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Abstract
Multiple immune-related genes are encoded in the HLA complex on chromosome 6p21.

The 8.1 ancestral haplotype (AH8.1) include the classical HLA alleles HLA-B*08:01 and

HLA-DRB1*03:01, and has been associated with a large number of autoimmune diseases,

but the underlying mechanisms for this association are largely unknown. Given the recently

established links between the gut microbiota and inflammatory diseases, we hypothesized

that the AH8.1 influences the host gut microbial community composition. To study this fur-

ther, healthy individuals were selected from the Norwegian Bone Marrow Donor Registry

and categorized as either I. AH8.1 homozygote (n=34), II. AH8.1 heterozygote (n=38), III.

Non AH8.1 heterozygote or IV. HLA-DRB1 homozygote but non AH8.1 (n=15). Bacterial

DNA from stool samples were subjected to sequencing of the V3–V5 region of the 16S

rRNA gene on the 454 Life Sciences platform and data analyzed using Mothur and QIIME.

The results showed that the abundances of different taxa were highly variable within all pre-

defined AH8.1 genotype groups. Using univariate non-parametric statistics, there were no

differences regarding alpha or beta diversity between AH8.1 carriers (categories I and II)

and non-carriers (categories III and IV), however four different taxa (Prevotellaceae, Clos-
tridium XVIII, Coprococcus, Enterorhabdus) had nominally significant lower abundances in

AH8.1 carriers than non-carriers. After including possible confounders in a multivariate lin-

ear regression, only the two latter genera remained significantly associated. In conclusion,
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the overall contribution of the AH8.1 haplotype to the variation in gut microbiota profile of

stool in the present study was small.

Introduction
The human leukocyte antigen (HLA) complex is located at chromosome 6p21. Almost one
third of the 252 expressed protein coding genes in the region have putative functions related to
immune function [1]. Genetic HLA variants are major determinants of susceptibility to infec-
tion and inflammatory diseases [2,3], but for most diseases it has proven challenging to deter-
mine the involved mechanisms and exact allelic determinants. The HLA complex is both
extremely polymorphic and characterised by low recombination [4].

Among several conserved so-called ancestral HLA haplotypes [5], the 8.1 ancestral haplo-
type (AH8.1), which spans several million base-pairs and includes the HLA-B�08:01 and
HLA-DRB1�03:01 alleles, is particularly conserved. The AH8.1 is strongly associated with mul-
tiple immune-mediated diseases including celiac disease, type 1 diabetes, primary sclerosing
cholangitis and systemic lupus erythematosus [6]. This haplotype contains several genetic vari-
ants with biological implications [7], including the classical HLA alleles influencing antigen
presentation and genetic variants influencing the levels of tumor necrosis factor (TNF) and
complement factors. While for some diseases the AH8.1 association may be linked most
strongly to single disease-related alleles (e.g.HLA-DQ2 involving in celiac disease), multiple
independent associations are observed in several diseases [8,9] and epistatic effects between
several risk variants within this haplotype are likely conferring a general risk for the develop-
ment of autoimmune disease [6].

The bacterial content of the gut (the gut microbiota) has been linked to multiple human dis-
eases, including typical autoimmune and inflammatory conditions [10–12]. Environmental
influences like diet are important determinants of the gut microbial composition [13]. However,
there is firm evidence from twin studies that also the effects of host genetic factors are consider-
able [14,15]. Strong evidence implicating single genes in the shaping of the gut microbiota have
been found in mouse models with genetically altered levels of e.g. defensins, IgA and the bacte-
rial sensing protein NOD2 [16–19], the latter also seen in humans [19]. Importantly, similar
gene-microbiota interactions have also been associated with genetic variants commonly
observed in the healthy population, e.g. in the FUT2 gene, responsible for the presence of blood
antigens on epithelial surfaces [20]. There is also evidence from both mice and humans suggest-
ing an impact of classical HLA alleles on the gut microbiota composition [21–23]. Development
of AH8.1 associated diseases like type 1 diabetes, rheumatoid arthritis and celiac disease have
also been linked to alterations in the gut microbiota [10,24,25]. Given the unexplained associa-
tions between the AH8.1 and autoimmune diseases, we hypothesized that the sum of multiple
genetic variants on the AH8.1 haplotype with biological implications causes alterations in the
gut microbiota that increase disease risk and are detectable in the normal population.

