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Abstract

It is well known that the outcome of an intervention is affected both by the inherent effects of the intervention and the
patient’s expectations. For this reason in comparative clinical trials an effort is made to conceal the nature of the
administered intervention from the participants in the trial i.e. to blind the trial. Yet, in practice perfect blinding is impossible
to ensure or even verify post hoc. The current clinical standard is to follow up the trial with an auxiliary questionnaire, which
allows trial participants to express in closed form their belief concerning the intervention, i.e. trial group assignment
(treatment or control). Auxiliary questionnaire responses are then used to compute the extent of blinding in the trial in the
form of a blinding index. If the estimated extent of blinding exceeds a particular threshold the trial is deemed sufficiently
blinded; otherwise, the strength of evidence of the trial is brought into question. This may necessitate that the trial is
repeated. In this paper we make several contributions. Firstly, we identify a series of problems of the aforesaid clinical
practice and discuss them in context of the most commonly used blinding indexes. Secondly, we formulate a novel
approach for handling imperfectly blinded trials. We adopt a feedback questionnaire of the same form as that which is
currently in use, but interpret the collected data using a novel statistical method, significantly different from that proposed
in the previous work. Unlike the previously proposed approaches, our method is void of any ad hoc free parameters and
robust to small changes in the participants’ feedback responses. Our method also does not discard any data and is not
predicated on any strong assumptions used to interpret participants’ feedback. The key idea behind the present method is
that it is meaningful to compare only the corresponding treatment and control participant sub-groups, that is, sub-groups
matched by their auxiliary responses. A series of experiments on simulated trials is used to demonstrate the effectiveness of
the proposed approach and its superiority over those currently in use.
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Introduction

Ultimately, the main aim in a clinical trial is straightforward: it

is to examine and quantify the effectiveness of a treatment of

interest. Effectiveness is evaluated relative to the effectiveness of a

particular reference, the so-called control intervention. The form

that the control intervention takes is dependent on the nature of

the treatment which is studied. Since the goal of any newly

proposed treatment is to better those which are already available

and practiced, the common standard is to make the comparison

with the current best alternative. In some instances this may be no

active intervention at all.

Controlling and Blinding Trials
To ensure that the aforementioned comparison is meaningful, it

is of essential importance to ensure that any factors not inherently

associated with the two interventions (treatment a‘nd control) are

normalized (controlled) between the two groups. This ensures that

the observed differential outcome truly is the effect of differing

interventions rather than any orthogonal, confounding variables.

A related challenge is that of blinding (or masking). Blinding

refers to the concealment of the type of administered intervention

from the individuals/patients participating in a trial and its aim is

to eliminate differential placebo effect between groups [1–3].

Although conceptually simple, the problem of blinding poses

difficult challenges in a practical clinical setup. We highlight two

specific challenges which most strongly motivate the work of the

present paper. The first of these stems from the difficulty of

ensuring that absolute blinding with respect to a particular trial

variable is achieved. The second challenge arises as a consequence

of the fact that blinding can only be attempted with respect to

those variables of the trial which have been identified as revealing

of the treatment administered. Put differently, it is always possible

that a particular variable which can reveal the nature of the

treatment to a trial participant is not identified by the trial

designers and thus that no blinding with respect to it is attempted

or achieved. This is a ubiquitous problem, present in every

controlled trial, and one which can severely affect the trial’s

outcome.

Assessing Blinding
Given that it is both practically and in principle impossible to

ensure perfect blinding, the practice of assessing the level of

blinding after the commencement of a trial has been gaining

popularity and general acceptance by the clinical community

[4,5]. The key idea is to use a statistical model and the

participants’ responses to a generic questionnaire to quantify the
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participants’ knowledge about the administered intervention.

While the statistical model used to this end has been a source of

disagreement between researchers, as discussed in detail in the

‘‘Previous Work’’ section, the general approach is shared by

different methods described in the literature. In this paper we

argue that this common approach suffers from several important

limitations:

(i) it necessitates the inclusion of ad hoc free parameters in the

underlying statistical model,

(ii) the assumptions underlying the interpretation of the

auxiliary questionnaire responses are not universally

upheld,

(iii) the blinding assessment can be highly sensitive to small

changes in the participants’ questionnaire responses, and

(iv) it leads to a sequential separation of inference concerning

the extent of trial blindness and the assessment of

differential effectiveness of the treatment.

Motivated by these key limitations of previous work, in the

present work we propose a novel statistical framework and use it to

derive an original method for integrated trial assessment which is

experimentally shown to produce more meaningful and more

clearly interpretable data. One of the key ideas behind the present

method is that it is meaningful to compare only the corresponding

treatment and control participant sub-groups, that is, sub-groups

matched by their auxiliary responses. The inference of the

differential effect of treatment is then achieved through Bayesian

analysis.

Paper Organization
The remainder of this paper is organized as follows. In the next

section we describe the design of auxiliary data collection and

review the most influential methods in the literature which use this

data to assess participants’ blindness in a trial. The main

limitations of previous work are discussed in detail in this section

as well. The proposed methodology, the conceptual idea behind it

and the key mathematical formulae, are introduced subsequently.

This is followed by a series of experiments which are used to

illustrate systematically the advantages of our method. Finally, a

further discussion of experimental results and the accepted clinical

practices is presented before the manuscript is concluded with a

summary of our main contributions and the possible avenues for

further work.

Previous Work

In this section we describe the general methodology of auxiliary

data collection, the two most influential statistical models which

use the aforesaid data to quantify the extent of blinding in a trial,

and discuss the key limitations of the existing approaches which

motivate the work described in the present paper.

Method 1: James’s Blinding Index
At the heart of the so-called blinding index proposed by James et

al. [6] is the observation that the effect of a particular intervention

is affected by the participant’s perception of the effectiveness of the

intervention the participant believes was administered. For

example, a control group member who incorrectly believes to be

a member of the treatment group may indeed experience positive

effects expected from the studied treatment. The is the well-known

and extensively studied placebo effect [7,8]. Similarly, a treatment

group member who incorrectly believes to be a member of the

control group may experience treatment effects less pronounced

than in the case of the correct assignment guess, or indeed than in

the case of absence of a belief either way.

Design of Auxiliary Data Collection. James et al. propose

the use of a post-trial questionnaire (the contentious issue of the

timing of the questionnaire is discussed in the ‘‘Interpretation of

Participants’ Feedback’’ section) to assess the level of blinding in

the trial. Following the trial, in its basic form the questionnaire asks

the trial participants to state if they believe that they were assigned

to:

(i) the control group,

(ii) the treatment group, or

(iii) if they are uncertain of their membership (the ‘‘don’t know’’

response).

