CD16; reference 6), GL183 (6), and EB6 (7). 13D6 is a mAb to 
an HHV-6 envelope protein (20), anti-HLA-A, -B, -C is a commer- 
cial mAb to the class I heavy chain (Olympus, Lake Success, NY), 
W6.32 is a mAb to class I heavy chain and/~2-microglobulin com- 
plex (American Type Culture Collection, Rockville, MD), BB7.2 
is a mAb specific for HLA-A2 (21), B1-23 is a mAb specific for 
HLA-B and -C molecules (22), B2.62 is a mAb specific for/~2- 
microglobulin (a gift from J.-C. Chermann [23]). mAbs SA24.23 
and F4.326, specific for HLA-B and HLA-C, were gifts from S. Y. 
Yang (Memorial Sloan-Kettering Cancer Center, New York, NY). 
NK clones were incubated with mAb for 30 rain at 4~ washed 
and stained with a goat anti-mouse IgG serum conjugated with 
FITC (Caltag, San Francisco, CA) for 30 min at 4~ washed, and 
analyzed with a FACScan | cytofluorimeter (Becton Dickinson & 
Co.). Cultures of infected and uninfected PHA-activated T ceil blasts 
grown in the absence of exogenous lymphokines were washed and 
stained as described above. 

Isolation of CD3-CD56 + Cells and Clones. PBMC from normal 
healthy volunteers were obtained by separation on a Ficoll-Hypaque 
gradient followed by incubation at 37~ for 1 h to remove mono- 
cytes by plastic adherence. The ceils were subsequently washed in 
ice-cold medium (Iscove's modified essential medium; Biofluids, 
Kockville, MD) containing 2% FCS, resuspended at 107 cells/ml 
(in 2 ml), and immunostained for 1 h with 200/zg Leu4 mAb. 
Cells were washed twice to remove excess antibody and incubated 
for 45 min with magnetic beads coupled with anti-mouse Ig anti- 
bodies (Advanced Magnetics, Cambridge, MA) under continuous 
rotation. The enrichment was repeated twice to reach a level of 
>90% CD3- CD56 + cells as assessed by cytofluorimetric analysis. 
The enriched population was tested directly in a lysis assay or seeded 

1 Abbreviation used in this paper: HHV-6, human herpesvirus 6. 

at 105 cells/well on 2 x 10 s irradiated (4,000 tad) PBMC and ex- 
panded in 96-well plates in complete medium consisting of Iscove's 
modified essential medium with 10% human serum, 2 mM gluta- 
mine, 100 U/ml rlL-2 (gift of Hoffmann-La Roche, Nutley, NJ), 
and 10% of a solution of purified human IL-2 (6011; Schiapparelli 
ENI Diagnostic, Fairfield, NJ). After 5-7 d, ceils were harvested 
and enriched again as described above to reach >95% 
CD3-CD56 § cells. NK clones were established by limiting dilu- 
tion cloning in 96-well plates of freshly enriched CD3- lympho- 
cytes in the presence of 2 x 10 s irradiated PBMC/well (4,000 
rad). Cells were seeded in a medium consisting of Iscove's modified 
essential medium with 10% human serum, 2 mM glutamine, 
100 U/ml rlL-2, and 0.2 #g/ml PHA (Sigma Chemical Co., St. 
Louis, MO). After 48 h 100 #1 of medium/well was replaced with 
complete medium. After 5-6 d an additional 100 #1 was replaced 
with 100 #1 of complete medium containing 10 s irradiated PBMC. 
1 wk later, growing microcultures were expanded in several wells 
of 96-well plates. Homogeneity of cell surface staining (>95%) with 
mAbs Leu2 (CD8), Leu4 (CD3), Leu 19 (CD56), KD1 (CD16), 
GL183, and EB6 of each microculture, as well as a calculation of 
cloning efficiency (24), were used to assess clonality. 