Materials and Methods

Study population
One hundred and seventeen individuals from the Norwegian Bone Marrow Donor registry
were included, based on HLA genotypes determined upon the inclusion in the registry. The
study cohort consisted of four pre-defined groups as defined in Table 1: I. AH8.1 homozygotes,
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II. AH8.1 heterozygotes, III. Non AH8.1 heterozygotes and IV. Non AH8.1 DRB1 homozy-
gotes. The complete HLA characteristics of the 117 study subjects are given in S1 Table.

Ethics statement
Written informed consent was obtained from all study participants. The study was approved
by the Regional Committee for Medical and Health Research Ethics in South-Eastern Norway
(project code 2012/286b) and the institutional review board of BGI-Shenzhen.

Stool sample collection and DNA extraction
The stool samples were collected at home and returned by conventional mail. Standardization
of sampling was obtained by the use of a sampling kit consisting of an information letter, a
small sampling related questionnaire (covering sampling time point, height, weight, drug use
(in particular, antibiotics), smoking status, domestic animals and one question on whether
they are on a selective diet), detailed instructions, stool collection tubes with a stool DNA stabi-
lizer preservative optimized for the subsequent DNA extraction (Stratec, Berlin, Germany), a
Protocult stool collection device (Ability Building Center, Rochester, MN, USA) [26], and a
return envelope. The stool samples with stabilizer were stored until extraction at -20 degrees,
according to the manufacturer’s recommendations. Only samples from individuals without
antibiotic use the previous 4 weeks, and with a transport time within the range recommended
by the manufacturer (time from sampling to the freezer<72 hours) were considered for inclu-
sion in the study. DNA extraction was performed with the PSP Spin Stool DNA kit (Stratec)
according to the manufacturer’s protocol as previously described [27,28]. The presence of
high-molecular DNA was verified by gel electrophoresis.

Library preparation and pyrosequencing
The samples were amplified and sequenced according to the HMP 454 16S Protocol Version
4.20 [29]. Briefly, PCR amplification targeting the V3–V5 region of 16S rDNA was individually
performed by using fusion primers composed of FLX Titanium adapters (A: 5’-CCATCTCAT
CCCTGCGTGTCTCCGACTCAG-3’ and B: 5’-CCTATCCCCTGTGTGCCTTGGCAGTCTCAG-
3’), a unique-10 base pairs sequence (barcode) and universal primers (338F: ACTCCTACGGG
AGGCAGCAG and 907R: CCGTCAATTCMTTTGAGTTT). Following the PCR, amplicons were
purified using the AMPure beads (Beckman Coulter). Subsequent sequencing on the 454 plat-
form (Roche Applied Science, Basel, Switzerland) was performed according to manufacturer’s
recommendations [29]. The sequence data are deposited at the EMBL Nucleotide Sequence
Database (Accession number ERP010886).

Table 1. Pre-defined HLA genotype groups.

Group Name Definition in the present study N

I AH8.1 homozygotes Homozygosity for both HLA-B*08 and HLA-DRB1*03 34

II AH8.1 heterozygotes 1 copy of HLA-B*08 and HLA-DRB1*03 38

III Non AH8.1 heterozygotes Neither HLA-B*08 nor HLA-DRB1*03 present 30

IV Non AH8.1 DRB1 homozygotes Homozygosity for other HLA-DRB1 haplotypes than HLA-DRB1*03, irrespective of HLA-B genotype 15

AH8.1: Ancestral haplotype 8.1

doi:10.1371/journal.pone.0133804.t001
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Data processing and taxonomic assignment of effective reads
The following steps were applied to the raw sequences by using mothur (v1.25) [30]: All
sequences were assigned to corresponding samples by allowing 1 mismatch to the barcode and
2 mismatches to the reverse primer (907R). After denoising using the PyroNoise algorithm
[31], sequences with an ambiguous base call, a homopolymer>8 nucleotides, or length<200
or>1000 nucleotides were removed. After removing the barcode and primers portions from
reads, sequences were then aligned using a NAST-based sequence aligner to a custom reference
based on the SILVA alignment (v102). Sequences which did not align to the anticipated region
of the reference alignment were removed. The rest were pre-clustered by merging sequence
counts that were no more than 2 nucleotides different from a more abundant sequence. Chime-
ric sequences identified using UCHIME algorithm were then removed [32]. Sequences were
classified using a Bayesian classifier with RDP database (v7). Definition of a sequence’s taxon-
omy was determined using a pseudobootstrap threshold of 80%. Sequences that classified as
"Cyanobacteria_Chloroplast", "Mitochondria", or "unknown" (i.e., sequences that could not be
classified at the kingdom level) were removed. The remaining sequences were clustered into
operational taxonomic units (OTUs) at a 3% distance cutoff using the average neighbor-clus-
tering algorithm. All OTUs were broadly categorized as either gram positive or gram negative
according to known phylum characteristics.