Extensions of this scheme which attempt to harness more

detailed information have also been used, for example allowing the

participants to quantify the conviction of their belief as ‘‘weak’’ or

‘‘strong’’. In that case, the questionnaire would offer five choices:

(i) strong conviction of belonging to the control group,

(ii) weak conviction of belonging to the control group,

(iii) strong conviction of belonging to the treatment group,

(iv) weak conviction of belonging to the treatment group,

(v) uncertain membership (the ‘‘don’t know’’ response).

More granular auxiliary data choices have the potential of

providing a more accurate picture of the extent of blinding.

However, depending on the statistical model used, this advantage

may come at the cost of reduced statistical significance for each of

the response sub-groups (see the ‘‘Methods’’ section).

Quantifying the Extent of Blinding. For the sake of clarity

of presentation, we use the same mathematical notation through-

out the paper. The key symbols and their meanings are

summarized for the benefit of the reader in Table 1.

The existing work on the assessment of blinding in trials uses the

collected auxiliary responses to calculate a statistic referred to as

the blinding index. For a 3-tier auxiliary questionnaire, James et al.

[6] define their blinding index r1 as:

r1~
1

2
½1zP0z(1{P0):D � ð1Þ

It can attain values in the interval ½0,1�, higher values denoting

increasing levels of blindness. Thus r1~1 indicates perfect

blinding and r1~0 an unblinded trial. It can be seen that r1 in

Equation 1 comprises two non-constant terms. The first of these is

the estimate P0 of the probability of the ‘‘don’t know’’ response.

From the collected questionnaire responses, P0 can be computed

as follows:

P0~
n0

n{zn0znz

~
n0

n
ð2Þ

where n is the total number of participants in the trial, and n{, n0

and nz respectively the numbers of participants who believe that

they were assigned to the control group, those who were uncertain

of their assignment and those who believe that they were assigned

to the treatment group. As the value of P0 is increased so is its

contribution to the blinding index through the first term in

Equation (1). This fits the intuition that in a perfectly blinded trial

participants should be entirely ignorant of the group they were

assigned to, that is to say, of the intervention they were

administered.

Interpreting Controlled Clinical Trials
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The second term contributing to the blinding index is

proportional to the statistic D which takes into account the

distribution of participants who do have a positive or negative

belief regarding their assignment, that is, who believe to belong to

either the control or the treatment group. James et al. define D as:

D~
X

a[fP,Tg

X
g[fz,{g

vag

Pag(1{P0){Pg(Pa{Pa0)

(1{P0)2
ð3Þ

In Equation (3), the constants vag are weighting coefficients. In

this expression their effect is to scale relative contributions of the

correct and incorrect group assignment guesses. To gain intuitive

insight into the nature of the D statistic, consider the plot shown in

Figure 1(a). From the plot, it is readily apparent that r1 is a

concave function which attains its maximal value of 1:0 when (i) all

participants are uncertain of their assignment (i.e. P0~1) or (ii)

when all participants have an incorrect belief regarding their

assignment (i.e. PTz~PC{~0). Expressed formally:

r1~1uP0~1 _ PTz~PC{~0 ð4Þ

In comparison with the case of P0~1 the attainment of the

maximal value r1~1 for PTz~PC{~0 is more questionable.

While it is tempting to reason that blinding must have been

successful since no participant correctly guessed their assignment,

it would be erroneous to do so. In particular, the consistency of the

wrong belief amongst trial participants actually reveals unblinding,

but with the participants’ incorrect association of the unblinded

factor with the corresponding group assignment. For example, the

treatment may cause perceivable side effects (thus unblinding the

participants) and the worsening of the condition of the treatment

group participants. This observation could incorrectly lead them

to the conclusion that they were assigned to the control group.

This problem was also discussed by Bang et al. [9].

Method 2: Bang’s Blinding Index
As explained in the discussion of the previous section, the

blinding index of James et al. places a lot of value on those

participants who plead ignorance regarding their assignment

status. Bang et al. see this as a limitation [9]. Specifically, it can be

argued that the non-decisive, ‘‘don’t know’’ response may not

express a true lack of knowledge by the corresponding partici-

pants, but rather that it is a conservative response, an answer born

out of the participants’ desire to appear balanced in their

judgement. Thus, Bang et al. propose an alternative statistic which

instead most heavily weights the contribution of decisive responses. In

addition, because decisive responses can be in either the positive or

the negative direction (i.e. belief in treatment or control

intervention), Bang’s blinding index is asymmetrical and can be

applied separately to treatment and control groups. For a 3-tier

auxiliary questionnaire, in its simplest form the index for the

treatment group is defined as:

r’
2~ 2

PC{

PC{zPT{

{1

� �
: PT{zPTzP

g[{,0,z PTg

ð5Þ

and similarly for the control group:

r
0
2~ 2

PC{

PC{zPT{

{1

� �
: PC{zPCzP

g[{,0,z PCg

ð6Þ

The general form of this index, which applies weighting to

different responses in a manner similar to James et al. can be found

in the original paper [9].

The behaviour of this index can be seen in Figure 1(b) which

plots it against the proportions of indecisive responses and correct

guesses. It is readily apparent that the plot has a form very

different from that in Figure 1(a) showing the corresponding

variation of r1. Firstly, note that unlike r1, the range of values for

r2 is ½{0:5,0:5�. The value of r2~0 indicates perfect blinding,

r2~0:5 an unblinded trial and r2~{0:5 an unblinded trial with

incorrect assignment association, as discussed previously.

As the plot shows, this index achieves its perfect blinding value

only when P0~1. Unlike r1, the case when PTz~PC{~0 does

not necessarily result in perfect blinding. Also, PTz~PC{~1
and P0~0 deems the trial unblinded, as does PTz~PC{~0 and

P0~0 but with the incorrect assignment association. Contrast this

with the corresponding value of r1.

Limitations of the Current Best Standards

In the preceding sections we described the two statistics,

blinding indexes, most widely used in practice to assess the level of

blinding in controlled clinical trials. To highlight and motivate the

contribution of the present work, we now analyze both the

inherent and practical limitations of the aforesaid methodologies.

Adjustment of Free Parameters
One of the most obvious difficulties encountered when applying

either of the described blinding indexes concerns the need to

Table 1. Notational convention for mathematical symbols adopted in this paper.

