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BACKGROUND Guideline-directed medical therapy (GDMT) optimization can improve outcomes in heart failure with

reduced ejection fraction.

OBJECTIVES The objective of this study was to determine if a novel computable algorithm appropriately recommended

GDMT.

METHODS Clinical trial data from the GUIDE-IT (Guiding Evidence-Based Therapy Using Biomarker Intensified Treat-

ment in Heart Failure) and HF-ACTION (Heart Failure: A Controlled Trial Investigating Outcomes of Exercise Training)

trials were evaluated with a computable medication optimization algorithm that outputs GDMT recommendations and a

medication optimization score (MOS). Algorithm-based recommendations were compared to medication changes. A Cox

proportional-hazards model was used to estimate the associations between MOS and the composite primary end point for

both trials.

RESULTS The algorithm recommended initiation of angiotensin-converting enzyme inhibitor/angiotensin receptor

blocker, beta-blockers, and mineralocorticoid receptor antagonists in 52.8%, 34.9%, and 68.1% of GUIDE-IT visits,

respectively, when not prescribed the drug. Initiation only occurred in 20.8%, 56.9%, and 15.8% of subsequent visits.

The algorithm also identified dose titration in 48.8% of visits for angiotensin-converting enzyme inhibitor/angiotensin

receptor blockers and 39.4% of visits for beta-blockers. Those increases only occurred in 24.3% and 36.8% of

subsequent visits. A higher baseline MOS was associated with a lower risk of cardiovascular death or heart failure

hospitalization (HR: 0.41; 95% CI: 0.21-0.80; P ¼ 0.009) in GUIDE-IT and all-cause death and hospitalization (HR: 0.61;

95% CI: 0.44-0.84; P ¼ 0.003) in HF-ACTION.

CONCLUSIONS The algorithm accurately identified patients for GDMT optimization. Even in a clinical trial with robust

protocols, GDMT could have been further optimized in a meaningful number of visits. The algorithm-generated MOS was

associated with a lower risk of clinical outcomes. Implementation into clinical care may identify and address suboptimal

GDMT in patients with heart failure with reduced ejection fraction. (JACC Adv 2023;2:100289) © 2023 The Authors.
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ABBR EV I A T I ON S

AND ACRONYMS

ACEI = angiotensin-converting

enzyme inhibitor

API = Application Programming

Interface

ARB = angiotensin receptor

blocker

CDSS = clinical decision

support systems

CV = cardiovascular

EHR = electronic health record

FDR = false discovery rate

GDMT = guideline-directed

medical therapy

HF = heart failure

HFrEF = heart failure with a

reduced ejection fraction

MOS = medication optimization

score

MRA = mineralocorticoid

receptor antagonist

SBP = systolic blood pressure
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I n heart failure with a reduced ejection
fraction (HFrEF), clinical trials have
established the benefit of medications1-9

and as national guidelines10-12 that recom-
mend those therapies, but it has been well
documented that this knowledge can take
years to be broadly implemented into prac-
tice.13 The registry to Improve the Use of
Evidence-Based Heart Failure Therapies in
the Outpatient Setting prospective cohort
study recently demonstrated low use of
guideline-directed medical therapy (GDMT)
in U.S. patients with HFrEF.14 Angiotensin-
converting enzyme inhibitors or angiotensin
receptor blockers (ACEIs/ARBs) were only
used in 79.6% of patients, beta-blockers
were only used in 86% of patients, and miner-
alocorticoid receptor antagonists (MRAs)
were only used in 36.1% of patients. More
recently, the Change the Management of Pa-
tients with Heart Failure registry has also
demonstrated the need for further GDMT
optimization.15
To address these issues, the American College
of Cardiology published an expert consensus de-
cision pathway for optimizing heart failure (HF)
treatment that recommended the use of electronic
health records (EHRs) to reduce errors, improve
decision support, and facilitate guideline adher-
ence.16 This led our research group to create an
Application Programming Interface (API) using the
American College of Cardiology/American Heart
Association HFrEF guidelines. The objective of this
study was to validate that the API appropriately
recommended GDMT from clinical trial data and to
determine if the API-generated information about
medication optimization was associated with clin-
ical outcomes.

