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A neurotechnological aid 
for semi‑autonomous suction 
in robotic‑assisted surgery
Juan Antonio Barragan1, Jing Yang1, Denny Yu1,2 & Juan P. Wachs1,2*

Adoption of robotic-assisted surgery has steadily increased as it improves the surgeon’s dexterity 
and visualization. Despite these advantages, the success of a robotic procedure is highly dependent 
on the availability of a proficient surgical assistant that can collaborate with the surgeon. With the 
introduction of novel medical devices, the surgeon has taken over some of the surgical assistant’s 
tasks to increase their independence. This, however, has also resulted in surgeons experiencing 
higher levels of cognitive demands that can lead to reduced performance. In this work, we proposed 
a neurotechnology-based semi-autonomous assistant to release the main surgeon of the additional 
cognitive demands of a critical support task: blood suction. To create a more synergistic collaboration 
between the surgeon and the robotic assistant, a real-time cognitive workload assessment system 
based on EEG signals and eye-tracking was introduced. A computational experiment demonstrates 
that cognitive workload can be effectively detected with an 80% accuracy. Then, we show how the 
surgical performance can be improved by using the neurotechnological autonomous assistant as a 
close feedback loop to prevent states of high cognitive demands. Our findings highlight the potential 
of utilizing real-time cognitive workload assessments to improve the collaboration between an 
autonomous algorithm and the surgeon.

In minimally invasive surgery, the introduction of robotic platforms has improved the surgeon dexterity and 
visualization, but it has not reduced the number of surgical staff in the Operating Room (OR)1. As the leading 
surgeon sits in a console separated from the patient, he depends on surgical assistants to perform support tasks 
on the patient side. These support tasks include exchanging the robotic tools, handling sutures and specimens, 
and providing suction and irrigation2. Among the assistants’ responsibilities, blood suction and irrigation tasks 
are critical to maintain a clear surgical field and avoid complications during a procedure often resulting from 
bleeding3.

Effective use of the suction and irrigation tool is a critical skill for a successful Robotic Minimally Invasive 
Surgery (RMIS). In particular, blood suction can facilitate proper hemorrhage control by allowing the surgeon 
to localize the source of bleeding and treat it in a timely manner. Effective bleeding control requires the surgeon 
and the surgical assistant to coordinate their actions during the procedure4. When hemorrhages events in mini-
mally invasive procedures are not properly controlled, the surgeon must undock the robot and switch to open 
surgery5, which can further increase the risk of postoperative complications such as morbidity, infections, and 
subsequent surgeries6.

To increase the surgeon’s independence, teleoperable flexible suction tools, such as the ROSI (Remotely 
Operated Suction Irrigation System), have been developed7,8. These novel devices can be held with the robot’s 
grasper, allowing the surgeon to directly control the suction tool from the console. Paradoxically, having the 
leading surgeon in charge of blood suction leads to additional cognitive demands (since there are other tasks 
that the surgeon is responsible for) that can result in delays and, potentially, medical errors7,9. These additional 
cognitive demands can be particularly detrimental for the less experienced surgeons as they diverge their atten-
tion from the main procedure10.

To alleviate these needs, we propose utilizing NOCAAS, a NeurOtechnology based Cognitive Aware Autono-
mous System, to provide assistance during hemorrhage control situations. Such a framework would help to 
improve performance and reduce the cognitive demands of the medical staff. This system leverages recent Arti-
ficial Intelligence (AI) advancements to segment automatically the endoscopic images and then extract navi-
gational cues necessary for effective suction of blood accumulations. To benchmark our system performance, 
a surgical simulator was developed. This simulator was used to generate mock bleeding events while the user 
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performed a running suture exercise11. In this regard, the autonomous system worked concurrently with the 
user to provide suction on the surgical workspace.

To enhance the human–robot collaboration, the autonomous agent adapts its behavior according to the 
surgeon’s mental state and needs at a precise moment12. In this regard, a cognitive workload detection algorithm 
based on electroencephalogram (EEG) and eye tracking sensors was designed and implemented to improve the 
robot awareness of the surgeon’s mental state. This framework allowed us to estimate the cognitive demands of 
the user in real-time and adapt the autonomous assistant accordingly. Such a neurotechnology based system has 
the potential to reduce the surgeon’s dependence on the surgical assistant by making the robot more responsive 
to the surgeons’ needs. In the cases where the surgeon is performing the suction by himself, our system would 
prevent the prolonged states of high cognitive load that can deteriorate their performance and response to 
unexpected situations13,14.

Two user studies with a first-generation Da Vinci surgical robot validated our approach. This robot was 
controlled by using the open-source hardware and software of the Da Vinci Research Kit (DVRK)15. The first 
study aimed to validate the performance of our cognitive workload detection system. The second study aimed 
to demonstrate that working with NOCAAS can result in better performance and lower cognitive demands on 
the user. To achieve this, we evaluated the user performance in a surgical exercise under two modalities: manu-
ally controlled-suction tool (manual modality) and autonomy controlled-suction tool (autonomous modality). 
In the former, the user changed between the teleoperation of the suction tool and the main instrument arms. In 
the latter, the robotic assistant provided automatic blood suction directly. In both modalities, performance and 
workload metrics were collected to assess the effect of the AI system on task performance and cognitive demands.