Statistical analyses
Alpha diversity, beta diversity, OTU heatmap, principal coordinate analysis (PCoA) and sam-
ples’ hierarchical clustering were all performed using QIIME (v1.5), an integrated software
package for microbial community analysis [33]. Enterotype analysis was performed as
described by Arumugam et al. [34] and Qin et al. [35]. Differences in alpha diversity and rela-
tive abundances of individual genera between groups were tested using nonparametric statistics
(Wilcoxon Rank Sum Test). False Discovery Rate (FDR) was calculated according to Benja-
mini-Hochberg to evaluate the reliability of test results. Multivariate linear regressions were
performed including all covariates and using arcsine square root transformed relative bacterial
abundances as dependent variables, as performed in the Human Microbiome Project [36].

Results

Study population
The characteristics of the study population are shown in Table 2. There were no significant dif-
ferences between the four pre-defined HLA genotype groups with respect to age, gender, body
mass index, smoking status, household animals and drug use. Oral drug use was reported by
n = 41 (35%). The most common drugs were anti-histamines and drugs reducing blood pres-
sure and serum lipids. Very few reported special diets (n = 7, including low carbohydrate, little
or no gluten and low calorie diets).

Diversity measures were similar in all HLA genotype groups
The 117 samples were sequenced in two individual 454 runs, providing in total 1,903,524 raw
reads, i.e. median 12,895 reads per sample. After quality control and OTU picking the median
number of effective reads per sample was 6,392 (range 4,287 to 23,100). For the assessment of
the influence of the AH8.1 haplotype on the microbiota composition, we first assessed the
main question, i.e. comparing the microbiota profile of AH8.1 carriers vs. non-carriers.

There were no differences regarding alpha diversity, i.e. diversity within each individual,
between AH8.1 carriers and non-carriers, irrespective of alpha diversity measure applied (see
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Fig 1 for phylogenetic diversity, other measures not shown). Analyzing the beta diversity, i.e.
diversity between individuals within the groups, there were no signs of clustering of the differ-
ent HLA genotype groups in a principal coordinate plot (Fig 2). It has been proposed that the
gut microbiota can be categorized in three main enterotypes [34,37]. Fig 3 illustrates the strati-
fication of the samples into three fractions, according to the methods described by Arumugam
and Raes et al. [34], showing groups characterized by Prevotella, Bacteroides and a third group
with a more mixed composition. However, there was no association between the assigned
“enterotypes” and HLA genotype (Fig 3).

Several taxa associated with HLA genotype
The OTU distribution showed large inter-individual variation both when dividing the individ-
uals into HLA genotype groups according to AH8.1 carrier status or the four pre-defined HLA
genotype groups (Fig 4). When comparing AH8.1 carriers with non-carriers, no differences
were detected at phylum level, while the abundance of the Prevotellaceae family (P = 0.02) and
the Coprococcus (P = 0.01), Enterorhabdus (P = 0.03) and Clostridium XVIII (P = 0.05) genera
were reduced in AH8.1 carriers (Table 3). The FDR values of these associations were high
(>0.5). There was no difference in the prevalence of gram positive or negative bacteria (data
not shown).

When comparing only AH8.1 homozygotes with non-carriers, the genera Anaeroplasma
(P = 0.03) and Pseudoflavinoflactor (P = 0.03) were reduced in AH8.1 homozygotes. Since an
heterozygote advantage has been observed in the HLA complex in some inflammatory diseases
[38], we also assessed the phenotype of HLA-DRB1 homozygosity in general (merging the
AH8.1 homozygote and other DRB1 homozygote groups) vs. HLA-DRB1 heterozygosity,
Anaeroplasma (P = 0.05) and Clostridium XI (P = 0.01) were significantly less abundant in the
homozygotes. The FDR values were high (>0.5) for both analyses.