METHODS

This study retrospectively validated a computable
medication optimization algorithm created for
HFrEF using the GUIDE-IT (Guiding Evidence-Based
Therapy Using Biomarker Intensified Treatment in
Heart Failure)17 and HF-ACTION (Heart Failure: A
Controlled Trial Investigating Outcomes of Exercise
Training) clinical trial data acquired from the NHLBI
BioLINCC (National Heart Lung and Blood Institute,
Biological Specimen and Data Repository Informa-
tion Coordinating Center) repository. The study was
approved and determined to be not regulated by
the University of Michigan Institutional Review
Board.
PATIENT POPULATIONS. The GUIDE-IT trial was
an 894-patient randomized controlled trial that
studied the effects of a natriuretic peptide-guided
management strategy compared to the standard of
care in patients with HFrEF with an emphasis on
titrating medical therapy, including GDMT.17 The
GUIDE-IT trial was an ideal data set to validate this
algorithm because of the extensive medication data
collected and the purpose of the study was to opti-
mize GDMT over time. Blood pressure, heart rate,
potassium, serum creatinine, and medications (drug
and daily doses) were documented at baseline,
2 weeks, 6 weeks, 3 months, and every 3 months
thereafter until month 24 of the study, a potential 11
visits per patient. The primary outcome for the
GUIDE-IT trial was the composite of cardiovascular
(CV) death or HF hospitalization.

HF-ACTION was a 2,331-patient randomized
controlled trial that studied the effects of aerobic
exercise training in ambulatory patients with HF and
an ejection fraction of <35%.18 Values for the algo-
rithm variables were available at baseline. Subse-
quent time points were not included because the
input data needed for the algorithm were not
collected. The primary outcome for the HF-ACTION
trial was the composite all-cause death or
hospitalization.

The 2 data sets, GUIDE-IT and HF-ACTION, com-
plement each other well to evaluate the computable
medication optimization algorithm. GUIDE-IT pro-
vides rich, longitudinal data for patients enrolled at
hospital discharge that includes all variables needed
to assess medication optimization at each time point.
HF-ACTION provides a large data set of patients with
HFrEF enrolled in the ambulatory setting with all
variables needed to assess medication optimization at
baseline.
COMPUTABLE MEDICATION OPTIMIZATION ALGORITHM.

The HFrEF medication optimization algorithm crea-
tion began with the narrative guideline,11 then led to
structured decision trees developed for each drug
class (ACEI/ARB/angiotensin receptor/neprilysin in-
hibitor (ARNI), beta-blocker, MRA, and hydralazine/
nitrate). The algorithm was validated by HF physi-
cians and cardiology pharmacists and was coded in an
executable computer format. The executable format
allowed for more large-scale validation of the algo-
rithm with synthetically generated patient data. The
next step in testing the algorithm was this study.

The HFrEF medication optimization algorithm was
created as a REpresentational State Transfer API, so
inputs, generated from an outside source, could be
computed by the algorithm to provide recommenda-
tions for the medications to optimize on an individual



CENTRAL ILLUSTRATION Overview of the Medication Optimization Algorithm
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The left top side of the figure shows the inputs of the algorithm. The right top side shows the outputs of the algorithm and the potential

future applications for each output. The bottom table shows opportunities for GDMT medication optimization in GUIDE-IT visits.

ACEI ¼ angiotensin-converting enzyme inhibitor; API ¼ Application Programming Interface; ARB ¼ angiotensin receptor blocker;

GDMT ¼ guideline directed medical therapy; GUIDE-IT ¼ Guiding Evidence-Based Therapy Using Biomarker Intensified Treatment in Heart

Failure; MRA ¼ mineralocorticoid receptor antagonist.

TABLE 1 Examples of Medications, the Algorithm Recommendations, and the Medication

Optimization Score Value

Example Medications Recommendations MOS

Patient 1 Metoprolol succinate 25 mg daily,
lisinopril 2.5 mg daily

� Increase the patient’s current
beta blocker.

� Increase the patient’s current
ACE inhibitor.

� Start a mineralocorticoid
receptor antagonist.

22%

Patient 2 Carvedilol 25 mg twice daily,
lisinopril 20 mg daily

� Switch to sacubitril/valsartan.
� Start a mineralocorticoid

receptor antagonist.

56%

Patient 3 Metoprolol succinate 200 mg daily,
enalapril 40 mg daily,
spironolactone 25 mg daily

� Switch to sacubitril/valsartan. 89%

The table provides examples of the algorithm recommendations and MOS when a patient is NYHA functional
class II and has normal potassium, serum creatine, systolic blood pressure, and heart rate.

