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Introduction

Each year, influenza results in a substantial health-economic 
burden worldwide.1,2 For example, in the United States in 2018, 
influenza affected just under 30 million people and led to almost 
400 000 hospitalizations and 35 500 deaths with estimated costs 
of more than $11.2 billion.3,4 Although infection with the influ-
enza virus typically causes a self-limited illness with high fever, 
myalgias, and malaise, for vulnerable populations including 
individuals living with diabetes, influenza can progress to more 
serious consequences, such as pneumonia, myocardial infarc-
tion, stroke, and an increased risk of premature death.5-9

The most effective way to prevent the disease is vaccina-
tion.10 Pre-exposure or postexposure prophylaxis with 
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Abstract
Background: We describe the impact of influenza on medical outcomes and daily activities among people with and without 
type 2 diabetes mellitus (T2DM).

Methods: Retrospective cohort analysis of a US health plan offering a digital wellness platform connecting wearable devices 
capable of tracking steps, sleep, and heart rate. For the 2016 to 2017 influenza season, we compared adults with T2DM to 
age and gender matched controls. Medical claims were used to define cohorts and identify influenza events and outcomes. 
Digital tracking data were aggregated at time slices of minute-, day-, week-, and year-level. A pre-post study design compared 
the peri-influenza period (two weeks before and four weeks after influenza diagnosis) to the six-week preceding period 
(baseline).

Results: A total of 54 656 T2DM and 113 016 non-DM controls were used for the study. People with T2DM had more 
influenza claims, vaccinations, and influenza antivirals per 100 people (1.96% vs 1.37%, 34.3% vs 24.3%, and 27.1 vs 22 
respectively, P < .001). A total of 1086 persons with T2DM and 1567 controls had an influenza claim (47.4% male, median 
age 54, 6.4% vs 7.8% trackers, respectively). Glycemic events, pneumonia, and ischemic heart disease increased over 
baseline during the peri-influenza period for T2DM (1.74-, 7.4-, and 1.6-fold increase respectively, P < .01). In a device 
wearing subcohort, we observed 10 000 fewer steps surrounding the influenza event, with the lowest (5500 steps) two days 
postinfluenza. Average heart rate increased significantly (+5.5 beats per minute) one day prior to influenza.

Conclusion: Influenza increases rates of pneumonia, heart disease, and abnormal glucose levels among people with T2DM, 
and negatively impacts daily activities compared to controls.
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antivirals is possible but depends on several factors, eg, indi-
vidual factors, type of exposure, and risk associated with the 
exposure. For prevention, especially those at increased risk 
from influenza complications, vaccination is recommended 
on an annual basis.11-13

However, in terms of improving interventions for high-
risk population such as people with diabetes, there are limita-
tions to the current understanding of the impact of influenza 
especially at an early stage. Studies that measure influenza 
disease burden based on laboratory confirmation may under-
state outcomes because of the infrequent testing,14 while the 
use of claims-based data or death records alone can skew the 
findings toward people with more severe influenza-related 
outcomes and later in the course of the infection. Less is 
known about the impact of early influenza infection on day 
to day activities and for people who do not develop the more 
serious complications associated with it.15

Patient Generated Health Data (PGHD) derived from con-
sumer digital mobile technologies, including wearable sen-
sors, could potentially fill the information gap of how early 
influenza infection affects daily behaviors.16 Thus far, most 
research on PGHD has been limited to small sample popula-
tions or has used simulated, nonreal-world scenarios to test 
device accuracy and reliability.17-19

The aim of this study was to use PGHD linked with con-
ventional real-world medical claims information to describe 
the effects on sleep, activity, and other behaviors of influenza 
infection for people with type 2 diabetes mellitus (T2DM). 
For this, we used a limited dataset from a large US health 
company that provides members with a digital wellness app 
connecting a variety of consumer mobile devices.