Potentially confounding parameters
Although possible confounding variables were evenly distributed (Table 2), we also investi-
gated the effect of these variables. There were significant negative correlations between body

Table 2. Characteristics of the study population according to HLA genotypea.

AH8.1 homozygotes
(n = 34)

AH8.1 heterozygotes
(n = 38)

Non AH8.1 heterozygotes
(n = 30)

Non AH8.1 DRB1
homozygotes (n = 15)

Gender = female, n (%) 19 (56) 21 (55) 17 (57) 6 (40)

Age (years), median (range) 50 (36–59) 49 (33–61) 51 (37–61) 52 (36–55)

Body-mass index, median
(range)

27 (20–41) 26 (21–39) 25 (19–35) 27 (18–34)

Current smoker, n (%) 4 (12) 6 (16) 7 (23) 1 (7)

Domestic animals, n (%) 13 (38) 15 (40) 14 (47) 7 (47)

Transport timeb (days), median
(range)

1.2 (0.4–2.9) 1.5 (0.7–2.9) 1.1 (0.7–2.0) 1.0 (0.6–2.1)

Antibiotics last 4 weeks None None None None

Ongoing oral medication, n (%) 7 (47) 11 (29) 12 (40) 11 (32)

aFour different groups were included to represent homozygosity and heterozygosity for the AH8.1 haplotype (as defined by the presence of HLA-B*0801

and DRB1*0301), absence of this haplotype as well as homozygosity for other DRB1 haplotypes. There were no significant differences (all p>0.23) for

any of the parameters when applying Kruskal-Wallis test for continuous and 2x4 chi square test for categorical parameters.
bTransport time as defined by time from sampling to the freezer.

doi:10.1371/journal.pone.0133804.t002
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mass index and multiple alpha diversity measures; phylogenetic diversity (Spearman rank cor-
relation coefficient [CC) -0.25, P = 0.006), chao1 (CC -0.25, P = 0.007) and observed species
(CC -0.24, P = 0.009). There were also significant associations between the use of any oral drug
and all alpha diversity measures (S1 Fig), while there were no significant associations between
alpha diversity measures and age (Spearman rank CCs ranging -0.03 to -0.07), gender (CCs
ranging -0.02 to -0.09), current smoking (correlation coefficients ranging -0.02 to 0.01) or the
time samples were stored at room temperature during transport (correlation coefficients rang-
ing -0.02 to 0.03). When re-assessing the association with taxonomic abundances after includ-
ing age, gender, BMI, the use of oral drugs, smoking and time in room temperature as
covariates in a multivariate linear model, significant associations with Coprococcus and Enter-
orhabdus and AH8.1 carrier status were still observed, while the associations with Prevotella-
ceae (P = 0.07) and Clostridium_XVIII (P = 0.12) were no longer significant (Table 3)

Discussion
In this first study of the influence of the autoimmunity-associated HLA haplotype AH8.1 on
the gut microbiota composition, nominally significant associations between the prevalence of
two bacterial taxa and the presence of AH8.1 were observed. However, the overall contribution
of this haplotype to the variation in gut microbiota profile seemed small, suggesting that the
accumulated effects of other factors are more important determinants of the gut microbiota.

There is very limited literature for comparison with the present data. However, a related
hypothesis has been explored in a series of studies from a Spanish group on gut microbiota and

Fig 1. Phylogenetic diversity according to the ancestral HLA haplotype AH8.1 status. Phylogenetic
diversity, an alpha diversity measure of bacterial richness, is shown according to carrier status of the AH8.1
haplotype (left), as well as the pre-defined HLA genotype groups (right, AH8.1 homozygotes, i.e.
homozygosity for both HLA-B*08 and HLA-DRB1*03; AH8.1 heterozygotes, i.e. at least 1 copy of HLA-B*08
and HLA-DRB1*03; Non AH8.1 heterozygotes, i.e. HLA-B*08 and HLA-DRB1*03 both not present. Non
AH8.1 homozygotes, i.e. HLA-DRB1 homozygous but non AH8.1). There were no significant differences
between the groups.