ACE ¼ angiotensin-converting enzyme.
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patient. The current version of the algorithm (version
0.487) is designed for the inputs of medications
(name and daily dose), New York Heart Association
classification, systolic blood pressure (SBP), heart rate
(HR), serum creatinine, potassium, allergies/intoler-
ance, and race from one patient at a time. The
Central Illustration demonstrates a visual for the in-
puts and outputs of the algorithm.

The algorithm identifies specific HFrEF GDMT
medications approved by the Food and Drug Admin-
istration. The algorithm outputs medication optimi-
zation recommendations for each GDMT drug class.
The algorithm also provides a medication optimiza-
tion score (MOS). The MOS is a percent between
0 (least optimized) and 100 (most optimized) which
represents the extent of medication optimization that
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needs to be performed. As the patient is prescribed
more GDMT and at higher doses, the score is closer to
100%. Table 1 provides examples of the algorithm
recommendations and the MOS value. To test the
inputs and results for the algorithm, visit https://
decisionalgorithm.shinyapps.io/heartfailure/.

STATISTICAL ANALYSIS. Patients were excluded
from the analysis if the data needed for the algorithm
were unavailable at the time point for the analysis.
For baseline demographics and outcomes, categorical
variables were described with frequencies and per-
centages, and continuous variables were described
with mean � SD or median (IQR) where appropriate.
Continuous variables were compared using a t-test
when normally distributed and a Wilcoxon rank
test when the variable is not normally distributed.
Categorical variables were analyzed using a chi-
square test or Fisher exact test where appropriate.

Using the GUIDE-IT trial data, the recommenda-
tions generated in the algorithm were compared to
the medications documented at each visit. We
compared the important clinical parameters be-
tween those visits that a patient would receive and
not receive a recommendation for that drug class
from the medication optimization algorithm. The
important clinical parameters for the ACEI/ARB
class were SBP, serum creatinine, and potassium.
The important clinical parameters for the beta-
blocker class were SBP and HR. The important
clinical parameters for the MRA class were serum
creatinine and potassium. The change in medica-
tions from a visit to visit was also compared to
those recommended by the algorithm.

A Cox proportional-hazards model was used to
estimate the associations between MOS (independent
variable) with clinical outcomes. The composite pri-
mary outcome for the GUIDE-IT trial was the first CV
death or HF hospitalization (dependent variable). The
MOS was also treated as a time-dependent covariate
where the MOS immediately preceding an event or
censoring timepoint was used as the independent
variable. The composite primary outcome for the HF-
ACTION trial was first all-cause death or hospitaliza-
tion (dependent variable). Additional analysis was
performed to control for the HF-ACTION risk score19

as a covariate because none of these variables are
used as inputs for the medication optimization algo-
rithm. A sensitivity analysis was also performed using
the lowest dose for all ARBs, which is the base anal-
ysis, and the highest dose for all ARBs because ARB
dosing was not available in HF-ACTION. A cut point
analysis was performed using the HF-ACTION data to
find the ideal cut point where the MOS percentage
predicts the primary outcome. The findcut Statistical
Analysis System macro created by the Mayo Clinic
was used to perform this analysis.20-22 The MOS was
the continuous measure and the first all-cause death
or hospitalization was the time-to-event outcome in
the macro. A combination of the Cox model Wald P-
values and false discovery rate (FDR) P values from
the macro were used to identify cut points for the
MOS. The FDR P values, also known as q values, are
corrected to adjust for multiple comparisons. For all
statistical tests, differences were considered statisti-
cally significant at a P value of <0.05. All statistical
analyses were performed with SAS version 9.4
(SAS Institute, Inc).

RESULTS

In the GUIDE-IT data, 841 patients had appropriate
data at baseline visit to be included. At baseline,
80.9% (n ¼ 681) of patients were taking an ACEI/ARB,
96.4% (n ¼ 811) of patients were taking a beta-
blocker, and 50.7% (n ¼ 426) of patients were taking
an MRA. The algorithm identified the need for GDMT
optimization in 69.4% (n ¼ 584) of patients.