Setting

We used a limited dataset that included medical claims and 
wearable device data from a nationwide health company pro-
viding commercial insurance in the United States with par-
ticipant data between September 2014 and June 2017. This 
health company provides a digital wellness smartphone 
application (Apple iOS and Google Android) that connects a 
variety of consumer wearable fitness devices. The devices 
passively collect behavioral activity data as steps taken, 
sleep quality, and heart rate. This analysis covers June 1, 
2016 to June 1, 2017. Aggregate summaries of medical 
claims and behavioral activity data for individuals with a 
diagnosis of T2DM were compared to age and gender 
matched controls without diabetes.

The case-control pre-post analyses focus on participants 
with a documented diagnosis of influenza (determined by 
International Classification of Disease [ICD]-9/10 diagnosis 
codes) during the above period. We defined the peri-influ-
enza period as two weeks before and four weeks after an 
incident influenza diagnosis and compared this period with 
six-week baseline control period that occurred immediately 
before. We added supplemented medical claims and 

behavioral activity data for people with T2DM and for non-
diabetic controls.

Participants

Participants were adults (age ≥18 years), with commercial 
insurance coverage. Inclusion in the retrospective cohort and 
case-control pre-post analysis required coverage for the 
entire analysis period to reduce the possibility of missing 
information or medical events occurring outside of the cov-
erage. A separate pre-post analysis without the coverage 
requirement examined only activity data for two weeks 
before and after an incident influenza diagnosis.

Individuals with T2DM had at least one diagnosis code 
from ICD-9 or -10 documented. For T2DM, we used ICD-9 
code 250 and ICD-10 code E11. Non-T2DM controls were 
selected to be gender and age matched (stratified by age 
groups of 18-25, 25-40, 40-50, 50-65, and ≥ 65 years).

The research uses an existing limited dataset from a large 
health company authorized for research use and does not 
involve any interaction with human subjects. The data were 
kept on a secure location on servers under Evidation Health’s 
control and were accessible only by selected individuals at 
Evidation Health. The research has been reviewed and 
exempted by the Institutional Review Board at Solutions 
IRB (http://www.solutionsirb.com).

Variables

Table 1 shows the variable types and data sources considered 
in the analyses. In total, 778 variables were included, cover-
ing demographics, disease conditions, medication use, and 
behavioral activities from consumer wearables. We linked 
US Census data to individual zip codes to obtain neighbor-
hood characteristics for race, ethnicity, and socio-economic 
status markers for each participant.

Medical claims data generated from visits to clinicians, 
health care facilities, and pharmacies included ICD diagnosis 
codes, Current Procedural Terminology (CPT) codes, and 
pharmacy drug data. Visits types (office, emergency room, 
and hospital), prescription medications for diabetes (oral 
medications and injectables), and associated chronic condi-
tions (coronary artery disease, respiratory diseases like 
asthma and chronic obstructive lung disease) were aggre-
gated over the analysis period.

Medical outcomes included pneumonia, acute coronary 
syndromes, sepsis syndromes, venous thrombo-embolic 
disease, acute kidney injury, and encephalopathy. 
Procedures such as mechanical ventilation, angioplasty, or 
stent placement were identified with CPT codes. Treatment 
for influenza or pneumonia was noted by the use of specific 
antiviral agents (oseltamivir, zanamivir, amantadine, or 
rimantadine) or antibacterial agents (penicillins, cephalo-
sporins, fluoroquinolones, and macrolides) respectively. 
Diabetes-specific outcomes included events related to 
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hyperglycemia (abnormal glucose levels, ketoacidosis, and 
hyperosmolar nonketotic coma) as well as hypoglycemia.

Behavioral activity data for steps, sleep, and heart rate 
were aggregated at different time scales of minutes, hourly, 
day, week, or year level. For each time scale, the mean, min, 
or max of different distribution descriptors was used as vari-
ables of analysis. Diarized food tracking or caloric data were 
aggregated over the year.

Statistical Methods

Standard statistical approaches were used to identify and 
remove outliers or incorrect labels. Missing data on predic-
tors were imputed with mean values when appropriate.