doi:10.1371/journal.pone.0133804.g001
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genetic risk factors for celiac disease [23,39,40]. In their first study [23], there was a higher
prevalence of gram negative bacteria and more Prevotella in children carrying HLA-DQ2 (the
strongest risk factor for celiac disease). In contrast, in the present study there was a reduced
prevalence of the Prevotellaceae family, in which Prevotella is a member, and no difference
related to gram staining properties. There are however, major differences between these stud-
ies, including the large age difference and the use of DNA probes for profiling instead of
sequencing. In addition, while the major genetic determinant in celiac disease, HLA-DQ2, is
present on the AH8.1 haplotype, it can also be present on other haplotypes (e.g.
HLA-B�18-DRB1�03) or be encoded in trans, meaning that the results are not directly transfer-
able. In a later, sequencing-based study from the group targeting the V5-V6 region of the 16S
rRNA gene [40], a higher prevalence of Firmicutes and Proteobacteria was observed in
HLA-DQ2 carriers. This was also not observed in our study. The contrast between these studies
highlight the need for standardization of methods and replication of findings prior to establish-
ing associations in studies of the gut microbiota [41].

The overall differences between the HLA genotype groups observed in this study were
small. Several hypotheses may explain this, including the possibility that the AH8.1 primarily
acts on the host physiology and not the gut microbial content. One possibility is that the pres-
ence of AH8.1 alone is not sufficient to induce an observable effect. Individuals affected by dis-
ease and suffering from a relatively impaired immune system may show more sensitive

Fig 2. Beta diversity according to the ancestral HLA haplotype AH8.1 status. A principal coordinate plot
of the beta diversity measure unweighted unifrac shows all samples colored according to the HLA genotype
groups. There were no significant differences between the groups. Yellow: AH8.1 homozygous, i.e.
homozygosity for both HLA-B*08 and HLA-DRB1*03. Violet: AH8.1 heterozygotes, i.e. at least 1 copy of
HLA-B*08 and HLA-DRB1*03. Turquoise: Non AH8.1 heterozygotes, i.e. HLA-B*08 and HLA-DRB1*03
both not present.Grey: HLA-DRB1 homozygous but non AH8.1.

doi:10.1371/journal.pone.0133804.g002
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Fig 3. Enterotype groups according to ancestral HLA haplotype AH8.1 status. The figure shows the individual samples as colored symbols according to
their HLA genotype groups (see below) distributed according to similarity of their distribution of bacterial genera in a two-dimensional plot according to the
methods by Arumugam et al. [34]. The samples were classified into three fractions, enterotypes, dominated by either Prevotella (blue), Bacteroides (green) or
a mix of bacteria (red), where the colored square indicate the centre of the distribution of the enterotype, the straight lines connect the included samples and
the colored ellipses cover the individuals near the center of gravity for each cluster (1.5σ). Bacterial taxa overrepresented in the corresponding enterotypes
are listed. As evident from the symbol color of the individual dots, the different HLA genotype groups (see below) were not preferentially distributed to one
particular enterotype fraction. Yellow diamonds: AH8.1 homozygotes, i.e. homozygosity for both HLA-B*08 and HLA-DRB1*03. Violet squares: AH8.1
heterozygous, i.e. at least 1 copy of HLA-B*08 and HLA-DRB1*03. Turquoise circles: Non AH8.1 heterozygotes, i.e. HLA-B*08 and HLA-DRB1*03 both not
present.Grey triangles: HLA-DRB1 homozygotes but non AH8.1.

doi:10.1371/journal.pone.0133804.g003
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interaction with gut microbes [10–12], suggesting that patients affected by an AH8.1 associated
disease should be included in later studies. It is also possible that AH8.1 influences the micro-
biota early in life and that this genetic effect has been replaced by environmental influences at
the age of ~50 years as in the present study. There is therefore a strong rationale for similar
analyses in children [23,39,40]. The accessibility of biological material from a healthy popula-
tion was the main reason for analyzing microbiota profile of the stool and not intestinal
mucosa. A spatial distribution of gut microbiota has been shown by detailed analyzes of the
microbiota in the mucosal folds compared with the central lumen [42]. Several

Fig 4. Genus level taxonomic distribution in 117 Norwegian stool samples according to ancestral HLA
haplotype AH8.1 status. (A) The genus abundances sorted according to the relative abundance of
Bacteroides, of n = 72 AH8.1 carriers (left) are shown compared with the n = 45 non-AH8.1 samples (right). In
(B) the genus abundances are shown according to all four pre-defined genotype groups; Left: AH8.1
homozygotes, i.e. homozygosity for both HLA-B*08 and HLA-DRB1*03; Middle left: AH8.1 heterozygotes,
i.e. at least 1 copy of HLA-B*08 and HLA-DRB1*03; Middle right: Non AH8.1 heterozygotes, i.e. HLA-B*08
and HLA-DRB1*03 both not present; Right:HLA-DRB1 homozygous but non AH8.1.

doi:10.1371/journal.pone.0133804.g004
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immunomodulatory bacteria are known to adhere to the mucosa [43,44]. Future studies in
patients need to account for this fact [45].