Results
Results for this work are divided into two different sections. First, a computational experiment was performed 
to assess the performance of deep learning models to predict mental states from a set of physiological markers. 
In the second experiment, the developed neurotechnology based cognitive workload prediction models were 
used to trigger the assistance of an autonomous suction assistant. The goal of this experiment was to demonstrate 
that an autonomous system can be more effective in its intervention by obtaining real-time information about 
the user’s mental state in RMIS.

To assess the performance of our cognitive workload assessment system, two datasets of physiological signals 
were collected from users performing different training surgical exercises with the DVRK robot. In each dataset, 
the difficulty of the task was increased to elicit mental states of high cognitive workload in the users. In this 
regard, physiological signals were labeled as low cognitive load condition (LCL) or high cognitive load condition 
(HCL). The first dataset included only EEG data from 8 subjects that performed a peg transfer task under two 
teleoperation conditions: normal (LCL) and inverted (HCL). For the second dataset, EEG and eye tracker signals 
were collected from 10 subjects that performed a needle pass exercise on a custom-made bleeding simulator. 
The task performed with no bleeding events was assumed as (LCL) and the bleeding condition as (HCL). These 
categories were chosen as it has been well documented that bleeding complications are a significant surgical 
stressor that affects technical and non-technical skills in less experienced surgeons10. Results from dataset 1 
showed that EEG-only cognitive workload models required longer input signals of at least 80 s to achieve the 
best results. To reduce the sequence length of the signals, eye tracking signals were added to dataset 2. This led to 
accurate prediction models with sequences as short as 25 s long. In terms of prediction models for dataset 1, the 
best prediction accuracies were obtained by using a recurrent architecture based on LSTM cells. For dataset 2, as 
temporal information was not as critical, a feed-forward neural network was adopted which is computationally 
more efficient than the LSTM model.

To assess the effects of NOCAAS in task performance, a user study was conducted with 10 participants. In 
this experiment, the users performed a surgical exercise under two modalities: manual controlled-suction tool 
condition (MS) and autonomy controlled-suction tool (AS). In each condition, objective performance and sub-
jective workload metrics were collected to demonstrate the benefits of our autonomous robotic assistant. The 
objective performance metrics were based on motion statistics (see Methods section) of the robot’s Patient-Side-
Manipulators (PSM).The included supplementary video shows the user and the autonomous system working 
together to perform the simulated task. The DVRK robot has three independent manipulators on the patient 
side (PSMs) which can be controlled via the surgical console; however, only two of the PSMs can be controlled 
simultaneously by the user. In the MS condition the user swapped between the control of the main instruments 
arms (PSM1 and PSM2) and the suction tool control (PSM3) by tapping a pedal in the console. In the AS condi-
tion, the suction tool (PSM3) was controlled by our autonomous system. Every time the user swapped the control 
from the main instrument arms to the suction tool was counted as a tool switching event.

Experiment 1: evaluation of the neurotechnology based real‑time workload assessment sys‑
tem.  Classification accuracy.  Figure 1a,b show the prediction accuracies of proposed models for dataset 1 
and dataset 2 respectively. Additionally, the accuracy was calculated for multiple sequence lengths of physiologi-
cal signals. For workload classification in dataset 1 (EEG-only), we used a recurrent LSTM architecture (referred 
as to “proposed LSTM“). This model was tested against the following baseline models: a convolutional LSTM 
model16 and a feedforward neural network. For dataset 2 (EEG-Eye tracker), we proposed using a Neural Net-
work model. This model was tested against the following baseline models: KNN, random forest, SVM.

Results from dataset 1 can be seen in Fig. 1a. Here it can be seen a positive correlation between the sequence 
length and the classification accuracy. Increasing the sequence length from 10 to 100 s improved the model’s 
prediction accuracy from 68% to 78%. Using EEG spectral features from 5 s windows, a recurrent model based 
on bidirectional LSTM cells was proposed to predict the user’s mental state. Compared to the convolutional 
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LSTM and the neural network, the proposed model obtained the highest prediction accuracies at every sequence 
length (see Table 1a). The best classification accuracy of our model was 78% at a sequence length of 170 s. These 
results indicate that EEG signals are strong predictors of the user’s mental state.

Results from dataset 2 can be seen in Fig. 1b. In this scenario, it was observed that the mean prediction 
accuracy is not as correlated with the input sequence length as in dataset 1. Results from the proposed model 
for this dataset (neural network) showed a 2% increment in the accuracy by increasing the sequence length from 
25 to 75 s. After, 75 s improvements in prediction accuracy are less than 1%. Compared to the tested traditional 
machine learning models, our classifier obtains better performance for every sequence length except 170 s. The 
best classification accuracy of our proposed model is 80.25% with a sequence length of 125 s. Table 1 summarizes 
all the results from the computational experiment.