In the HF-ACTION data, 2,130 patients had appro-
priate data at the HF-ACTION baseline visit to be
included. At baseline, 94.4% (n ¼ 2,011) of patients
were taking an ACEI/ARB, 94.5% (n ¼ 2,012) of pa-
tients were taking a beta-blocker, and 45.2% (n ¼ 962)
of patients were taking an MRA. The algorithm iden-
tified the need for GDMT optimization in 72.8%
(n ¼ 1,552) of patients. Table 2 demonstrates the de-
mographics of the patients from the baseline visit.

In the GUIDE-IT data, 883 patients had enough data
at any follow-up time to be included in the analysis,
with a median of 6 follow-up time points and a total of
5,733 visits. Over the 5,733 visits, 79.7% (n ¼ 4,567),
96.6% (n ¼ 5,535), and 56.5% (n ¼ 3,218) visits
demonstrated patients were taking an ACEI/ARB,
beta-blocker, and MRA, respectively. For all visits,
the MOS was a median of 76% (IQR: 50%-100%). At
baseline, the median MOS was 61% (IQR: 40%-100%).
In those patients that the algorithm identified needing
medication optimization (MOS <100%), the median
MOS was 50% (IQR: 34%-64%). Figure 1 shows a
Sankey diagram for the flow of patients between
different MOS categories throughout the study.

At baseline in HF-ACTION, the median MOS was
57% (IQR: 44%-100%). In HF-ACTION patients that
the algorithm identified needing medication optimi-
zation (MOS <100%), the median MOS was 50%
(IQR: 40%-61%). See the supplemental figures,
Supplemental Figures 1 and 2, representing the his-
togram of the MOS in each data set.

https://decisionalgorithm.shinyapps.io/heartfailure/
https://decisionalgorithm.shinyapps.io/heartfailure/
https://doi.org/10.1016/j.jacadv.2023.100289
https://doi.org/10.1016/j.jacadv.2023.100289


TABLE 2 Baseline Demographics

GUIDE-IT HF-ACTION

Total
(n ¼ 841)

MOS <100%
(n ¼ 584)

MOS 100%
(n ¼ 257)

Total
(n ¼ 2,130)

MOS <100%
(n ¼ 1,552)

MOS 100%
(n ¼ 578)

Age, y 61.3 � 14 61.3 � 14 61.1 � 15 58.6 � 13 58.9 � 12 57.7 � 12

Women 262 (31.2) 188 (32.2) 74 (28.8) 599 (28.1) 437 (28.2) 162 (28)

Race

White 471 (56) 302 (51.7) 169 (65.7) 1,322 (62.1) 953 (61.4) 369 (63.8)

Black 299 (35.6) 235 (40.2) 64 (24.9) 669 (31.4) 501 (32.3) 168 (29.1)

Other 71 (8.4) 47 (8) 24 (9.3) 139 (6.5) 98 (6.3) 41 (7.1)

Ischemic HF etiology 421 (50) 280 (48) 141 (54.9) 1,096 (51.5) 796 (51.29) 300 (51.9)

Diabetes mellitus 388 (46.1) 252 (48.3) 106 (41.3) 678 (31.8) 499 (32.2) 179 (31)

Chronic kidney diseasea 309 (36.7) 225 (38.5) 84 (32.7) 742 (34.8) 508 (32.7) 234 (40.5)

Systolic BP, mm Hg 115.8 � 20 122 � 18 101.7 � 15 113.8 � 18 119.1 � 17 99.5 � 13

Heart Rate, beats/min 77 � 15 75 � 14 78 � 15 70 � 11 71 � 12 70 � 11

Potassium, mmol/L 4.4 � 0.6 4.3 � 0.5 4.5 � 0.7 4.3 � 0.8 4.3 � 0.5 4.5 � 0.6

Creatinine, mg/dL 1.45 � 0.6 1.4 � 0.5 1.56 � 0.8 1.33 � 0.8 1.26 � 0.5 1.51 � 1.3

HF-ACTION risk score - - - 53 � 12 52.7 � 12 53.8 � 12

ACEI/ARB 681 (81) 465 (79.6) 216 (84.1) 2011 (94.4) 1,456 (93.8) 555 (96)

Beta-blocker 811 (96) 565 (96.8) 246 (95.7) 2012 (94.5) 1,466 (94.5) 546 (94.5)

MRA 426 (50.7) 221 (37.8) 205 (79.8) 962 (45.2) 459 (29.6) 503 (87)

Values are mean � SD or n (%). aIn GUIDE-IT, a chronic kidney disease diagnosis was collected at baseline and HF-ACTION chronic kidney disease was defined as a baseline eGFR category of 3
or greater.