H H V 6  Infection. HHV-6 strain GS (25) was propagated in 
freshly activated umbilical cord blood mononuclear cells as described 
(19). In vitro infection was carried out with supernatant from in- 
fected cord blood cultures. The virus titer was determined by serial 
10-fold dilutions of the supernatant on activated cord blood 
mononuclear ceils. PBMC were activated with 1 #g/ml PHA for 
48 h in culture medium (RPMI 1640 supplemented with 10% FCS, 
2 mM glutamine), washed three times, and resuspended in 2 ml 
of HHV-6 stock virus (106 50% tissue culture infectious dose/ml) 
at the concentration of 5 x 106 ceUs/ml for 2 h. The culture was 
subsequently diluted with prewarmed culture medium to 106 
ceils/ml, and incubated at 37~ in humidified 5% COz for 5-7 d. 
The infected cultures were collected when >50% of cells exhibited 
the typical enlarged, homogeneously rounded morphology, and 
dead cells were removed by centrifugation through a Nycoprep 1.068 
gradient (Nicomed, Oslo, Norway). Cell viability after Nycoprep 
treatment was >90%, as assessed by trypan blue exclusion. 

Cytotoxicity Assays. The NK-sensitive target cell line K562 was 
maintained in RPMI 1640 supplemented with 10% FCS, 2 mM 
glutamine. It was maintained free of mycoplasma contamination, 
as determined by the GenProbe mycoplasma contamination kit (Gen- 
Probe Inc., San Diego, CA). Freshly derived PBL and NK popula- 
tions obtained either without in vitro activation or after cultiva- 
tion in complete medium for 1 wk were mixed with target cells 
at different E/T ratios in V-bottomed 96-well plates. NK clones 
were tested against different target cells at several E/T ratios in 
triplicate wells. Although experiments always included titrations 
of effector cells, some of the data are presented at a given E/T ratio, 
as indicated in the figure legends. Target ceils (0.5-1 x 106) were 
washed, resuspended in 200 #1 of RPMI 1640 supplemented with 
50% FCS, labeled with sodium Slchromate (100/zCi; Amersham 
Corp., Arlington Heights, IL) for 2 h, washed twice, counted, 
and resuspended at a final concentration of 5 x 104 ceUs/ml. 100 
#1 of the suspension was added to the effector cells in a 96-well 
V-bottomed plate. The plate was centrifuged at 600 g for 2 rain 
and incubated at 37~ for 4 h. The supernatant was harvested (Ska- 
tron, Inc., Sterling, VA) and counted in a gamma counter (Packard 
Instr., Meriden, CT). Maximum chromium release was determined 
by lysing target cells in PBS + 1% Triton X-100. Specific release 
was calculated as described (24). Target ceil recognition by NK clones 
was considered positive when >t20% specific lysis was achieved. 
Each NK clone was assigned a "specificity" type according to the 
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pattern of lysis of HHV-6-infected target cells from four donors. 
The 16 possible patterns of lysis of the 4 infected target cells were 
called A-P, as detailed in the legend to Fig. 4. 

Results 

Lysis of HHV-6-infected Cells by Autologous NK Cells. To 
test whether normal PBMC infected by HHV-6 could be 
lysed by autologous NK cells, PHA blasts, either uninfected 
or infected, were incubated with freshly derived autologous 
PBL (Fig. 1 A) or with enriched unstimulated CD3- cells 
(Fig. 1 B). A pure population of CD3- cells expanded in 
IL-2 was also tested (Fig. 1 C). A strong lytic activity specific 
for the infected cells was clearly detectable in the IL-2 ex- 
panded CD3- CD56 § cells (Fig. 1 C), as well as with NK 
cells that had not been stimulated with IL-2 in vitro (Fig. 
1 B). A much lower level of lysis of infected cells was ob- 
served with unfractionated PBL (Fig. 1 A). The level of lysis 
obtained with HHV-6-infected target cells was lower than 
that obtained with the classical NK target cell line K562, 
suggesting that virus-infected autologous cells may be 
inefficiently lysed by individual NK cells, or that only a frac- 
tion of NK cells may recognize autologous infected targets. 