Physiological analysis of EEG features.  Figure 2 shows the resulting scalp topographical maps of the EEG spec-
tral features from dataset 1. In these plots, only channels having a difference of more than 0.2dB between the 
HCL and LCL conditions were shown. It was observed suppression of Delta activity on channels F7, FC5, and T8 
in the HCL condition. In other words, the delta activity in the aforementioned channels was found to be lower in 
HCL condition compared to the LCL. Theta activity on channels FP1, AF3, AF4, F7, F3, F4, F8, FC5, FC2, FC6, 
T7, C3, C4, T8, CP5 and alpha activity on channels F7, F8, FC5, FC6, T7, C4, T8, CP5, CP6 were found to be 
higher in HCL than in LCL condition. Finally, Beta activity increased on F8, FC6, T8, OZ while it was suppressed 
on FZ, F4, FC2, C3, CZ, CP5, and CP2 on HCL. Overall these results indicate that most of the channels present-
ing significant differences due to cognitive load are in the frontal and temporal lobes of the brain. Moreover, the 
state of high cognitive workload was mainly characterized by an increase of theta and alpha activity.

Discussions.  Results from our computation experiment indicate that EEG spectral features allowed for a 
78% prediction accuracy of the user’s mental workload when using 170 s of data. The amount of data required at 
the input of the model can be reduced to 25 s by including eye tracker features. Taking into account that the OR 
is a fast-changing environment, reducing the amount of data required for robust mental workload estimation 
while maintaining the robustness of the prediction could be a critical requirement for clinical application of this 

Figure 1.   (a) Correlation between accuracy and sequence length in dataset 1. The best performing model is our 
proposed recurrent architecture based on LSTM cells. (b) Correlation between accuracy and sequence length for 
dataset 2. The best performing was a feed-forward neural network.

Table 1.   Accuracy analysis for multiple models and sequence lengths. (a) Accuracy analysis for dataset 1. (b) 
Accuracy analysis for dataset 2. Highest accuracy values are given in bold.
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technology. Lastly, physiological analysis of the EEG spectral features of dataset 1, indicated an increase in the 
theta and alpha oscillations of the EEG signals in the fronto-temporal channels.

Experiment 2: integration of robotic autonomous assistant and cognitive prediction mod‑
ule.  Objective metrics results are presented in Table 2. The mean and standard deviation were calculated for 
each metric to compare between the autonomous (AS) and manual suction modalities (MS). Completion time 
under the AS ( 334± 141 ) was 152 s lower compared to the MS modality ( 486± 210 ). These differences were 
found statistically significant. In terms of collaboration fluency, AS enabled concurrent activity 23% of the time. 
Additionally, AS reduced the PSM1 and PSM2 idle time respectively by 27% and 18%. There were no statistical 
differences in the autonomous assistant (PSM3) idle time. These results imply an increment of the users’ atten-
tion on the main task in the AS. The velocity of the main instruments (PSM1 and PSM2) was found significantly 
higher in the AS modality. The respective velocity increments of PSM1 and PSM2 were 0.26cm/s and 0.17cm/s. 
The PSM3 velocity was not statistically different in both conditions. Finally, no statistically significant differences 
were found in the percentage of the detected blood accumulations. In the AS condition, the users had the option 
to take the control back of the suction tool if required. Nevertheless, very few users utilized this option as seen 
by the tool changing event metric in the AS condition.

Cognitive metrics are given in Table 3. These metrics were divided between the subjective metrics from the 
NASA-TLX17 questionnaires and objective metrics from the cognitive workload sensing framework. Similarly, 
mean and standard deviation were calculated to compare between experimental conditions. All components of 
NASA-TLX were found significantly lower in the AS modality. Additionally, the overall workload score in AS 
( 23± 12 ) was reduced 15 points compared to MS ( 35± 11 ). Both these results indicate, the user experiencing 
lower cognitive demands when working with the autonomous system. The average cognitive index was not found 
statistically different between the two conditions.

Discussions.  Results from experiment 2 indicate the suction assistant allowed faster completion of the sur-
gical task and reduced the perceived cognitive demands compared to the manual teleoperation of the suction 
tool. These results highlight that secondary tasks in RMIS such as blood suction can result in considerably 

Figure 2.   Mean scalp topography plot on the condition of high cognitive load for all the users with baseline 
subtraction. The baseline for all the channels was calculated with the data from the low cognitive state. Red areas 
represent increased oscillation activity in the condition of high cognitive workload while blue areas represent 
inhibition of the spectral activity.

Table 2.   Objective performance metrics results. Statistically significant results ( α = 0.05 ) were highlighted in 
bold.