To identify outcomes associated with influenza infection, 
per-individual pre/postchanges, reported as gain scores, were 
calculated within peri-influenza periods related to health 
care utilization, excess morbidity, and diabetes-related and 
behavioral activity endpoints.20 In the case of behavioral 
data, the repeated measurement nature of the dataset allows 
computing within-subject changes as compared to baseline.

Between-group comparisons were performed with appro-
priate statistical tests (Mann-Whitney U, t-test, or test of pro-
portions). P-values were selected based on false discovery 
rates less than 10% to minimize the type I error rate from 
multiple comparisons. For the pre/postframework, we report 
rate ratios (with corresponding 95% confidence intervals) of 
the peri-influenza period to baseline for people with T2DM 
and controls independently. We compare gain scores between 
people with T2DM and controls as described above. We did 
not control for vaccination status because of problems around 
censoring of vaccination data from medical claims.

Time series visualization of step and sleep activity was 
performed on a subcohort of people with activity rich data 
centered around a documented influenza infection. Missing 
values for the activities were imputed and then the moving 
average computed with smoothing over a 14-day window 
centered around the influenza event.

Results

More than 2.3 million adults from the health company were 
in the limited dataset from September 2014 to June 1, 2017. 
Filtering on ICD diagnosis codes for diabetes mellitus and 
age ≥18 identified 186 134 potential participants of which 
54 656 had T2DM and coverage during the analysis period. 
We age and gender matched 113 016 non-T2DM controls 
(Figure 1).

People with T2DM had a higher influenza disease burden 
and utilized more health services (ER and hospital visits) 
compared to controls (Table 2). From US Census data, indi-
viduals with T2DM also came from neighborhoods with 
lower median household incomes and fewer high school 
graduates. As expected, lipids disorders and hypertension 
were more prevalent in this group compared to controls.

Influenza vaccination was observed for 34.3% of the 
cohort with T2DM and 24.3% of controls (P < .001), while 
influenza infection was found in 1.96% of the population 
with T2DM compared with 1.37% in controls (P < .001). 
People with T2DM were also prescribed more antiviral med-
ications for influenza when compared to controls (27.1 vs 22 
prescriptions per 1000 persons respectively, P < .001).

Trackers—users of consumer wearable devices or mobile 
phone applications comprised 8.2% of people living with 

Table 1.  Medical Claims and Activity Derived Variables in the Analysis.

Diagnosis of Demographic

COPD Kidney failure Age Gender
Asthma Depression Census-based income Num children
Diabetes Cholesterolemia Family size Num relations
Heart disease Sleep disorder Is parent or child Insurance plan type
Hypertension Drug dependence Max monthly temperature Min monthly temperature
Arthritis Other mental illness  
Obesity Other chronic illness  
Health services utilized averaged per week Pharmacy related
Doctor visits Physical exams Avg medical costs Delays in claims
Claims submitted Pharmacy claims Max amount paid for meds  
Providers seen Hospital visits  
Procedures done ER visits  
Distinct diagnoses Diabetes-related visits Mobile device activity features
Hospital days Smoking cessation visits Steps Sleep
Pharmacy visits Drug costs Food diary Self-reported weight
Prescriptions filled  

Abbreviations: Avg, average; COPD, chronic obstructive pulmonary disease; ER, emergency room.
A total of 778 features were analyzed. Shown are general categories and example features within each category.
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Figure 1.  Overview of the cohort selection strategy for people with type 2 diabetes mellitus along with matched age and gender 
nondiabetic controls.

Table 2.  Descriptive Characteristics of the Full Cohort and Tracker Cohort of People With Type 2 Diabetes Mellitus and Those Who 
Do Not Have Diabetes.