Symbol Description

a subscript modifier specifying group assignment; a[fC,Tg: a~C signifies control
group assignment and a~T signifies treatment group assignment

g subscript modifier specifying membership belief; g[f{,0,zg: g~{ signifies belief
in control group membership, g~0 signifies uncertainty and g~z signifies belief
in treatment group membership

Pag proportion of participants who were assigned to the group a and who believe their
membership to be g

Pa proportion of participants who were assigned assigned to the group a

Pg proportion of participants who believe their group membership to be g

height 4

doi:10.1371/journal.pone.0048984.t001
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choose appropriate values for the free parameters in Equation (3),

and Equations (5) and (6) in their general form. These are the

weighting constants wag. Recall that their purpose is to scale the

relative contributions of different responses. For example, James et

al. propose the ratio of 0:5 : 1 or 0:75 : 1 of weights corresponding

to, respectively, incorrect assignment guesses and ‘‘don’t know’’

responses. Equally, if a questionnaire with more than 3 choices is

used, the contribution of the participant’s response is scaled

according to the corresponding level of conviction expressed.

Thus, qualitatively speaking, a response indicating a weak belief in,

say, control group assignment, could be interpreted to fall

somewhere between a ‘‘don’t know’’ response and a strong belief

in control group assignment.

Although not without an intuitive appeal, a thorough analysis of

this ad hoc approach reveals a series of problems, both inherent and

practical. Firstly, there is no objective underlying mechanism

which would explain why the contributions of different responses

should be combined linearly at all. What is more, even if linear

combination is adopted, it is inherently the case that there is no

principled method of choosing the values of the weighting

constants – the lack of observable ‘‘ground truth’’ means that it

is not possible to objectively compare the quality of different

predictions. The last subtle point but of pervasive practical

importance, is that the values of ‘‘best’’ weighting constant ratios

are likely to differ from trial to trial, that is, depending on the

nature of the administered treatment and the implementation of

the control intervention.

All of the aforestated difficulties encountered in the choice of the

free parameters necessary to compute the two blinding indexes

become even more obvious, practically significant and complex as

the questionnaire becomes more detailed (for example by using a

9-tier feedback or by asking the participants to rate the confidence

of their response on a scale of 1 to 10, say). Consequently and

contrary to what ought to be the case, having better, more detailed

feedback data can actually result in a worse assessment of blinding

due to inappropriate free parameter choices.

Interpretation of Participants’ Feedback
It is important to highlight that both the index of James et al. as

well as that of Bang et al. use the same type of feedback data

collected from the trial participants – the participants’ stated belief

regarding their trial group assignment and the degree of

confidence in this belief. Where the two approaches differ in is

the interpretation of the participants’ answers.

James et al. interpret the non-decisive, ‘‘don’t know’’ response as

indicative of true lack of knowledge regarding the nature of the

intervention (treatment or control). If the trial participants are

ignorant of their group assignment, it is assumed that they have

indeed been blinded. Consequently, the index of James et al. most

heavily relies on the proportion of the non-decisive participants.

However, as Bang et al. point out, the ‘‘don’t know’’ response may

not truly represent lack of knowledge. Instead, this response may

be seen as a conservative one, reflecting the participants’ desire to

appear balanced in their judgement or indeed the response that

the participants believe would please the trial administration staff

the most. Thus, Bang’s blinding index mostly relies on the

responses of those trial participants who did express belief

regarding their group assignment. Blindness is measured by

comparing the observed statistics of decisive responses with those

expected from an ideal, fully blinded trial. However, this

interpretation of participants’ responses is readily criticized too.

As Hemiliä amongst others notes, because the participants’

feedback is usually collected post hoc i.e. after the trial, it is possible

that even a perfectly blinded subject, who thus did not experience

the placebo effect, becomes aware of the correct assignment by

virtue of observing the effects (or lack thereof) of the assigned

intervention [10]. Considering the same issue, Henneicke-von

Zepelin [11] suggested that auxiliary data should be collected

before or shortly after the commencement of a trial. However, this

is in most cases unsatisfactory as the participants would not have

yet been exposed to any unblinded aspects of the trial. As we

demonstrate in the next section, the approach proposed in this

paper avoids this problem.

Sensitivity to Small Input Differences
Both James et al. and Bang et al. establish the level of blindness in

a trial by computing a statistic, the blinding index, and then

comparing it with a predefined threshold. For example, if r1 is

smaller than the threshold value, the trial is considered insuffi-

ciently well blinded; if the blinding index exceeds the threshold,

the trial is considered sufficiently well blinded. The value of r2 is

interpreted in the same way, with the difference that thresholding

Figure 1. Plot showing the dependency of the blinding indexes (a) r1 proposed by James et al. [6] and (b) r’
2 proposed by Bang et al.

[9] on the proportions of ‘‘don’t know’’ responses P0, and the correct assignment guesses PTz and PC{. Note that although PTz and
PC{ are independent variables, due to their symmetric contributions and for the purpose of easier visualization, in this plot it was taken that PTz

and PC{ were always equal (making the plot readily representable in 3D instead of 4D).
doi:10.1371/journal.pone.0048984.g001
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is done in the opposite direction and on the absolute value of the

index.

This hard thresholding whereby a trial is considered either

sufficiently well blinded or not means that in some instances the

outcome of the blinding assessment can exhibit high sensitivity to

small differences in participants’ responses. The response of a

single individual can change the assessment outcome. Yet, such

binarization in some form is necessitated by the nature of the

blinding indexes because neither of the two described statistics has

a clear practical interpretation in the clinical context.

The task of choosing the value of the aforesaid threshold suffers

from much the same problems as the task of selecting the values of

the weighting constants, discussed in the ‘‘Adjustment of Free

Parameters’’ section – inherently, there is no objective and

meaningful way of defining the optimal threshold value, and the

value actually selected by the practitioner is likely to vary from trial

to trial.

Inference Atomization
The problem of high sensitivity to small input differences

considered previously is but one of the consequences of the inference

atomization. To clarify the issue at hand, consider the diagram in

Figure 2. This diagram summarizes the process of trial data

interpretation, placing the assessment of blinding in the overall

clinical context. Specifically, observe that the analysis of the trial

outcome data is separated from the blinding assessment. If the

blinding index falls short of the predetermined threshold,

regardless of by how much, the strength of evidence of data is

brought into question and the trial may need to be repeated. On

the other hand, if the blinding index exceeds the threshold, the

analysis of data is performed in the same manner regardless of the

actual value of the index, that is, regardless of whether it is just

above the threshold or if it indicates perfect blinding.

The variety of problems that emerges from the atomization of

different statistical aspects of a trial is inherently rooted in the very

nature of the framework adopted by James et al. and Bang James et

al. alike. As stated earlier, neither of the two indexes has a clear

practical interpretation in the clinical context. For example,

neither tells the clinician the probability that a particular portion

of the participants were unblinded, nor the probability of a

particular level of unblinding. Instead, from the point of view of a

clinician, the blinding index behaves like a black box which deems

the trial well blinded or not, with little additional insight.

Methods

Having analyzed the limitations of the current clinical practices

used to assess blinding, we now turn our attention to the most

important contribution of this paper – a principled method for

inference from collected trial data. We first introduce a statistical

model underlying our approach, followed by the key results. For

clarity, the full mathematical derivation of all the results is

included in Appendix.