Type Name

Mean (std), N=10 T-test

Autonomy Manual T-statistic p-value

Time
Clutching time (s) 2.96 (6.51) 14.84 (11.33) − 3.211 p < 0.1

completion time (s) 334.11 (141.61) 486.19 (210.36) − 4.480 p < 0.01

Collaboration

Concurrent activity (%) 0.23 (0.07) 0 (0) 9.907 p < 0.01

Psm1 idle time (%) 0.21 (0.08) 0.48 (0.09) − 9.139 p < 0.001

Psm2 idle time (%) 0.37 (0.15) 0.55 (0.13) − 9.014 p < 0.001

Psm3 idle time (%) 0.7 (0.08) 0.82 (0.05) − 3.047 0.014

Motion

Psm1 velocity (cm/s) 0.98 (0.24) 0.72 (0.2) 4.776 p < 0.001

Psm2 velocity (cm/s) 0.73 (0.17) 0.56 (0.19) 6.853 p < 0.001

Psm3 velocity (cm/s) 0.65 (0.17) 0.37 (0.09) 3.977 p < 0.01

Events
Tool changing events 0.8 (1.23) 11.2 (8.57) − 4.221 p < 0.01

Clutching events 0 (0) 3.7 (2.75) − 4.254 p < 0.01

Blood Percentage blood (%) 0.14 (0.04) 0.13 (0.05) 0.593 0.568
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higher mental demands for the teleoperator of the surgical robot. In this regard, the introduction of autonomous 
technologies into the OR can improve surgical care by allowing the surgeon to focus on the main steps of the 
procedure.

General discussions
In this work, we introduce the design and implementation of an autonomous robotic assistant for the task of 
blood suction in RMIS. Our system used a combination of computer vision architectures to automatically navi-
gate the surgical field to provide assistance to the surgeon who teleoperated the main instrument arms of the 
surgical robot. Additionally, a real-time cognitive workload sensing system was developed to provide the robotic 
assistant with information on the user’s mental state. This information was used to trigger the suction events, 
in moments of high mental demands for the user rather than using visual triggers from endoscopic images. The 
proposed neurotechnology based workload estimation system was based on EEG and eye tracker signals and 
obtained a prediction accuracy of 80% percent. Overall, results indicate that our proposed autonomous algo-
rithms for the blood suction subtask can lead to better performance and lower mental demands.

Real‑time cognitive workload measurements.  Real-time cognitive load assessment from physiologi-
cal signals can improve performance and the learning of surgical skills in RMIS. Nevertheless, many challenges 
still need to be addressed, such as the reduced generalization of the prediction models due to the high variability 
of physiological signals. In this work, we collected two datasets of EEG and eye tracker signals in the context of 
RMIS. In these datasets, different mental demands were elicited by increasing the task difficulty. Using this data, 
we developed two deep learning models for the problem of classifying physiological signals into states of low 
cognitive load (LCL) and high cognitive load (HCL).

For the first dataset, only EEG signals were collected. As a prediction model, we proposed a recurrent neural 
network based on LSTM cells. This model proved suitable for predicting cognitive workload, as EEG signals can 
be converted into a sequence bandpower spectral coefficients that have an appropriate structure for a recurrent 
model. The prediction accuracy of the models was evaluated as the sequence of spectral coefficients increased. 
Additionally, we used a session-to-session evaluation scheme where the training and testing data belonged from 
different sessions. This evaluation allowed us to determine our models’ robustness to the day-to-day variability 
of physiological signals.

In this scenario, the proposed models obtained a mean classification accuracy of 79.2% when using EEG 
segments of over 100 s. Thus implying that the sequence length of spectral coefficients and the accuracy of the 
models’ predictions are positively correlated. In other words, there exists a trade-off between the inference speed 
and the accuracy of the models, since longer sequences of coefficients would result in prediction delays. In this 
regard, the sequence length of the recurrent models can be fine-tuned according to the application. If accurate 
predictions are required, then the sequence length should be increased at the cost of increasing the model’s 
latency. However, in real-time settings, the sequence length can be decreased to reduce prediction delays.

For the second dataset, a combination of EEG features and eye tracker features was collected. In this sce-
nario, we proposed a feed-forward prediction model, as the eye tracker features did not depend on temporal 
information. Our proposed models achieved an accuracy of 80% with a sequence length of over 100 s. The main 
benefit of introducing eye tracker features into the classification of cognitive workload is that the sequence 
length can be reduced to 25 s without compromising the prediction accuracy. Compared to the other baseline 
models (KNN, Random Forest, and SVM), the proposed neural network obtained the best prediction accuracy. 
Overall, results indicate that combining eye tracker and EEG features improves the robustness of the workload 
prediction system in RAS.

To better understand the driving features of the classification models, we created scalp plots from the EEG 
signals of dataset 1. This graphical representation allowed us to localize which channels presented the biggest 
differences between the states of LCL and HCL. Additionally, it allows us to identify specific cognitive functions 
that played a role during the experiment based on cognitive load theory18. First, Delta activity has been linked to 

Table 3.   Nasa-TLX results and measured cognitive workload. Statistically significant results ( α = 0.05 ) 
were highlighted in bold. The NASA-TLX is a 10-point Likert scale questionnaire that divides the workload 
demands into 6 components: effort, frustration, mental demand, performance, physical demand, and temporal 
demand.