To investigate these two possibilities, a total of 132 NK 
clones isolated from the same donor (no. 1) in five indepen- 
dent cloning experiments were tested for their ability to lyse 
K562 or autologous PHA blasts, either uninfected or infected 
with HHV-6. While none lysed autologous uninfected cells, 
and all lysed K562 efficiently, approximately half of the clones 
(65/132) were able to specifically lyse infected cells (>--20% 
specific lysis at an E/T ratio of 8). In addition, there was 
a noticeable and completely reproducible variation between 
NK clones in the magnitude of the cytolytic activity. The 
frequency of lytic clones was not related to the cloning 
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Figure  1. Purified C D 3 - C D 5 6  ~ cell populations recognize HHV-6- 
infected autologous cells. Freshly isolated PBL (A), a freshly isolated and 
enriched C D 3 -  CD56 * cell population (B), or a purified C D 3 - C D 5 6  + 
cell population expanded in IL-2 (C) were tested for their ability to kill 
autologous PHA blasts that were either uninfected (squares) or infected 
with HHV-6 (circles). Killing of the NK target cell line K562 (triangles) 
was also measured. 

efficiency (which varied between 1 and 10%), and did not 
change in different cloning experiments. Results obtained with 
30 clones are shown in Table 1. The lysis level of autologous 
infected cells by each NK clone was highly reproducible in 
separate experiments. These clones belonged to three distinct 
subpopulations of NK cells according to the expression of 
the surface molecules defined by mAbs GL183 and EB6 
(Table 1). 

NK clones themselves can be infected by HHV-6, provided 
that such NK clones are unable to kill HHV-6-infected au- 
tologous target cells (26). The ability of NK clones to kill 
autologous HHV-6-infected cells was the same whether lysis 
was assayed with uncloned PHA blasts or cloned NK cells 
as targets (data not shown). Therefore, the observed hetero- 
geneity in the ability of different NK clones to lyse autolo- 
gous infected targets is not due to a heterogeneous sensitivity 
to lysis of the target cells. 

Surface Expression of Class I MHC Molecules on HHV-6- 
infected Cells. Several viruses have been suggested to evade 
immune surveillance by downregulating the expression of 
MHC class I molecules in the infected cells (27). It has also 
been reported that absence of self-class I molecules can render 
hematopoietic cells sensitive to lysis by NK cells (15, 16, 28, 
29). However, HHV-6 infection of umbilical cord lympho- 
cytes did not affect cell surface levels of MHC class I mole- 
cules (P. Lusso, unpublished observation). Several antibodies 
were used to test whether surface levels of class I molecules 
were affected on HHV-6-infected PHA blasts (Fig. 2). Acti- 
vated T cells infected for 6 d with HHV-6 were compared 
with the same uninfected cells incubated for 6 d under the 
same conditions. An antibody to an HHV-6 envelope pro- 
tein revealed that virtually all cells in the culture were produc- 
tively infected (Fig. 2 a). The surface level of class I heavy 
chains, detected with a mAb to a nonconformational epitope 
of class I, was unaffected by HHV-6 infection (Fig. 2 b). On 
the other hand, the surface levels of class I/~2-microglobulin 
complexes, HLA-A2 molecules (the only detectable A allele 
on donor 4), and HLA-B + HLA-C molecules were some- 
what reduced (to "~75, '~85, and "~55% of control levels, 
respectively) on infected cells (Fig. 2, c-e). Similarly, the level 
of ~2-microglobulin was slightly reduced in infected cells 
(Fig. 2f ) .  Two additional antibodies (SA24.23 and F4.326), 
reacting preferentially with HLA-B and HLA-C molecules, 
showed a similar reduction (not shown). The data suggest 
that on infected cells surface levels of heavy chains complexed 
with Bz-microglobulin may be slightly lower than on unin- 
fected cells. 