Study Design and Outcome Model
As we demonstrated in the previous section, many of the

problems of the approaches proposed by James et al. and Bang et

al. inherently stem from the underlying statistical model. Although

our approach uses the same type of participants’ feedback data,

our statistical model differs significantly from that employed in

previous works.

In the general case, the effectiveness of a particular intervention

in a trial participant depends on the inherent effects of the

intervention, as well as the participant’s expectations (conscious or

not). Thus, in the interpretation of trial results, we separately

consider each population of participants which share the same

combination of the type of intervention and the expressed belief

regarding this group assignment. For example, when a 3-tier

questionnaire is used in a trial comparing the administration of the

treatment of interest and control, we recognize 3|2~6 sub-

groups:

(i) participants of the control group who believe they were

assigned to the control group (subgroup GC{),

(ii) participants of the control group who are unsure of their

group assignment (subgroup GC0),

(iii) participants of the control group who believe they were

assigned to the treatment group (subgroup GCz),

(iv) participants of the treatment group who believe they were

assigned to the control group (subgroup GT{),

(v) participants of the treatment group who are unsure of their

group assignment (subgroup GT0), and

Figure 2. The current clinical practice separates the task of assessing the degree of blinding in a trial from the comparative analysis
of the effectiveness of different interventions studied. The effectiveness of the treatment of interest is only analyzed if the trial is first deemed
to have been sufficiently blinded. In contrast, the proposed methodology concurrently employs all available information. By doing this, our approach
is able to deal with the entire continuum of different levels of blinding, never discarding information.
doi:10.1371/journal.pone.0048984.g002
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(vi) participants of the treatment group who believe they were

assigned to the treatment group (subgroup GTz).

This is conceptually illustrated in Figure 3. In the general case,

for an N-tier questionnaire and M different intervention types, we

can distinguish between N|M distinct sub-groups of participants.

A key idea of the proposed method is that because the outcome

of an intervention depends on both the inherent effects of the

intervention and the participants’ expectations, the effectiveness

should be inferred in a like-for-like fashion. In other words, the

response observed in, say, the sub-group of participants assigned to

the control group whose feedback professes belief in the control

group assignment should be compared with the response of only

the sub-group of the treatment group who equally professed belief

in the control group assignment. Similarly, the ‘‘don’t know’’ sub-

groups should be compared only with each other, as should the

subgroups corresponding to the belief in the treatment assignment.

Ideas similar in spirit were expressed by Berger in the consider-

ation of the related problem of so-called selection bias and

specifically the Berger-Exner test [12]. However, the manner in

which these ideas are formalized statistically in the present paper is

entirely different, the methods described by Berger sharing many

of the weaknesses of the approaches of James et al. and Bang et al.,

which were analyzed in detail in the ‘‘Limitations of the Current

Best Standards’’ section. The proposed approach is formalized

next.

Inference
Consider two corresponding sub-groups, that is, sub-groups

corresponding to different types of received intervention but the

same response in the participants’ feedback questionnaire.

Furthermore, let the benefit of an intervention observed in a

particular participant be expressed as a real number x(i)
ag. Thus,

and without loss of generality, a greater x(i)
ag indicates greater

benefit. For example, xi may represent the amount of fat loss in a

fat loss trial, the reduction in blood plasma LDL in a statin trial

etc. Our goal is to infer p(Dx), that is, the probability density

function over the difference Dx in the benefit observed across the

two compared sub-groups.

Let DCg be the trial outcome data collected from a control sub-

group and DTg of the matching treatment sub-group.

DCg~ x
(1)
Cg, . . . ,x

(nCg )

Cg

n o
ð7Þ

DTg~ x
(1)
Tg, . . . ,x

(nTg)

Tg

n o
ð8Þ

Then, if Dg~DCg|DTg is the totality of all data of participants

who believe they were assigned to the group g, by applying Bayes

rule we can write the following:

p(Dx D Dg)~
P(Dg D Dx) p(Dx)

p(Dg)
: ð9Þ

Modelling the response of each sub-group using a normal (i.e.

Gaussian) distribution

x
(i)
Cg*N (mCg,sg) and x

(j)
Tg*N (mTg,sg) ð10Þ

and remembering that for the underlying distributions it holds that

mCgzDx~mTg, allows us to further write

p(Dx D Dk)! p(Dg D Dx)~ ð11Þ

ð
mCg

ð
sg

p(Dg D Dx,mCg,sg) p(mCg) p(sg) dsg dmCg ð12Þ

where p(mCg) is a prior on the mean of the control sub-group and

p(sg) a prior on the standard deviation within sub-groups. What

Equation (12) expresses is the process of probability density

function marginalization over nuisance variables mCg and sg.

Since the values of these latent model variables are unknown,

marginalization takes into account all of the possibilities and

weights them in proportion to the supporting evidence.

As shown in full detail in Appendix 0, when two corresponding

sub-groups of participants are considered, for uninformed priors

over mCg and sg, the posterior distribution of Dx is given by:

p(Dx D Dg)!c
{

nCgznTg{1

2
g ~c

{
ng{1

2
g ð13Þ

where constant scaling factors have been omitted for clarity, and

Figure 3. A conceptual illustration of the proposed statistical model for the 3-tier participants’ feedback questionnaire: (i) belief in
treatment assignment, (ii) belief in control assignment and (iii) uncertain (‘‘don’t know’’). Dotted and solid lines show respectively the
probability density functions of the measured trial outcome across individuals in the three control and treatment sub-groups. Parameters sg and mag

denote the corresponding standard deviation and the mean of each sub-group, and Dx the differential effect of treatment.
doi:10.1371/journal.pone.0048984.g003
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Extending to the joint inference over the entire data corpus, the

posterior can be computed simply as a product of all sub-group

pair posteriors (up to a scaling constant):

p(Dx D |gDg)!P
g

p(Dx D Dg)!P
g

c
{

ng{1

2
g ð15Þ

The estimate of the posterior distribution of Dx in Equation (15) is

the best estimate that can be made using the available data, and it

is of the most interest to the clinician. However, as we will discuss

in the ‘‘Discussion’’ section, both Equation (13) and Equation (15)

have significance in the interpretation of trial results and their joint

consideration can be used to reveal important additional

information about the effectiveness of the treatment.

Results

Certain advantages of the proposed methodology, in compar-

ison to the approaches of James et al. and Bang et al. are ipso facto

inherent in the theory developed in the preceding sections. The

absence of free parameters is one such advantage. Other claimed

properties of the method, such as its robustness to small input

differences (i.e. differences in the patients’ feedback responses), are

not immediately obvious. Thus, in this section we present the

results of a series of experiments which demonstrate the superiority

of the proposed method.