Type Component

Mean (std), N=10 T-test

Autonomy Manual t-statistic p-value

Nasa-TLX

Effort 4.25 (2.81) 6.05 (2.44) − 5.125 p < 0.001

Frustration 3.40 (2.09) 5.95 (2.09) − 5.517 p < 0.001

Mental demand 4.30 (2.75) 6.45 (2.20) − 5.018 p < 0.001

Performance 2.65 (2.27) 3.90 (2.61) − 3.926 p < 0.01

Physical Demand 4.55 (2.66) 6.15 (3.10) − 3.320 p < 0.01

Temporal Demand 3.85 (2.33) 6.60 (1.96) − 6.942 p < 0.001

WorkloadScore 23.00 (12.41) 35.10 (11.56) − 6.181 p < 0.001

Workload prediction Cognitive Index 0.527 (0.254) 0.585 (0.230) − 1.666 0.14
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the theory of Attention networks proposed by Corbetta et al.19. This theory states the existence of two different 
and competing attention mechanisms, one dedicated to processing external sensory information and another 
dedicated to internal concentration. Delta activity has been shown to be more active when internal concentration 
is required and suppressed on tasks where sensory information is needed20–22. For our experiment, a suppression 
of Delta activity could imply that the users were highly dependent on the visual feedback during the inverted 
teleoperation condition.

Theta band activity has been associated with increasing use of working memory capacity23. Additionally, Puma 
et al. reported increased theta and alpha activity levels when increasing the number of subtasks in a multitask 
testing environment24. These studies align with the increasing levels of theta and alpha activity found in the 
fronto-temporal channels during the high workload conditions. Overall, these results indicate the effectiveness 
of spectral band power features to discriminate between states of high and low cognitive workload.

Physiological sensing technology will become more common in the OR daily activities, as these sensors 
are integrated into commercial systems. In the case of robotic surgery, integrating physiological sensors in the 
surgical console will enable real-time measurements of physiological signals with very small disruptions on the 
surgeons’ workflow. In this regard, our work serves as significant preparative steps to enable robotic assistance 
to mitigate the effects of cognitive load in surgical performance.

A neurOtechnology based cognitive aware autonomous system (NOCAAS).  For the second 
experiment, the cognitive workload prediction module was used to provide real-time information of the user’s 
mental state to the suction robotic assistant. In other words, the robot actions would only be activated when the 
system detected a state of High Cognitive Load. In this regard, the autonomous assistance, NOCAAS, can be 
viewed as a feedback mechanism to alleviate the surgeon’s cognitive demands during a procedure. A user study 
comparing the cognitive triggered autonomous system against manual teleoperation of the suction tool was 
conducted. Objective surgical performance metrics and cognitive metrics were calculated to validate the benefits 
of our system. In terms of surgical performance, the cognitive autonomy allowed the user to complete the sutur-
ing exercise 162 s faster than manual teleoperation. This result could be attributed to the improvements in the 
collaboration fluency between the robot and the user. On the autonomous modality, the idle time of the main 
instruments was reduced by 32%. This result can also be interpreted as having the user work 32% more time on 
the main procedure when collaborating with the autonomous system. Additionally, it is highlighted that the suc-
tion tool was active the same percentage of time during both conditions (PSM3 idle time showed no statistically 
significant differences). This result suggests that the motions of the suction tool were more efficient when the 
autonomous algorithm oversaw the teleoperation.

In terms of cognitive demands, NASA-TLX scores indicate users felt the surgical exercise was less demanding 
while working with autonomy. These results have two important implications. First, it indicates the importance 
of allowing novice users to fully concentrate on the main surgical exercise to improve surgical performance. 
Second, it highlights the effectiveness of our system in handling bleeding events. On the other hand, the cognitive 
index showed no statistically significant differences between the experimental conditions. This finding could be 
explained by additional challenges created by the autonomous system, such as the occlusion of the surgical view. 
Certain positions inside the cavity resulted in unavoidable occlusions from the suction tool. This most likely 
resulted in some additional mental demands that were not present in the manual teleoperation. This problem 
can be alleviated by providing autonomy with information on the current surgical step performed by the user. 
In this regard, the autonomy can plan suctions in locations where occlusion is unavoidable at better timings.

Overall, the presented solution is a good compromise between full autonomy and complete teleoperation. 
Although our system cannot distinguish the root cause of the cognitive load increase, i.e., whether is bleeding 
or other surgical concerns, experimental results demonstrate that the provided assistance improves task perfor-
mance when triggered by high cognitive loads events.

Methods
In this section, it is described the design and development of both the proposed cognitive workload sensing 
module and the autonomous robotic assistant. Additionally, the protocols to collect the physiological signals 
and the user study to test the autonomous system performance are described.

Neurotechnology based cognitive load assessment module.  Physiological sensors and synchroniza-
tion.  EEG recordings were made with a 32 channel G.Nautilus with active electrodes (Gel-based) from G.tec 
medical engineering GmbH, Austria. The data was recorded at 250Hz. Additionally, a band-pass and notch filter 
were respectively applied between 0.5 and 30hz, and 58hz and 62hz with the proprietary g.NEEDaccess python 
client from G.tec25. All the configuration parameters for the device were chosen based on previous studies with 
the G.Nautilus25,26. The channel AFZ is the device’s ground, and the reference is the right earlobe. The preproc-
essing steps were minimized to allow easy translation to real-time scenarios.