Heterogeneous Ability of NK Clones to Lyse Autologous and 
Allogeneic HHV-6-infected Cells. The observation that only 
half of the NK clones exceeded 20% lysis of autologous HHV- 
6-infected cells raised the question of whether the ability to 
kill an infected target is the sole property of the effector cell 
clone, or whether it is also controlled by target cell elements. 
To specifically address this question, a panel of 32 clones de- 
rived from donor 1 and of 13 clones from donor 2 were as- 
sayed with autologous targets, as well as with 3 unrelated 
allogeneic targets that were either uninfected or infected with 
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Table  1. Lysis of HHV-6-infected Cells by Autologous NK Clones 

Phenotype Percent lysis* 

Uninfected HHV-6-infected 
Clone GL183 EB6 PHA blasts PHA blasts K562 

3S46R - + 1.1 41.8 80.1 

19S46R - + 0.0 14.7 75.3 

12S46P - + 0.0 5.7 82.7 

15S46P - + 0.0 4.1 77.0 

12S/S - + 0.0 3.5 77.7 

A18/6 - + 0.0 25.3 90.4 

25D5/1 - + 0.0 8.3 84.2 

A2/3 - + 0.0 7.7 79.5 

A36/6 - + 0.0 10.8 93.0; 

17D3/6 - + 0.0 23.7 81.0t 

14D5/1 - + 0.7 23.8 81.7 

A27/6 - + 0.0 24.2 76.0 

24S46P + + 0.0 3.6 80.7 

23S/S + + 0.0 13.0 78.8 

14S46P + + 0.0 9.3 88.6~ 

7BIS + + 0.5 4.9 77.6* 

A3/3 + + 0.0 7.8 73.7 

22D3/3 + + 0.0 1.8 73.7 

A31/6 + + 1.0 31.6 73.4 

9D5/1 + + 0.0 41.1 84.8~ 

6D5/3 + + 0.0 0.0 69.2 

31-AS + + 0.0 0.0 99.3* 

7 - - 3.8 28.7 99.9* 

19 - - 0.0 86.4 91.0' 

63 - - 6.9 66.5 94.0* 

01-A s - - 5.3 50.4 67.3* 

07-AS - - 0.0 84.2 93.3~ 

9S46P - - 0.0 30.6 85.2; 

13S/S - - 0.7 43.6 87.2 

A4/3 - - 0.0 36.9 74.7' 

* Average from two or three separate experiments of specific lysis measured at an E/T ratio of 8. The variability between experiments in the level 
of lysis by each clone was very small. Out of the 77 average values shown, 66 were derived from experimental values with a deviation from the 
mean of ~5%, 9 with a deviation from the mean of ~10%, and 2 with a deviation from the mean of >10% (clone 24S46P on target K562 with 
86.6, 88.5, and 67.2% lysis; clone 19 on HHV-6-infected targets with 72.9 and 100%). 
* These 13 clones were tested only once on the target K562. 

Measured at an E/T ratio of 5. 

H H V - 6 .  A few clones displayed allospecific lysis of  uninfected 
targets. In contrast ,  a great he terogenei ty  a m o n g  N K  clones 
was seen in their  abili ty to lyse infected targets f rom different 
individuals, as il lustrated in Fig. 3. For  example, in repeated 
experiments ,  c lone 2 5 D 5 / 1  only lysed one o f  the aUogeneic 
infected targets (Fig. 3 A) ,  clone 17D3/6  lysed infected targets 
to varying degrees (Fig. 3 B), and clone A 3 / 3  did not  reach 