Evaluation Methodology
In contrast to the methods of James et al. and Bang et al. which

do not attempt to infer any objective and measurable quantity, the

proposed approach pools all available data (trial outcomes and

auxiliary questionnaire feedback) in an effort to evaluate robustly

the effectiveness of the studied treatment. This feature of our

method allows us to directly evaluate its performance. Specifically,

we employ a computer-based simulation whereby data is first

randomly (or rather pseudo-randomly) generated using a statistical

model with adjustable parameters, followed by the application of

the proposed method which is used to infer the said parameters.

The values inferred by our method can then be directly compared

with their known true values.

Experiment 1: Reference. For our first experiment, we

simulated a trial involving 200 individuals, half of which were

assigned to the control and half to the treatment group. For each

of the groups, 60% of the participants were taken to be in the

‘‘undecided’’ subgroups GC0 and GT0. The remaining 40% of the

participants was split between correct and incorrect guesses of the

assigned intervention in proportion 3 : 1. This is summarized in

Table 2. In this initial experiment we assume that all participants

correctly disclosed their belief regarding which group they were

assigned to. Note that this assumption is done purely in the process

of generating data for the experiment – neither this nor any of the

preceding information is used by our method to analyze the

outcome of the trial.

We set the differential effect of treatment to Dx~0:1 and the

standard deviation of variability within each of the assignment-

response subgroups (please refer back to the ‘‘Study Design and

Outcome Model’’ section) also to s{~s0~sz~0:1. Relative to

genuine lack of belief in either control or treatment group

assignments, belief in control group assignment was set to exhibit

negative effect of magnitude 0:2 (i.e. {0:2) and that in treatment

group assignment a positive effect of magnitude 0:2. Experimental

parameters are summarized in Table 3.

Intervention outcomes were then generated by repeated

random draws from the corresponding distributions. For example,

the outcome associated with a participant in the group GC{ was

determined by a random draw from the normal distribution

N (mC{,s{). The outcomes thus obtained are detailed in Table 4

and visually illustrated in Figure 4.

The result of applying the proposed method is summarized in

Figure 5 which plots the posteriors corresponding to the three

subgroups matched by the patients’ belief and the amalgamated

posterior. The same plot also marks the maximum a posteriori (MAP)

value Dx� of the estimate of the differential effectiveness of the

treatment:

Dx�~arg max
Dx

p(DxDD)&0:107 ð16Þ

which is very close to the true value of Dx~0:1.

In comparison, when the differential effectiveness is estimated

by subtracting the mean response of the control group from that of

the treatment group, without the use of our matching sub-groups

based statistical model, the estimate Dx is:

Dx~
X

g[f{,0,zg
PTg�xxTg{PCg�xxCg

� �
&0:141, ð17Þ

where �xxag is the mean effectiveness across the subgroup Gag:

�xxag~
1

nag

Pnag

i~1

x(i)
ag: ð18Þ

Finally, the corresponding values of the blinding indexes proposed

by James et al. and Bang et al. are:

r1~0:53 r’2~r’’2~0:10 ð19Þ

Notice that the former indicates a level of blinding roughly half

way between a perfectly blinded and unblinded trial, while the

latter deems the trial nearly perfectly blinded.

Experiment 2: Conservative Distortion. In the ‘‘Interpre-

tation of Participants’ Feedback’’ it was explained why the

participants in a trial may not be fully honest in their auxiliary

questionnaire feedback and how this presents a major problem in

formulating a universally correct statistical model. For example,

there may be a conservative drift towards the middle whereby

participants falsely declare uncertainty towards their group

assignment out of desire of appearing balanced in their judgement.

It was argued on theoretical grounds that the proposed

methodology presents a universal framework for controlled trial

assessment and analysis, and as such is robust to the aforemen-

tioned phenomenon. Here we investigate this claim experimen-

tally.

We modify the baseline experiment described in ‘‘Experiment 1:

Reference’’ by simulating conservative behavioural tendency of

participants in a trial. This was achieved by randomly choosing

individuals from decisive subgroups (GC{, GCz, GT{ and GTz)

and re-assigning them to their corresponding indecisive subgroup
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without changing their treatment’s observed effectiveness. Thus, a

randomly chosen participant from subgroups GC{ or GCz would

be assigned to the subgroup GC0 and one from subgroups GT{ or

GTz to GT0. The probability of re-assignment was set to

pcons~0:2.

As before, we applied the proposed method on the modified

data and display the key results in Figure 6. In addition to the new

subgroup posteriors (dotted lines), for comparison in Figure 6 (a)

we also show the three initial subgroup posteriors from Experi-

ment 1 (solid lines). The baseline (thick solid line) and new (thin

solid line) amalgamated posteriors are shown in Figure 6 (b).

Figure 6 (b) also shows the semi-amalgamated posterior obtained

using only decisive subgroups which, by experimental design,

comprise data of only those individuals which honestly disclosed

their belief of group assignment. The new MAP value for the

differential effectiveness using the amalgamated posterior can be

seen to be Dx�&0:122 and that using the semi-amalgamated

posterior Dx�&0:116. In the ‘‘Further Clinical Insight’’ section we

will show how the difference in statistical features of sub-group

posteriors can be used to select the most reliable posteriors to

amalgamate, as well as to reveal additional insight into the nature

of the studied treatment and the blinding in the trial.

The conventionally measured mean differential effect remains

unaffected by the conservative distortion; however, the assessment

of sufficient blinding does not (this is discussed in detail in the

‘‘Discussion’’ section).

Experiment 3: Asymmetric Progressive

Unblinding. One of the unappealing consequences of inference

atomization, i.e. the separation of blinding assessment and the

actual trial outcome, adopted by James et al. and Bang et al. alike,

becomes readily apparent when the effects of small differences in

the patients’ feedback responses are considered. On the one hand,

as long as the blinding index stays above or below the chosen

threshold, a small difference in the patients’ feedback (e.g. the

change in a single individual’s response) is of no consequence to

the subsequent analysis of the actual trial data. On the other hand,

for the values of the blinding index near the chosen threshold, an

equally small input difference can result in the complete rejection

of trial data, due to insufficient blinding. In this experiment and in

Experiment 4 we examine the behaviour of the proposed method

as its input in the form of the trial participants’ auxiliary data is

progressively altered.

Starting with the baseline setup of Experiment 1, we simulate

unblinding of previously undecided individuals of the treatment

group. In other words, in each turn we re-assign an individual

from the subgroup GT0 to the subgroup GTz and compute the

novel distribution for Dx. We call this experiment asymmetric

progressive unblinding because only the treatment group participants

are being unblinded (symmetric unblinding is considered in

‘‘Experiment 4: Symmetric Progressive Unblinding’’).