Eye movements were recorded with a Tobii Pro Glasses 2.0 (Tobii Technology AB, Danderyd, Sweden). This 
device has a pair of inner cameras that precisely track the eye movements and the user’s pupil diameter. This 
sensor provided 2D and 3D gaze positions and the pupil diameter of both eyes at a sampling rate of 60Hz. No 
further preprocessing steps were done to the features provided by the sensor. Synchronization and recording of 
the eye tracker and EEG signals were achieved with the LabStreamingLayer (LSL) software27.

EEG frequency features.  Previous studies28–30 have shown that EEG spectral features such as the band power 
coefficients are correlated to the cognitive workload. Therefore, this representation was used to train our recur-
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rent model. Figure 3 illustrates the pipeline to transform EEG signals into a temporal sequence of band power 
feature vectors.

First, EEG signals from each recording were split into non-overlapping epochs of 5 s. Each epoch was repre-
sented as a matrix A(t) with 32 rows, each one corresponding to a channel of the EEG headset, and n columns, 
corresponding to the number of data points in each epoch. Thus, the entry ai,j represents the jth raw sample of 
the ith channel. Then, the power spectral density (PSD) was calculated for every row in matrix A(t) using Welch’s 
method with a sliding window of 4 s. The resulting PSDs were concatenated into a new matrix S(t).

Finally, band power coefficients were calculated from the channels’ PSDs. These are summary statistics that 
indicate the energy contribution of specific frequency bands. Following the brain theory of neural oscillations18 
coefficients from four frequency ranges are extracted: delta band (0.5–4), theta band (4–8Hz), alpha band 
(8–12Hz), and the gamma band (12–30Hz). Additionally, the coefficients were normalized to the [0–1] range 
by dividing the band values by the total energy of the signal. This process resulted in the normalized feature 
vector P(t) of 128 elements (32 channels × 4 coefficients).

For classification with the recurrent model, a sliding window was used to group the feature vectors of consecu-
tive epochs into a matrix G(k) of dimensions (128× L) , where L is the size of the temporal sequence. For the EEG 
and eye tracker workload classification model a single vector of EEG features, H(k) , of size (128× 1) is calculated 
by averaging all the feature vectors from the temporal sequence G(k) . This vector is further reduced by averaging 
the bandpower coefficients across all the channels into a feature vector that only contained 4 coefficients. This 
operation was performed to obtain a similar number of EEG and eye tracker features. The goal of the models 
was to classify the matrix G(k) or H(k) as either low-cognitive (LCL) or high-cognitive (HCL).

EEG scalp topographical maps.  To visually inspect the EEG spectral features, scalp topographical plots for each 
band power coefficient (delta, theta, alpha, beta) were calculated. These plots showed changes in the spectral 
coefficients’ spatial distribution between the (HCL) and (LCL) conditions. In this regard, red regions indicated 
channels whose mean spectral coefficients had higher magnitude in HCL than in LCL condition, blue regions 
indicated channels whose mean spectral coefficients had a lower magnitude in HLC than in LCL, and green 
regions indicated channels where there were no differences between the two conditions. The mean spectral coef-
ficients for each channel were calculated by averaging the extracted features of each trial of each participant. See 
Bashivan et al.16 for more details on how to obtain a 2D activity map from the 3D locations of the EEG electrodes.

Eye tracker features.  The eye tracker provided pupil diameter and 2D gaze position at a sampling rate of 60 Hz. 
First, the raw signals were divided into 15 s epochs to extract 5 features related to workload: (1) average pupil 
diameter ˆPD , (2) number of fixations (NF), (3) average fixation time(F̂T ), (4) scan path length (SSP), and (5) 
nearest neighbor index (NNI). The following metrics were selected since they have been previously related to 
mental workload demands31. Fifteen s was the minimum epoch size to calculate the eye tracker features based 

Figure 3.   Diagram showing how the EEG and eye tracker signals are synchronized for the cognitive load 
detection system.
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on fixations. First, the average left eye pupil diameter ˆPD was calculated for each window using the following 
equation

To calculate the remaining features, the 2D gaze was transformed into a sequence of fixations points. A fixation 
was defined as the period where the gaze is relatively stationary32. Each fixation was associated with a corre-
sponding duration in milliseconds. In this experiment, only fixations of at least 85ms were considered. After 
obtaining the fixations of each window, the total number of fixations (NF) and the average fixation time ( F̂T ) 
were calculated. Then, the scan path length was computed as the total Euclidean distance between consecutive 
fixations with the following equation

where d is the Euclidean distance operator and fi is the ith fixation. Last, the nearest neighbor index was cal-
culated as the ratio of the nearest neighbor distance of fixations d(NN) and the average distance of a randomly 
distributed set of fixations d(ran). The nearest neighbor distance, d(NN), was calculated by applying equation 3 
to the fixations set31. d(ran) was calculated by applying 3 to a randomly generated set of fixations.