ACEI/ARB ¼ angiotensin-converting enzyme inhibitor/angiotensin receptor blocker; BP ¼ blood pressure; GUIDE-IT ¼ Guiding Evidence-Based Therapy Using Biomarker Intensified
Treatment in Heart Failure; HF ¼ heart failure; HF-ACTION ¼ Heart Failure: A Controlled Trial Investigating Outcomes of Exercise Training.
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GUIDE-IT MEDICATION ADJUSTMENTS AND THE

ALGORITHM. Over the course of the GUIDE-IT trial,
there were 1,166 (20.3%) visits where patients were
not on an ACEI/ARB. Of those not on ACEI/ARB, the
algorithm recommended initiating ACEI/ARB in 589
FIGURE 1 Sankey Plot of Patients Transferring Between Different M

Node height represents the proportion of patients in each category at the

represent the proportion of patients moving from their node of origin t
(50.5%) patient visits, leaving 577 (49.5%) visits
where the algorithm would not recommend initiation
of ACEI/ARB. Patient visits where ACEI/ARBs were
not recommended by the algorithm had significantly
lower SBP (109 � 20 mm Hg vs 127.9 � 14 mm Hg;
edication Optimization Score Categories Over Time

given times of baseline, 6 months, 12 months, and 24 months. Links

o their respective category at the next timepoint.



TABLE 3 Opportunities for Guideline-Directed Medication Therapy Optimization in GUIDE-IT Visits

ACEI/ARB Beta-Blocker MRA

Initiation Titration Initiation Titration Initiation

Algorithm identified visits for GDMT optimization 53% (480/908) 49% (1,475/3,025) 35% (51/146) 39% (1,158/2,942) 68% (1,421/2088)

Medication prescribed at the next visit 21% (100/480) 24% (358/1,475) 57% (29/51) 37% (426/1,158) 16% (224/1,421)

Opportunities for GDMT optimization 79% (380/480) 76% (1,117/1,475) 43% (22/51) 63% (732/1,158) 84% (1,197/1,421)

Values are % (n/N). The table summarizes the opportunities for GDMT optimization identified by the algorithm.

ACEI/ARB ¼ angiotensin-converting enzyme inhibitor/angiotensin receptor blocker; GDMT ¼ guideline-directed medical therapy; MRA ¼ mineralocorticoid receptor
antagonist.
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P < 0.0001), higher serum creatinine (2.1 � 1.0 mg/dL
vs 1.6 � 0.6 mg/dL; P < 0.0001), and higher potassium
levels (4.3 � 0.7 vs 4.2 � 0.5; P ¼ 0.003). The algo-
rithm did not recommend initiating an ACEI/ARB on
4,472 (97.9%) visits where it correctly identified the
patient as already receiving an ACEI/ARB. The 95
(2.1%) instances where the patient was on an ACEI/
ARB and the algorithm recommended it were due to
the patient being on an “other” ACEI/ARB in the
GUIDE-IT data. Of the total visits in which an ACEI/
ARB was not prescribed, there were 908 visits where
initiation of an ACEI/ARB was able to be assessed at
the next visit. The algorithm recommended the
initiation of an ACEI/ARB for 480 of the 908 visits
(52.9%). An ACEI/ARB was only initiated on 100 out of
the 480 visits (20.8%).

For the GUIDE-IT visits where the patient was
already prescribed an ACEI/ARB, there were 3,494
(76.5%) visits where the patient was receiving less
than the target ACEI/ARB dose. The algorithm iden-
tified 1,689 (48.3%) visits where the ACEI/ARB could
be up-titrated. The titration recommendations con-
sisted of increasing the ACEI/ARB dose (79%),
switching to ARNI (16%), or initiating an ACEI/ARB
(the trial documentation collected “other” as the
ACEI/ARB) (5%). The patients where the algorithm
recommended titration had significantly higher SBP
(127.1 � 15 vs 103.3 � 16 mm Hg; P < 0.0001), lower
serum creatinine (1.3 � 0.4 vs 1.5 � 0.7 mg/dL;
P < 0.0001), and lower potassium levels (4.2 � 0.4 vs
4.5 � 0.6 mEq/L; P < 0.0001) compared to the visits
where the algorithm did not recommend a dose
titration. There were 1,073 (23.5%) visits where the
patient was at or above the target dose for the ACEI/
ARB. The algorithm identified 555 visits where an
ARNI could be initiated. There were 3,025 visits
where the up-titration of an ACEI/ARB was able to be
evaluated at the next visit. The algorithm recom-
mended up-titration in 1,475 visits (48.7%), while the
medications were only up-titrated at 358 (24.2%) of
those visits.