Figure 7 (a) shows the initial posterior p(DxDD) (bold line) and a

series of posteriors after a greater and greater number of

previously blinded participants were unblinded. The obtained

posteriors demonstrate the robustness of the proposed approach,

with small random variations as expected in any practical

experiment involving stochastic data. The resilience of the method

is further corroborated in Figure 7 (b), which shows the maximum a

posteriori estimate of the effectiveness of the treatment (i.e. the mode

of the posterior). This estimate also only shows small random

perturbations, with the corresponding standard deviation of only

0:0054. The plots in Figure 8 show the variation of the two

blinding indexes throughout the experiment. As expected from the

change in the participants’ auxiliary data, both indexes change in

value dramatically. The index of James et al. decreases, while that

of Bang et al. increases in absolute value, indicating agreement on

the lowered level of blinding.

Experiment 4: Symmetric Progressive

Unblinding. Finally, in the last simulated experiment, we

consider the effects of unblinding previously blinded trial

participants from both the treatment and the control group. Notice

that this results in a progressively more unbalanced distribution of

individuals in the two groups across the corresponding sub-groups.

This is important because of the matching sub-group comparison

at the heart of the proposed approach (see the ‘‘Methods’’ section)

and is discussed in detail in the next section.

As in Experiment 3 we start with the baseline setup of

Experiment 1 and simulate unblinding of previously undecided

individuals of the treatment group. In each turn of progressive

unblinding we re-assign an individual from the subgroup GT0 to

the subgroup GTz and an individual from the subgroup GC0 to

the subgroup GC{, and compute the novel distribution for Dx. We

call this experiment symmetric progressive unblinding because both the

treatment group and the control group participants are being

unblinded (asymmetric unblinding was considered in ‘‘Experiment

3: Asymmetric Progressive Unblinding’’).

We illustrate the robustness of the method by plotting the

maximum a posteriori estimate of the effectiveness of the treatment

(i.e. the mode of the posterior) in Figure 9. As before, the estimate

Table 2. A summary of the trial size, the split of participants into groups and their auxiliary subgroups, used to generate data for
the initial experiment.

n nC nT PC{ PC0 PCz PT{ PT0 PTz

200 100 100 0.3 0.6 0.1 0.1 0.6 0.3

doi:10.1371/journal.pone.0048984.t002

Table 3. The ground truth parameters of the underlying distributions used to generate intervention outcomes for participants in
our simulated trial.

Dx mC{ mC0 mCz mT{ mT0 mTz s{ s0 sz

0.1 20.2 0.0 0.2 20.1 0.1 0.3 0.1 0.1 0.1

The reader may find it useful to refer back to Figure 3.
doi:10.1371/journal.pone.0048984.t003
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Table 4. Automatically generated data for the simulation trial used to assess the proposed method.

Group Subgr. Observed intervention outcome/effectiveness (per individual)

Control group GC{ 0.001 0.010 20.029 20.062 20.150 20.058 0.207 20.065 0.046 20.075

20.040 20.009 0.060 20.038 20.139 0.084 20.070 0.055 0.168 0.005

0.044 20.040 20.054 20.136 20.008 20.027 0.0465 20.057 0.136 0.039

GC0 0.268 0.173 20.109 0.201 0.135 0.230 0.096 0.064 20.031 0.116

0.000 0.034 20.030 20.036 0.023 0.090 0.038 0.170 0.218 0.048

0.207 0.028 20.027 20.000 0.090 0.237 0.087 0.048 0.109 0.139

0.156 20.038 0.266 0.117 0.177 0.074 0.463 20.004 0.138 20.093

0.144 20.197 0.295 20.055 0.069 0.039 0.135 0.019 0.016 0.449

0.301 0.192 0.109 0.037 0.168 0.136 0.052 0.029 20.074 0.078

GCz 0.218 0.277 0.138 0.142 0.029 0.254 0.278 0.0549 0.228 0.215

Treatment
group

GT{ 0.010 0.131 0.006 20.020 0.062 0.036 0.176 0.012 0.242 20.083

GT0 0.026 0.221 0.248 0.033 0.240 0.148 0.108 0.287 0.162 0.095

0.097 0.437 0.061 0.462 0.250 0.102 0.267 0.282 0.100 0.264

0.199 0.241 0.219 0.138 0.023 0.236 0.213 0.112 0.195 0.159

0.127 0.307 0.204 0.231 0.232 0.360 0.232 0.342 0.382 0.197

0.353 0.261 0.222 0.104 0.381 0.280 0.232 0.322 0.267 0.118

0.259 0.234 0.249 0.242 0.142 0.311 0.320 0.060 0.219 0.275

GTz 0.336 0.296 0.291 0.209 0.081 0.086 0.311 0.203 0.325 0.193

0.418 0.287 0.195 0.161 0.255 0.215 0.356 0.352 0.209 0.714

0.109 0.247 0.141 0.571 0.105 0.179 0.201 0.350 0.365 0.512

doi:10.1371/journal.pone.0048984.t004

Figure 4. The spread of observed (measured) treatment responses (vertical axis) of the participants in the simulated reference trial
across the six sub-groups (horizontal axis; see the ‘‘Study Design and Outcome Model’’ section).
doi:10.1371/journal.pone.0048984.g004
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only shows small random perturbations, as expected in any

experiment with a stochastic nature and is to be contrasted with

the plots in Figure 10 which show the changes in the two blinding

indexes throughout the experiment. Again, with the change in the

participants’ auxiliary data, both indexes also change in value. It is

insightful to observe that unlike in Experiment 3, in this instance

the values of the two indexes do not exhibit agreement on the

direction of change of the level of blinding. This reflects the

importance that the auxiliary data interpretation plays in the

methods of both James et al. and Bang et al.

Discussion

In the ‘‘Limitations of the Current Best Standards’’ section we

identified and discussed the key limitations of the currently

employed practices for assessing and accounting for imperfect

blinding in controlled clinical trials. Two key problem areas were

identified. The first of these is the separation of blinding

assessment using auxiliary trial data and the analysis of the main

outcome of the trial. The other major limitation of the current

practices is rooted in the interpretation of auxiliary data and

specifically the seemingly unavoidable need to model patients’

behaviour.

The separation of blinding assessment and main outcome

analysis, or inference atomization as we term it here, gives rise to a

number of undesirable consequences. For example, the assessment

of blinding of a trial can flip from successful to failed (or vice versa)

as a result of alteration in the feedback response of only a single

participant. Such sensitivity to small input differences means that

even an elementary change in the participants’ feedback may

result in all of the main trial data collected being thrown away.