Recurrent architecture for EEG classification (Dataset 1).  Classification of spectral feature vectors from the EEG 
was achieved with a compact architecture based on gated recurrent neural networks. This model was selected 
because of its capability to model the long-term dependencies. The architecture consisted of two stages and 
was implemented in the Keras framework33. The first stage consisted of a fully connected layer that reduced 
the dimensionality of the input feature vector P(t) . In the second stage, cognitive feature vectors from multiple 
time steps were combined with two bidirectional Long Short-Term Memory (LSTM) layers34 to predict the final 
workload.

To train the described model, a binary cross-entropy loss function shown in equation 4 was used where Li is 
the label for the ith input sequence, N is the number of training samples, and y(T)i  is the output of the last LSTM 
cell. To optimize the model architecture, a grid search cross-validation of the following hyperparameters was 
conducted: (1) number of LSTM layers, (2) connectivity of the recurrent layers, i.e., unidirectional or bidirec-
tional, and (3) dropout rates. The dropout rate adopted was from 0.5 to 0.45 with step size 1 and the number of 
LSTM layers from 1 to 3 with a step size of 1.

Feed forward model for multi‑sensor classification (dataset 2).  To classify signals from multiple sensors, a feed-
forward neural network was used. The network used only a combination of fully connected layers with Relu 
activation functions, dropout, and batch normalization layers. To train the described model, the binary cross-
entropy function (see equation 4) was used and the Adam35 optimization algorithm. Models were trained for 100 
epochs using a batch size of 10 samples.

To optimize the model architecture, a grid search cross-validation of the following hyper-parameters was 
conducted: dropout rate and the number of hidden layers. The dropout rate from 0.5 to 0.45 was tested with 
step size one and the number of hidden layers from 4 to 8 with a step size of 1.To train, optimize and evaluate 
the proposed models, data from each user was split using a ratio of 60-20-20. The first 60% of the data was used 
to train the architectures, the next 20% to optimize the architectures and the last 20% to test the algorithms.

Robotic module.  Robot description and user teleoperation.  Our autonomous robotic module was deployed 
in a Da Vinci Research Kit Robot (DVRK)15. This robot is composed of 4 teleoperable robotic manipulators: (1) 
three Patient Side Manipulators (PSMs), (2) an Endoscopic Camera Manipulator (ECM). The surgical console of 
this system contains an immersive display that provides a 3D view of the surgical field and master tool manipula-
tors that allow controlling the robotic manipulators on the patient side. For this work, only two out of the three 
teleoperable PSMs were directly controlled by the user while the third one was controlled by the autonomous 
algorithms. This scheme allowed us to evaluate both the performance of the autonomous suction assistant and 
the interaction between the user and the autonomy.

Robot autonomy.  Our autonomous robotic assistant is composed of two modules: (1) a computer vision sys-
tem to automatically segmented blood accumulations in the surgical field and (2) a path planner module that 
transformed the pixel locations of the blood accumulations into spatial coordinates used to create the suction 
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trajectory. The automatic segmentation of blood in the surgical field was performed with a fully convolutional 
network based on the VGG-16 architecture (See Fig. 4). This network allowed to produce real-time segmenta-
tion maps of the blood accumulations, that were used to guide the robotic assistant. For training purposes, we 
collected a dataset of 180 images extracted from endoscopic videos while the robot was teleoperated in our 
surgical simulator. Additionally, two techniques were utilized to prevent overfitting of the models in our dataset. 
First, the backbone’s weights of our FCN model were initialized with the weights of a VGG-16 pre-trained in 
the ImageNet dataset. Second, our dataset was augmented utilizing spatial and color-space data augmentations 
techniques. A more thorough description of the calibration and training of our robotic module can be found in 
previous work36.

On deployment, the robot automatically segmented the endoscopic images with the FCN model and cal-
culated the centroids and areas of all the detected blood blobs. Then, the pixel coordinates to the blob with the 
biggest area are calculated. These target pixel coordinates are then transformed using a homography into spatial 
coordinates for the surgical robot. This homography was calculated during a hand-eye calibration procedure 
performed at the beginning of the experiment. Last, a straight-line trajectory from the current position to the 
calculated target position was calculated and executed by the robot. To avoid collisions between the suction arm 
and teleoperated arms, we opted to provide an AR cue to the operator to let him know the current target of the 
robot, so he can coordinate his movements to avoid collisions. This is a more effective approach given that the sur-
geon hands are constantly moving (See supplementary video). The centroids of the accumulations were selected 
as the target location to maximize the amount of blood that the robot could draw in a single retraction motion.

Experiment 1: evaluation of the neurotechnology based real‑time workload assessment sys‑
tem.  To build the dataset of physiological signals, two user studies were conducted at Purdue University. 
Both studies were approved by the Purdue University Institutional Review Board (IRB) protocol 1906022354. 
All the experiments were performed in accordance with Purdue’s IRB guidelines and regulations. Additionally, 
informed consent was obtained from all the participants prior to the experiment. For dataset 1, a user study with 
8 participants was conducted. Recruited participants were asked to perform the peg transfer task, a crucial part 
of the fundamentals of robotic surgery11.