2 0 %  lysis w i t h  any of  the infected targets (Fig. 3 C).  Simi- 
larly, different specificities were  represented a m o n g  the N K  
clones f rom donor  2, three o f  wh ich  are displayed in Fig. 
3, D - F .  Testing the clones over a wide  range o f  E / T  ratios 
revealed that nonkil ler  phenotypes were not  reversed at higher  
concentra t ions  of  effectors, and that  all the  clones had very 
similar lytic activities on the cell l ine K562 (Fig. 3). Thus,  
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Figure 2. HLA class I expres- 
sion on HHV-6-infected cells. In- 
fected and uninfected PHA blasts 
from donor 4 cultured for 6 d were 
stained with the following anti- 
bodies: (a) 13D6, mAb to an 
HHV-6 envelope glycoprotein; (b) 
anti-HLA-A, -B, -C, mAb to dass 
1 heavy chains; (c) W6.32, mAb 
to class I heavy chain and 32- 
microglobulin complex; (d) BB7.2 
mAb specific for HLA-A2; (e) 
B1.23, mAb specific for HLA-B 
and -C molecules; and (f) B2.62, 
mAb specific for 32-microglobu- 
lin. Uninfected cells are repre- 
sented by the dotted line, infected 
cells by the dashed line. a and b 
also show cells stained with the 
second reagent only as control for 
background fluorescence (heavy 
solid line, uninfected; light solid line, 
infected cells). 
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Figure 3. Heterogeneous recognition of autologous and allogeneic HHV- 
6-infected cells by NK clones. Three representative clones derived from 
donor 1:25D5/1 (A), 17D3/6 (B), and A3/3 (C), and three clones from 
donor 2:12wA-7 (D), 12w53-10 (E), and 12wA-14 (F) were tested for 
their ability to lyse K562 cells (squares), and HHV-6-infected PHA blasts 
from donor 1 (open circles), 2 (filled circles), 3 (filled triangles), and 4 (open 
triangles). Killing of uninfected PHA blasts, either autologous or allogeneic, 
was at background levels (see Fig. 4). 

target cell elements control the ability of NK clones to lyse 
HHV-6-infected cells. 

A complete analysis of 16 representative NK clones from 
donor 1 and 12 clones from donor 2 is displayed in Fig. 4. 
For each clone, the level of lysis achieved with uninfected and 
HHV-6qnfected cells from four donors was a stable and re- 
producible property. Out of the 16 possible types of specificities 
for lysis of 4 infected targets, 9 were represented among NK 
clones from donor 1 (only 6 are included in Fig. 4), and 8 
types were represented among the clones from donor 2. 

One of the allogeneic targets (donor 4) carried the NK-1 
allospecificity previously described (18, 30). As expected, al- 
logeneic activity against uninfected target 4 was detected pri- 
marily within the GL183- EB6 § subset of NK clones (Fig. 
3 G). A total of 28 of 40 GL183- EB6 + clones from donor 
1 lysed the NK-1 aUospecific target 4 (only three are shown 
in Fig. 4). Infection of target 4 did not alter its sensitivity 
to allospecific NK clones (Fig. 3/-/). 

Some correlations between the surface phenotype of the 
clones and their type of target cell lysis specificity were noted. 
For example, all five GL183-EB6- clones of donor 1 (three 
are shown in Fig. 4) killed all the infected targets, but this 
property was shared by only 3 of 16 GL183+EB6 ~ clones 
(one is shown in Fig. 4) and by none of 8 GL183-EB6 + 

clones. Each phenotypic group of NK clones from the same 
donor contained specifcity types that had little overlap with 
other phenotypic groups. Of the nine specificity types found 
in clones from donor 1, only two (types A and B) were shared 
between phenotypic groups, and none of the eight specificity 
types in clones from donor 2 overlapped between phenotypic 
groups. 