Power calculations for microbiota studies are not well developed, except for some specific
statistical models [46]. Power calculations are challenging since little is known about the effect
sizes to be expected from the variables under study. Genetic risk factors in polygenic diseases
detected outside the HLA typically have odds ratios of 1.1–1.5 and require thousands of study
participants to be detected. In contrast, disease associations in the HLA complex typically have
odds ratios of 2.0–5.0, suggesting a large influence on the host physiology (and according to
our hypothesis; the gut microbiota) potentially detectable also in healthy individuals, highlight-
ing this genetic region as a good starting point in candidate gene-microbiota interaction stud-
ies. The many possible confounders in gut microbiota studies, exemplified by the confirmation
of an inverse relationship between body-mass index and alpha diversity [47,48], may also
reduce the power in multivariate analyses. Importantly, the main limiting factor regarding the
size of this study was the access to healthy AH8.1 homozygote individuals volunteering to pro-
vide a stool sample, while it is difficult to conclude on the ideal study size based on the present
study. Related to this it should also be noted that to maximize the number of participants this
study only required homozygozity for the segment HLA-B�08-DRB1�03, which has the stron-
gest disease associations [6], and not the entire classically defined AH8.1 which includes e.g.
HLA-A�01. In addition, the grouping of all other HLA haplotypes in one category (which was
necessary due to low frequencies of homozygosity for other haplotypes) could potentially hide
differences between specific haplotypes with diverse influences on the gut microbiota.

Despite the small differences observed between the groups in the present study, these could
be speculated to have an impact on immune function. One example of a possible mechanism is
the Clostridium XVIII genus, which had reduced prevalence in the AH8.1 carriers in the uni-
variate analysis. This genus has been shown to induce T regulatory lymphocytes (Tregs) in
mice [49] and less Clostridium XVIII could be speculated to lead to fewer Tregs and thereby
susceptibility to autoimmunity [50]. Recent data from a large twin study provide strong evi-
dence that the gut microbiota profile is in part heritable, and that the heritable components
may be associated with a disease-related phenotype (obesity) [14]. On a more general level, the
literature therefore provides support for further efforts to delineate which chromosomal
regions contribute to the heritable components of the gut microbiota.

In conclusion, the bacterial genera Coprococcus and Enterorhabdus had nominally signifi-
cant reduced abundance in AH8.1 haplotype carriers compared with non-carriers. However,
the overall contribution of the AH8.1 haplotype to the variation in microbiota profile in the
study population was small. The findings therefore need independent validation and further
exploration, preferably using intestinal biopsies from a larger study panel also including
patients affected by an AH8.1 associated disease.

Table 3. Bacterial taxa associated with being a carrier of the ancestral HLA haplotype AH8.1.

Taxon Abundance in AH8.1 carriers P-value (univariate)a P-value (multivariate)b

Clostridium_XVIII (genus) Reduced 0.05 0.12

Coprococcus (genus) Reduced 0.01 0.002

Enterorhabdus (genus) Reduced 0.03 0.05

Prevotellaceae (family) Reduced 0.02 0.07

aMann-Whitney U test, using non-transformed relative abundances
bLinear regression using square-root arcsine transformed relative abundance as dependent variable and including AH8.1 carrier status, age, gender, BMI,

the use of oral drugs, smoking and time in the model.

doi:10.1371/journal.pone.0133804.t003
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Supporting Information
S1 Fig. Phylogenetic diversity according to the use of oral drugs or not. The figure shows
that individuals not using any drugs have higher phylogenetic diversity than individuals using
any drugs (P = 0.002). The results were similar for other alpha diversity measures (data not
shown).
(TIF)

S1 Table. Overview of included individuals, theirHLA-B andHLA-DRB1 types and geno-
type category.
(XLSX)
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