This peg-transfer task was designed to have two difficulty levels to elicit different states of cognitive load 
in the user. The easy task or less cognitive demanding task was the peg-transfer performed with the normal 
teleoperation mode of the robot. In this condition, the surgeon’s hand and the robotic gripper would move in 
the same direction, e.g., when the surgeon’s hand moves to the right, the robotic gripper moves to the right as 
well. The difficult task introduced a motion reversal effect in the teleoperation of the robot. In this condition, the 
robot’s tooltip moved in the opposite direction from the user’s hand movement, e.g., when the surgeon’s hand 
moves to the right, the robotic tooltip moves to the left (opposite direction). This inversion effect emulated the 
fulcrum motion effect seen in traditional laparoscopic surgery37. This task was inspired by the studies showing 
how mirroring the hand movements of a previously learned task resulted in significant differences in the EEG 
spectral content38.

During each session, the user performed six trials of the peg transfer task, three times in the easy level and 
three times in the difficult level, each one for 5 minutes, accounting for the 30 minutes of EEG data per session. 
Finally, the difficulty level was used to partition the EEG trials into two categorical labels: low cognitive load 
and high cognitive load. Each of the users came for 4 sessions of data collection. Each session happened on a 
different day.

Figure 4.   Proposed fully convolutional network with a VGG-16 backbone. The architecture uses the following 
color coding: (1) green blocks represent convolutional layers, (2) orange blocks represent max-pooling layers, 
(3) blue blocks represent upsampling layers and (4) purple layers represent softmax layers.
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To build dataset 2, a new user was conducted with 10 students at Purdue University. In this study, participants 
were required to teleoperate the DVRK robot to perform a needle pass task39 in our bleeding simulator while 
wearing the EEG and eye tracker sensors. To elicit different workload demands, the task was designed to have 
two different levels of difficulty. In the low workload task, users performed the needle pass exercise with no 
bleeding events. In the high workload task, users completed the task as the cavity filled up with blood. Ground 
truth labels for our dataset were assigned depending on the difficulty of the task. Users performed 10, 3 minutes 
trials, alternating between the difficult task and the easy task. This protocol accounted for 30 minutes per session. 
Each user only performed 1 data collection session.

Experiment 2: integration of robotic autonomous assistant and cognitive prediction mod‑
ule.  To evaluate the integration between the cognitive workload sensing module and autonomous suction 
assistant, a user study was conducted with 8 students. This study was approved by the Purdue University’s 
Review Board under the protocol IRB-2021-22. As in experiment 1, experiments were performed following Pur-
due’s IRB guidelines and regulations, and consent was obtained from all the participants prior to the experiment. 
For this study, the users were asked to come for two sessions occurring on subsequent days. In the first session, 
the users were allowed to practice until they become proficient at teleoperating the robotic platform to perform 
the surgical exercise. For this experiment, the same surgical tasks as in dataset 2 were used. On the second day, 
we asked the users to wear the EEG and eye tracker sensors before starting the experiments. After that, they 
performed the assigned tasks under two different modalities: manually-teleoperated suction action(MS) and 
autonomous-suction action by the robotic assistant (AS). In MS, the users manually teleoperated the suction 
tool to facilitate their task. In AS, the autonomous robotic assistant controlled the suction tool. The underly-
ing hypothesis is that the autonomous suction action (AS) will lead to better performance and lower mental 
demands than the manual teleoperation (MS).

In AS modality, the user was instructed to teleoperated PSM1 and PSM2 while the autonomous algorithms 
controlled the PSM3. In MS, the user had to swap the teleoperation between the main instrument arms and 
the suction tool by pressing the clutch pedal in the console. After completing each task, the user was asked to 
answer a NASA-TLX (National Aeronautics and Space Administration Task Load Index) questionnaire. Dur-
ing the experiment, kinematic data and the endoscopic video were recorded from the robot to assess the user’s 
performance in each modality. Each subject completed the surgical tasks using both modalities (MS and AS). 
Thus, a paired t-test was used to evaluate the differences in performance and workload metrics. P-values below 
0.05 were assumed to be statistically significant in this study.

Evaluation metrics.  To evaluate the autonomous system’s performance, a combination of objective per-
formance and workload metrics were used. The workload metrics included a NASA-TLX score and a workload 
prediction score. The objective performance metrics included kinematic, video information, and collaboration 
fluency metrics. These metrics are time, collaboration fluency, motion, system events, and blood metrics. Col-
laboration fluency refers to the capability of a human and robot to work as a team proficiently towards a common 
goal40. In this regard, we used the following metrics. (1) Human idle time, measured by the idle time associated 
with the use of the main instrument arms (PSM1 and PSM2). (2) Robot idle time, measured as the percentage 
of time that the autonomous assistant (PSM3) was idle. (3) Concurrent activity, measured as the percentage of 
time that both the autonomy and human were simultaneously active. Low human and robot idle time and high 
concurrent activity time are indicators of effective human–robot collaboration. Blood metrics were calculated 
as the average number of pixels corresponding to blood regions, which is a proxy for the volume of blood accu-
mulated, assuming a constant depth. This calculation was accomplished by running our semantic segmentation 
algorithm on the recorded videos of each user.

Data availibility
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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