Beta-blocker prescribing in the GUIDE-IT trial was
higher compared to ACEI/ARB with only 197 (3.4%)
visits where a beta-blocker was not prescribed. The
algorithm identified 64 (32.5%) visits where a beta-
blocker was recommended to be initiated, leaving
133 (67.5%) visits where the algorithm did not
recommend initiating a beta-blocker. The visits
where the algorithm recommended beta-blocker
initiation had significantly higher SBP (124.3 � 15 vs
107.8 � 16 mm Hg; P < 0.0001) and higher HR (86 � 13
vs 77 � 20 beats/min; P < 0.0001) compared to the
visits where a beta-blocker was not recommended.
The algorithm recommended the initiation of a beta-
blocker in 40 (0.7%) patient visits due to the patient
being on a non-HF beta-blocker (9 atenolol and 31
“other” beta-blockers). Of the total visits in which a
beta-blocker was not prescribed, there were 146 visits
where initiation of a beta-blocker could be assessed at
the next visit. The algorithm recommended initiating
a beta-blocker at 51 visits (34.9%), but a beta-blocker
was only initiated at 29 (56.9%) of those visits.

Of the patients that were prescribed a beta-blocker,
there were 3,437 (62.1%) visits where the beta-blocker
dose was less than the target dose. The algorithm
identified 1,345 (39.1%) visits where the beta-blocker
could be up-titrated. The patients in these visits
had a significantly higher SBP (127.8 � 15 vs
109.1 � 19 mm Hg; P < 0.0001) and HR (84 � 11 vs
70 � 13 beats/min; P < 0.0001) compared to the pa-
tients where the algorithm did not recommend titra-
tion. There were 2,942 visits where the up-titration of
a beta-blocker could be assessed at the next patient
visit. The algorithm recommended an increase at
1,158 (39.4%) visits, but the dose was only increased
at 426 (36.8%) of those visits.

Patients were not prescribed an MRA in 2,492
(43.5%) visits. The algorithm identified 1,668 (66.9%)
visits where an MRA was recommended to be initi-
ated, leaving 824 (33.1%) visits where the algorithm
did not recommend initiating an MRA. The patients
that were recommended to initiate an MRA had
significantly lower serum creatinine (1.4 � 0.5 vs
2.0 � 1.2 mg/dL; P < 0.0001) and potassium levels
(4.2 � 0.5 vs 4.6 � 0.7 mEq/L; P < 0.0001) compared
to the patients that the algorithm did not recommend



FIGURE 2 The Cumulative Probability for the Primary End Point for a Medication Optimization Score of 25%, 50%, and 75%

(A) The cumulative probability estimated by the Cox model is for the composite end point of cardiovascular death or heart failure hospitalization, the GUIDE-IT (Guiding

Evidence-Based Therapy Using Biomarker Intensified Treatment in Heart Failure) trial’s primary outcome. (B) The cumulative probability estimated by the Cox model is

for the composite end point of all-cause death or hospitalizations, the HF-ACTION (Heart Failure: A Controlled Trial Investigating Outcomes of Exercise Training) trial’s

primary outcome, adjusted by the HF-ACTION risk score. MOS ¼ medication optimization score.
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initiating an MRA. The algorithm correctly identified
3,218 (99.3%) visits where the patient was already on
an MRA. There were 22 (0.7%) visits where the algo-
rithm did not recognize the patient was on an MRA
since the patient was documented as being on an
“other” MRA in the GUIDE-IT data. Of the total visits
in which an MRA was not prescribed, there were
2,088 patient visits where MRA status could be
assessed at the next visit. The algorithm recom-
mended the initiation of an MRA in 1,421 (68.1%)
visits. Initiation of an MRA only occurred in 224
(15.8%) of those patient visits. Table 3 summarizes the
opportunities for GDMT optimization identified by
the algorithm.