This is clearly illustrated in Experiments 3 and 4 which

Figure 5. The three sub-group posteriors, p(DxDD{), p(DxDD0) and p(DxDDz), and the joint posterior p(DxDD)~p(DxDD{,D0,Dz). Also
marked is the mode of the posterior Dx�~arg maxDx p(DxDD)&0:107.
doi:10.1371/journal.pone.0048984.g005

Figure 6. Experiment 2. (a) Posteriors for the differential effect treatment Dx computed using the data Dg of each experimental sub-group
comprising control and treatment individuals matched by their feedback. (b) Posterior for the differential effect treatment Dx computed using all
available data D (~|gDg).
doi:10.1371/journal.pone.0048984.g006
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demonstrate the change in value of both blinding indexes as the

trial is gradually unblinded.

On the other hand, as long as the trial is deemed successful, no

information about the extent of blinding is propagated and

accounted for in the subsequent phase when the main trial data is

analyzed. For example, despite the change in feedback responses

between Experiment 1 and Experiment 2, and with it the change

in the values of blinding indexes, the entirety of the main trial data

in the two experiments was left unaltered. Since the assessment of

blinding is statistical in nature, it is not possible to identify

participants which may not have been blinded well enough. Thus,

data from a perfectly blinded trial is interpreted and processed in

the same way as of a barely sufficiently blinded trial (i.e. one with a

blinding index just exceeding a set threshold). This is in sharp

contrast with the proposed method. Because feedback responses

and the main trial data are analyzed in unison, the output of the

proposed method is unaffected by the unblinding in both

Experiment 3 and Experiment 4 (save for stochastic perturba-

tions).

Degenerate Cases
One of the key ideas behind the present method is that it is

meaningful to compare only the corresponding treatment and

control participant sub-groups, that is, sub-groups matched by

their auxiliary responses. As noted in the ‘‘Limitations of the

Current Best Standards’’ section, while a greater number of

subgroups may provide more precise auxilliary/blinding informa-

tion, the introduced partitioning of data decreases the statistical

Figure 7. Experiment 3. (a) Initial posterior (bold line) and the sequence of posteriors as ‘‘don’t know’’ responders in the treatment group are
progressively unblinded. Each next posterior plot corresponds to additional 10 ‘‘don’t know’’ respondents who become members of the sub-group
which correctly identified their group membership. (b) The maximum a posteriori estimate of the treatment effectiveness as the participants assigned
to the treatment group are progressively unblinded. Observe the robustness of the proposed approach, witnessed by little effect that unblinding has
on the estimate (standard deviation of the maximum a posteriori estimate: 0.0054); compare with Figure 8.
doi:10.1371/journal.pone.0048984.g007

Figure 8. Experiment 3. The values of the blinding indexes proposed by James et al. (blue line) and Bang et al. (red line), computed at each step of
the progressive unblinding of the participants assigned to the treatment group. As expected, both indexes dramatically change in value and in this
case agree that the level of blinding in the trial has decreased. Compare this with the robustness of the proposed approach in Figure 7.
doi:10.1371/journal.pone.0048984.g008
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strength of each comparison of the corresponding sub-groups

which results in a posterior with a wider spread. In an extreme

case, a particular sub-group may be empty. In other words, it is

possible that none of the participants of the treatment or the

control group expressed a particular belief regarding their

treatment assignment. Although this may appear as a problem

at first, a more careful examination of such cases reveals that this is

not so.

Firstly, note that whenever at least one pair of matching sub-

groups is non-empty, the proposed method is able to compute a

Figure 9. Experiment 4. The maximum a posteriori estimate of the treatment effectiveness as the participants assigned to both the treatment and
the control groups are progressively unblinded (compare with the previous, asymmetric blinding experiment and Figure 7). As before, the proposed
method exhibits remarkable robustness.
doi:10.1371/journal.pone.0048984.g009

Figure 10. Experiment 4. The values of the blinding indexes proposed by James et al. (blue line) and Bang et al. (red line), computed at each step
of the progressive unblinding of the participants assigned to the treatment group. While both indexes again dramatically change in value,
interestingly they also show disagreement on the direction of change in blinding. This is a consequence of the difference in the underlying
assumptions used to interpret the participants’ auxiliary data. Compare this with the robustness of the proposed approach in Figure 9.
doi:10.1371/journal.pone.0048984.g010
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meaningful estimate of differential treatment effectiveness. In

instances when there are no non-empty matching sub-groups, the

nature of degeneracy can provide useful insight to the clinician.

The absence of individuals in the GTz sub-group may indicate

that the participants assigned to the treatment group have either

been poorly blinded but misidentified the received treatment, or

that the treatment was vastly ineffective and was recognized as

such by the participants assigned to it. Similarly, the absence of

individuals in the GT{ sub-group may indicate that the

participants assigned to the treatment group have either been

poorly blinded and correctly identified the received treatment, or

that the treatment was obviously effective. In all cases, because

degenerate data is trivial to recognize, the clinician is immediately

made aware of the presence of a major flaw in the experimental

design. The clinician can then identify the cause of degeneration

using own knowledge of the administered interventions, and the

statistics of both auxiliary responses and trial outcomes.

Further Clinical Insight
In the ‘‘Inference’’ section we derived posteriors corresponding

both to only a single pair of corresponding sub-groups in Equation

(13) and to the entirety of data, that is, all sub-groups in Equation

(15). While the latter of these is of primary interest, the clinician

can derive further useful insight into the nature of studied

treatment by comparative examination of sub-group posteriors

too.

The least interesting case is when the sub-group posteriors and

the total posterior exhibit similar characteristics (e.g. the location

of the mode). However, consider the case when that is not so. For

example, let us say that the posterior corresponding to the two

matching ‘‘don’t know’’ subgroups has the mode near Dx&0 and

the total posterior has a decidedly positive mode (with suitably

small standard deviations, to make the observation statistically

significant). This could indicate that there may be so-called ‘‘non-

responders’’ in the treatment group, i.e. individuals which did not

respond positively to the treatment which in most people does

produce a positive result [13,14]. Similar arguments can be made

by considering differences between other sub-group posteriors.

Ultimately, the exact interpretation is in the hands of the clinicians

who should use their insight into the nature of the administered

interventions to infer further information of this type.

Summary and Conclusions

This paper examined the problem of assessing the extent of

blindness in a clinical trial. Currently, this is achieved by collecting

auxiliary data in the form of a questionnaire which asks the trial

participants which group (treatment or control) they think they

were assigned to. Methods in use today employ this data to

compute a statistic, a blinding index, which is then compared

against a threshold leading to a crisp positive or negative decision

on whether the trial was sufficiently blinded.