Distinct Specificities in Target Cell Recognition between N K  
Clones from Two Unrelated Donors. Because of the polymorphic 
nature of the cellular elements that control resistance or sus- 
ceptibility to lysis by NK clones (Figs. 3 and 4), NK cells 
from different donors may display different abilities to lyse 
target cells after virus infection. A comparison between NK 
clones from donors 1 and 2 revealed differences in their target 
cell specificities, even between clones belonging to the same 
phenotypic subgroup (Fig. 4). For example, in donor 1 
autologous infected target cells were killed mainly by 
GL183-EB6- clones, whereas in donor 2 this property was 
shared by GL183- EB6- and GL183 + EB6 + clones (Table 1 
and Fig. 4). Similar differences were observed when the var- 
ious groups of clones were tested against allogeneic infected 
target cells. For example, of the eight specificity types dis- 
played by GL183+EB6 * clones only one (type M) was 
shared by clones from both donors. 
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Figure 4. Restricted recognition 
of HHV-6-infected cells by NK 
clones. 16 clones from donor 1 (left) 
and 12 clones from donor 2 (right) 
were tested against the following 
PHA blast target cells: uninfected 
no. 1 (a), HHV-6-infected no. 1 (b), 
uninfected no. 2 (c), HHV-6-infected 
no. 2 (d), uninfected no. 3 (e), HHV- 
6-infected no. 3 (f), uninfected no. 
4 (g), and HHV-6-infected no. 4 (h). 
Data represent averages from at least 
two experiments. Out of the 224 
average values shown, 199 were de- 
rived from experimental values with 
a deviation from the mean of<5%, 
23 with a deviation from the mean 
of <10%, and 2 with a deviation 
from the mean of >10% (clone 
A31.6 in d with 54.9, 87.7, and 
39.5% lysis; done 12wA-06 in g 
with 51.0 and 81.3% lysis). The 
type of specificity in the lysis of 
HHV-6-infected targets is indicated 
for each clone as follows: lysis 
(>--20% at an E /T  ratio of 8) of all 
four targets (,'1), all but no. 4 (B), 
all but no. 3 (C), only nos. 1 and 
2 (F), only nos. 2 and 4 (]), only 
nos. 2 and 3 (K), only no. 2 (M), 
only no. 4 (O), or none (P). Clones 
displaying allospecific lysis of unin- 
fected target no. 4 ( - )  were not in- 
cluded in this classification. NK 
clones have been grouped according 
to their phenotype, as indicated. 

Discussion 

Several new conclusions can be drawn from the results of 
this study. First, normal, untransformed cells infected with 
HHV-6 can be specifically recognized by autologous NK cell 
clones. This experimental system is an improvement over 
previous studies that have relied mostly on bulk populations 
of NK cells tested on nonautologous transformed cell lines. 
Second, recognition of virus-infected target cells does not re- 
quire in vitro activation of the NK cells. The role of NK 
cells in the control of virus infection in humans has not been 

directly assessed. However, the occurrence of multiple and 
severe herpetic infections in patients congenitally lacking NK 
cells (31, 32) suggests that NK cells provide an important 
primary defense against viruses belonging to the Herpesviridae 
family. Our finding of a consistent lysis against HHV-6- 
infected autologous cells without the need of in vitro priming 
supports the view of a direct role for NK cells in the control 
of HHV-6 infections. Specificity at the level of individual NK 
clones was evident in that only a subset of clones lysed autol- 
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ogous HHV-6-infected cells. This distinction into killers and 
nonkiUers of autologous HHV-6-infected cells correlated with 
the susceptibility of NK cells themselves to infection by this 
virus (26). Interestingly, HHV-6 infection seems to be reac- 
tivated in the chronic fatigue syndrome (33, 34), and may 
act as a cofactor in AIDS (35, 36). Both syndromes are as- 
sociated with a reduced NK activity (37-40). 

The third and most important conclusion is that lysis of 
infected cells by NK clones is controlled by target cell ele- 
ments. HHV-6-infected PHA blasts from a particular donor 
may be lysed by some NK clones but not by others. In turn, 
NK clones display different specificities of lysis when tested 
with infected targets derived from several unrelated donors. 
This form of restricted target cell recognition by NK clones 
is quite different from MHC-restricted T cell recognition be- 
cause most of the NK clones are not limited to lysis of autol- 
ogous infected cells. Some NK clones that did not lyse in- 
fected autologous target cells were able to lyse aUogeneic 
infected targets. 