CLINICAL OUTCOMES AND THE MOS IN GUIDE-IT

AND HF-ACTION. In GUIDE-IT, 69.4% (n ¼ 584) of
patients were identified by the algorithm as needing
medication optimization at baseline. A higher MOS
was associated with a reduced risk of CV death or
HF hospitalizations (HR: 0.41; 95% CI: 0.21-0.80;
P ¼ 0.009). Due to the protocol-defined changes in
medications over time in the GUIDE-IT trial and
clinical variables changing, the MOS was analyzed as
a time-dependent covariate. As a time-dependent
covariate, a higher MOS score was associated with a
reduced risk of CV death or HF hospitalizations (HR:
0.38; 95% CI: 0.21-0.66; P < 0.001).

In HF-ACTION, 72.9% (n ¼ 1,552) of patients were
identified by the algorithm as needing medication
optimization at baseline. A higher MOS was
associated with a reduced risk of all-cause death or
hospitalizations (HR: 0.60; 95% CI: 0.44-0.84;
P ¼ 0.002). When controlling for the HF-ACTION risk
score, the adjusted HR was similar to the unadjusted
HR (adjusted HR: 0.60; 95% CI: 0.43-0.83; P ¼ 0.002).
Figure 2 demonstrates the cumulative probability of
the composite endpoint for a MOS value of 25%, 50%,
and 75% in patients needing optimization for both
trials. In a sensitivity analysis, assigning all patients
taking ARBs to the highest dose did not significantly
change the association of the MOS with the primary
outcome in HF-ACTION (HR: 0.60; 95% CI: 0.43-0.83;
P ¼ 0.002).

A cut point analysis was performed to classify MOS
percent ranges that could be used to identify patients
who benefit from medication optimization using the
algorithm. Using the Wald and FDR P values for
interpretation, MOS of 47% and 75% were identified
as cut points to use to identify patients that would
benefit from medication optimization. Figure 3 dem-
onstrates the Wald and FDR P values for each MOS
value to determine the cut point. See the supplement
for a table, Supplemental Table 1, that includes the
P values for each cut level.

DISCUSSION

In this study, our guideline-based computable algo-
rithm accurately selected patients with HFrEF who
were eligible for GDMT initiation or up-titration. Even

https://doi.org/10.1016/j.jacadv.2023.100289


FIGURE 3 Wald and False Discovery Rate P Values for Each Medication Optimization Score Value

The P values were generated from the cut point analysis in HF-ACTION. The horizontal dotted line represents a P value of 0.05. The vertical

dotted line represents the statistical cut points. Solid dots represent the Cox model’s Wald P values, and open triangles represent the false

discovery rate P values. FDR ¼ false discovery rate; MOS ¼ medication optimization score.
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in the GUIDE-IT trial, which specifically focused on
GDMT optimization, the algorithm identified
numerous opportunities to improve medical therapy;
these findings were replicated in HF-ACTION. In both
data sets, the MOS generated by the algorithm was
prognostically relevant.

Using the GUIDE-IT data, our guideline-based
computable algorithm accurately identified patients
with HFrEF who were eligible for GDMT initiation or
up-titration based on the available inputs. When
medication optimization was able to be assessed at
the next visit, there was significant room for GDMT
improvement. Our analysis identified missed oppor-
tunities for optimal GDMT in 79.2%, 43.1%, and 84.2%
of patient visits when the algorithm recommended
initiation of ACEI/ARB, beta-blockers, or MRAs,
respectively, when the medications were not pre-
scribed. Additionally, when the algorithm identified
appropriate up-titration, increasing the dose of an
ACEI/ARB only occurred at 24.3% of patient visits and
36.8% of patient visits for beta-blockers. Finally, the
MOS generated by the algorithm also demonstrated
an association with composite primary end points
adjudicated in 2 HFrEF clinical trials, GUIDE-IT, and
HF-ACTION.