Our first major contribution was to demonstrate a series of flaws

in blinding index based approaches. The main flaws are: (i) the

presence of ad hoc free parameters in the statistical model used to

derive a blinding index, (ii) the non-universality of the assumptions

used to interpret the auxiliary questionnaire responses, (iii) the

sensitivity of blinding assessment to small changes in participants’

questionnaire responses, and (iv) the sequential separation of

inference concerning the extent of trial blindness and the

assessment of differential effectiveness of the treatment. Thus, a

novel framework was proposed.

We too adopt an auxiliary questionnaire of the same form as

currently in use but describe a statistical model which does not rely

on the assumptions made in previous work that lead to the

aforementioned difficulties. At the centre of the idea is that the

comparison of the treatment and control groups should be done in

like-for-like fashion, giving rise to the partitioning of participants

into sub-groups, each sub-group sharing the same intervention and

auxiliary responses. A Bayesian framework was used to interpret

jointly the auxiliary and trial outcome data, giving the clinician a

meaningful and readily understandable end result. The effective-

ness of our method was demonstrated empirically in a simulation

study, which showed its robustness in a variety of scenarios. In

addition, it was shown how our method can be used to reveal

additional important information regarding the effectiveness of the

trial, such as groups of non-responders.

Lastly, our work strongly highlights the need for open reporting

of trial results. Specifically, although the proposed method uses the

same type of auxiliary data as the previously proposed methods, it

is necessary that the auxiliary and trial outcome responses are

matched by individual participant, rather than aggregated. At

present, this detail is not widely reported nor readily made

available even upon request.

Derivation of the Key Equations

Consider two matching sub-groups GTg and GCg, one

corresponding to the treatment group and one to the control

group, such as GTz and GCz. Our goal is to infer the posterior

distribution p(DxDDg) for the differential effect of treatment Dx

(the difference in the effectiveness between the treatment and the

control group) given the main trial data Dg (the observed

effectiveness of target and control interventions in the two

subgroups). The entire data corpus Dg consists of responses of

the control subgroup DCg~fx(1)
Cg, . . . ,x

(nCg)

Cg g and the responses of

the corresponding treatment subgroup DTg~fx(1)
Tg, . . . ,x

(nTg)
Tg g

where nTg is the number of participants in GTg and nCg the

number of participants in GCg. Using Bayes rule, the posterior can

be expressed in terms of likelihood P(Dg DDx) for Dx and the priors

p(Dx) and p(Dg):

p(DxDDg)~
P(Dg DDx) p(Dx)

p(Dg)
ð20Þ

Assuming an uninformed prior for p(Dx) and observing that in this

context p(Dg) is merely a weighting constant, Equation (20) can be

simplified to:

p(DxDDg)!p(Dg DDx) ð21Þ

As usual, we assume that the effectiveness response of each trial

subgroup obeys a normal distribution. Let the mean outcome for

the control subgroup be mCg and consequently the mean of the

corresponding treatment subgroup mCgzDx, and the standard

deviation of outcomes within the sub-groups sg. Since we again

have no universal reason to expect one value of mCg or sg over

another, that is, no means of formulating an informed prior on

mCg and sg, we use the appropriate uninformed priors which are

in this case [15]:

p(mCg)!1 and p(sg)!1=sg ð22Þ

Note that these are improper priors (i.e. they do not integrate to

unity). Using a Bayesian approach whereby the unknown latent

variables of the model are integrated out:
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p(DxDDg)!p(Dg DDx)~ ð23Þ

ð
mCg

ð
sg

p(Dg D Dx,mCg,sg) p(mCg) p(sg)dsg dmCg~ ð24Þ

ð
mCg

ð
sg

p(Dg D Dx,mCg,sg)
1

sg

dsg dmCg~ ð25Þ

ð
mCg

ð
sg

1

sg

exp { 1

2s2
g

PnCg
i (x

(i)
Cg{mCg)2{

PnTg
j (x

(2)
Tg{mCg{Dx)2

h i� �

(2p)
nCgznTg

2 :s
nCgznTg
g

dsgdmCg

ð26Þ

Now consider the term in the brackets of the numerator’s

exponent in Equation (26). This term can be written as a sum of a

square and a constant:

XnCg

i

(x
(i)
Cg{mCg)2{

XnTg

j

(x
(j)
Tg{mCg{Dx)2

:(agmCg{bg)2zcg

ð27Þ

Expanding the left-hand size and equating the coefficients

corresponding to different powers of mCg gives the following

values for the unknown variables ag, bg and cg on the right-hand

size of the equality:

ag~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nCgznTg

p
ð28Þ

bg~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nCgznTg
p

PnCg
i x

(i)2
Cg {

PnTg
j (x

(j)
Tg{Dx)2

ð29Þ

cg~
XnCg

i~1

x
(1)2
i z

XnTg

j~1

(x
(2)
j {Dx)2

{

PnCg
i~1 x

(i)
Cgz

PnTg
j~1 (x

(j)
Tg{Dx)

h i2

nCgznTg

ð30Þ

Continuing to use constants a, b and c for clarity, Equation (26)

can be written as:

p(DxDDg)!
ð

mCg

ð
sg

1

sg

expf{ 1

2s2
g

(agmCg{bg)2{
cg

2s2
g
g

(2p)
nCgznTg

2 :s
nCgznTg
g

dsgdmCg ð31Þ

Re-arranging the right-hand size further and integrating out the

Gaussian gives:

p(Dx j Dg)!
ð

mCg

ð
sg

1

sg

expf{ (mCg{bg=ag )2

2(sg=ag)2
g:expf{ cg

2s2
g
g

(2p)
nCgznTg

2 :s
nCgznTg
g

dsgdmCg~

ð32Þ

ð
sg

1

sg

expf{cg=2s2
gg:(2p)1=2 sg

ag

	 


(2p)
nCgznTg

2 :s
nCgznTg
g

dsg~ ð33Þ

ð
sg

(2p)
1{nCg{nTg

2

exp {cg=2s2
g

n o

ag
:s

nCgznTg
g

dsg ð34Þ

Note that the expression in Equation (34) has the functional form

of the inverse gamma distribution:

(yg; ag,bg)~
b

ag
g

C(ag)

1

yagz1
exp {

bg

yg

� �
ð35Þ

where

ag~
nCgznTg{1

2
bg~cg=2 yg~s2

g ð36Þ

Thus, re-writing Equation (35) and remembering that the inverse

gamma distribution must integrate to unity (being a probability

density function), gives:

p(DxDDg)!
(2p)

1{nCg{nTg
2

2ag

ð
y

C
nCgznTg{1

2

	 


cg
2

� �nCgznTg{1

2

(yg; ag,bg)dyg!ð37Þ

c
{

nCgznTg{1

2
g

ð
yg

(yg; ag,bg)dyg~c
{

nCgznTg{1

2
g ð38Þ

which is the exactly the expression in Equation 13 introduced in

the main text in the ‘‘Inference’’ section. QED.
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