The fourth conclusion was derived from the analysis of 
a large panel of NK clones from two donors that were tested 
for lysis of HHV-6-infected PHA blasts from four individ- 
uals: a great heterogeneity exists in target cell specificities 
among NK clones from a single donor. Furthermore, the di- 
rect comparison between NK clones from donors 1 and 2 
revealed differences in their specificities of target cell lysis. 
Even clones belonging to the same phenotypic subgroup, as 
defined by the mAbs GL183 and EB6, displayed different 
specificities in the two donors. Although these data are con- 
sistent with the existence of distinct NK repertoires in different 
individuals, it remains possible that different specificities in 
donors 1 and 2 were somehow selected by the cloning proce- 
dure. Different repertoires of NK clones may develop in in- 
dividuals because of the requirement for NK cells to tolerate 
uninfected autologous cells, and because of the polymorphic 
nature of the cellular elements that control resistance or sus- 
ceptibility to lysis by NK clones. To explain the observed 
heterogeneity in the specificities of NK clones, HHV-6 in- 
fection must have a selective influence on the expression or 
structure of the different allelic forms of these target cell ele- 
ments. It is unlikely that simple downregulation of cell sur- 
face MHC class I molecules caused by HHV-6 can account 
for the observed sensitivity to NK lysis. First, surface levels 
of HLA class I molecules were only partially reduced on HHV- 
6-infected cells. Second, simple absence of class I alleles cannot 
explain the vast heterogeneity in the specificities of NK clones. 

The heterogeneity displayed by NK clones tested with 
HHV-6-infected PHA blasts appears more complex than that 
described so far for NK clones able to kill normal uninfected 
allogeneic cells. However, three characteristics described for 
allorecognition by NK clones belonging to different pheno- 
typic subgroups are also applicable to the present study of 
NK activity against virus-infected ceils, namely: (a) a given 

target cell can be susceptible to lysis by NK clones recog- 
nizing different specificities (complex haplotype); (b) the same 
phenotypic subset may be directed towards different al- 
lospecificities in different donors; and (c) clones displaying 
different specificities may be confned to the same subset (30). 

Two models have been proposed to account for target cell 
recognition by NK cells. According to the masking hypoth- 
esis (41), class I molecules mask a putative target structure 
recognized by NK cells. Recognition by NK cells occurs when 
the target structure is unmasked, as a consequence of dissoci- 
ation or absence of class I molecules. This model is difficult 
to reconcile with the allospecific recognition by NK cells, 
unless a polygenic system of target structures, expressed in 
all individuals, is postulated, some of which are masked to 
provide self-tolerance, while others, which are not complexed 
with self-class I molecules, provide targets for allorecognition. 

Another model, derived from the "missing self" hypoth- 
esis, suggests that NK cells receive a negative signal when 
self-class I is recognized (42). The absence of self, or the pres- 
ence of modifed self, would fail to turn off NK cells, and 
lysis would take place. Combined with recent data suggesting 
an involvement of peptides bound to class I molecules in target 
cell recognition by NK cells (43-45), the "missing self" hy- 
pothesis is compatible with the data presented here. Recog- 
nition of class I/peptide complexes by NK cells may be medi- 
ated by a group of receptor molecules that are selectively 
expressed on different NK clones. NK recognition of class 
I/peptide complexes could be disrupted in virus-infected cells 
due to occupancy of class I molecules by viral peptides. The 
restricted recognition of different target cells by the same NK 
clone observed in this study could be explained by the fact 
that each NK receptor molecule recognizes a group of related 
class I molecules (as in the case of recognition of H-2 a or 
H-2 k by Ly-49; reference 11) that display different affinities 
for viral peptides. For example, certain autologous class I/pep- 
tide complexes may not be affected by virus infection, resulting 
in resistance to lysis by some autologous NK clones, even 
though the same clones may recognize allogeneic infected 
cells in which a related class I molecule was affected by infec- 
tion. The complex patterns of target cell recognition by NK 
clones observed here probably do not result from a simple 
downregulation of specific class I alleles in HHV-6-infected 
cells, but rather from a differential effect on self-epitopes ex- 
pressed in the context of class I molecules. However, the puta- 
tive role of MHC class I molecules in the recognition of virus- 
infected cells by NK effectors remains to be established. 

The data presented here clearly demonstrate that, in the 
natural situation of virus infection, polymorphic elements 
expressed on the host cells dictate whether lysis by specific 
NK cells will occur and, further, that a wide range of target 
cell specificities is exhibited by NK clones isolated from a 
single individual. 
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