Optimizing heart failure medication confers sig-
nificant morbidity and mortality benefit. Specifically,
GDMT has been shown to reduce mortality by 17%,
34%, and 30% for ACEI/ARBs, beta-blockers, and
MRAs, respectively.23 Furthermore, outcomes have
also been shown to correlate with increasing doses of
ACE inhibitors and beta-blockers. The ATLAS
(Assessment of Treatment with Lisinopril and Sur-
vival) trial compared the effect of low-dose lisinopril
(2.5-5 mg daily) to high-dose lisinopril (32.5-35 mg
daily) on all-cause mortality and CV hospitalizations.
While the high dose lisinopril did not improve all-
cause mortality compared to low dose lisinopril, the
high dose lisinopril did significantly reduce all-cause
hospitalizations by 13% (P ¼ 0.021) and heart failure
hospitalizations by 24% (P ¼ 0.002).9 If all other
medications were optimized, the MOS from this al-
gorithm is 78% for a patient on lisinopril 2.5 mg daily
and 89% for a patient on lisinopril 40 mg daily. Based
on our analysis, this 11% change in MOS would lead to
about a 9% lower risk of CV death or HF
hospitalization.

Beta-blockers have also been shown to have a
dose-related effect on heart failure outcomes. The
HF-ACTION study revealed a 13% relative risk lower
risk of all-cause death or all-cause rehospitalization
when comparing high dose beta-blockers ($25 mg
daily carvedilol equivalents) vs low dose beta-
blockers when adjusting for various factors.24 If all
other medications were optimized, the MOS from this
algorithm is 78% for a patient on carvedilol 12.5 mg



PERSPECTIVES

COMPETENCYIN PATIENT CARE AND PROCEDURAL

SKILLS: Computable algorithms can accurately identify patients

that have a potential opportunity for GDMT initiation and titra-

tion. This was shown even in a setting where protocols were in

place to optimize GDMT.

TRANSLATIONAL OUTLOOK: Further implementation of this

algorithm into clinical care should be studied to determine if the

algorithm can assist with GDMT optimization in patients with

HFrEF.
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twice daily and 89% for a patient on carvedilol 25 mg
twice daily. Based on our analysis, this 11% change in
MOS would lead to about a 9% lower risk of CV death
or HF hospitalization.

With the absence of optimal GDMT in a significant
portion of the HF population and the increase in
complexity of HFrEF GDMT with the addition of
newer drug classes, clinical decision support systems
(CDSS) have the potential to improve therapeutic
regimens for a larger portion of patients with HFrEF.
Prior attempts at CDSS in the HF population have
shown poor results,25,26 but failed to include all 4
features shown to predict improved clinical practice
when using CDSS.27 Embedding this HF medication
optimization algorithm into CDSS within or outside
the EHR may allow for clinicians to improve
morbidity and mortality outcomes in patients by fully
optimizing HF regimens. The MOS score could be
presented in an EHR clinical dashboard for providers
to prioritize the patients that need optimization. The
recommendations generated from the algorithm
could be shown to patients before a clinic visit to
facilitate patient-provider communication about
GDMT optimization, like in the EPIC-HF (Electroni-
cally delivered, Patient-activation tool for Intensifi-
cation of Chronic medications for Heart Failure with
reduced ejection fraction) trial,28 or in an EHR alert,
like in the PROMPT-HF (Pragmatic Trial Of Messaging
to Providers Trials Heart Failure) trial.29 This algo-
rithm could be the basis for many tools used for
GDMT optimization.

STUDY LIMITATIONS. There are some limitations to
our analysis. First, the data for this analysis was from
large clinical trials and cannot be extrapolated to
electronic medical record data at this time. In addi-
tion, ARNI evaluation is included in our algorithm,
but ARNIs were not available to use during the
GUIDE-IT or HF-ACTION trials. Additionally, not all
patients had follow-up visits to assess the change in
GDMT in GUIDE-IT. We were only able to analyze the
change in GDMT in patients that had appropriate
follow-up visits.

The version of the algorithm used in this analysis
also does not include an evaluation of certain drugs
(sodium-glucose cotransporter 2 inhibitors and ivab-
radine) that are more prominent in the recent version
of the guidelines or other clinical parameters that
may influence a provider’s decision to optimize
GDMT.12 The next version of the algorithm includes
these medication classes, and will be validated in
health system data and, when available, clinical trial
data sets.

CONCLUSIONS

The algorithm accurately identified patients with
HFrEF that have a potential opportunity for GDMT
initiation and titration. Even in a clinical trial with
robust protocols, GDMT could have been further
optimized in a meaningful number of visits. The
algorithm-generated MOS was associated with a
lower risk of clinical outcomes. Implementation into
clinical care may identify and address suboptimal
GDMT in patients with HFrEF.
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