Full cohort

  T2DM Controls

Number 54 656 113 016
Percent male 53.7% 53.7%
Mean age (s.d.) 54.8 (10.2) 54.3 (10.7)
Lipid disordera 67.1% 27.3%
Hypertensiona 69.3% 28.1%
Respiratory illnessa 41.5% 32.1%
Activity trackersa 8.2% 9.0%
Influenza event (medically attended)a 1.96% 1.37%
Influenza vaccinationa 34.3% 24.3%
Influenza prescription (per 100)a 27.1 22
Annual ER visits (per 1000)a 343 155
Annual hospital visits (per 1000)a 127 40
Annual paid medical costsa $9785 $4665
Median household incomea $55 003 $60 823
No high school educationa 13.9% 12.2%
Latinoa 20.0% 15.7%

Tracker cohort only

Number of trackers 4459 10 321
Percent male 41.5% 42%
Mean age in years (s.d.) 50.8 (9.8) 51.5 (10.1)
% days with tracked stepsa 78.7% 80.7%
Charlson Comorbidity Index (CCI)a 2.28 0.37
Influenza vaccinationa 46.9% 38.8%
Mean nightly sleep duration (hours)a 6.48 6.69
Sleep regularity index (SRI)a 0.72 0.77
Resting heart rate (bpm)a 71.2 66.0
Mean daily step counta 6256 7374
Average daily cardio exercise sessionsa 0.20 0.41

Abbreviations: ER, emergency room; s.d., standard deviation; T2DM, type 2 diabetes mellitus.
The tracker cohort uses mobile tracking devices such as mobile phones or wearable fitness devices.
aP < .001.
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T2DM and 9.0% of the controls without diabetes in the study 
cohort (Table 2). Trackers with T2DM had less regular sleep 
as measured by the sleep regularity index21 and fewer sleep 
hours on average (6.48-6.69 hours, P < .001) compared to 
age and gender matched controls. They also engaged in less 
physical activity than trackers without diabetes, with fewer 
steps and exercise sessions on a daily basis, along with higher 
resting heart rate and body weight.

Impact of Influenza on People With Diabetes 
and Control Population Data Claims

We identified 1086/54 656 with T2DM and 1567/113 016 
without T2DM with medically attended influenza events 
for the pre/postanalysis (Table 3). A total of 46.1% of peo-
ple with T2DM and influenza received influenza vaccina-
tion, as opposed to 37.9% of controls. Among the T2DM 
population, abnormal glucose events were observed more 
frequently in the peri-influenza period than in the baseline 
period with an increase of 74% (2.15%-3.74%, P < .05). 
Pneumonia rates also rose 7.4-fold, ischemic heart disease 
by 1.6-fold, and sepsis by 5.7-fold comparing the peri-
influenza period with baseline. Over the same time period, 
health utilization increased in terms of emergency room 
visits by 3.7-fold, hospital visits by 4.8-fold, prescribed 
antibiotics by 3.2-fold, and influenza antiviral medications 
by 361-fold. Influenza also impacted controls, who saw 
increased rates of pneumonia and ischemic heart disease 
by 13- and 1.2-fold respectively, along with increases in 
antibiotic and antiviral medication use, ER visits, and hos-
pital visits.

A comparison of the pre/post gains showed a 4.8% gain in 
pneumonia in the T2DM group compared with 3.1% for con-
trols (P < .05) and a 2.1% gain for ischemic heart disease 
among those with T2D, almost eight times that is seen in 
controls (P < .05). Gain scores in antibiotic use and hospital 
visits were also greater for people with T2DM vs controls 
(37.8 prescriptions/100 people vs 28.3, P < .01 and 5.3 vis-
its/100 people vs 2.1, P < .01, respectively).

Impact of Influenza on Behavioral Activities of 
People With Diabetes and Control Populations

To assess the effect of influenza infection on day-to-day step 
and sleep behaviors, we removed the requirement for con-
tinuous one-year coverage during the 2016 to 2017 influ-
enza season to identify a cohort with medically attended 
influenza with activity-rich tracking data. The other require-
ments of age 18 and being a member of the health plan still 
held. We selected individuals with a high density of logged 
steps or sleep, with at least 5 days of reported activity in 
14 days before and after the influenza diagnosis date (Figure 
2(a)). This provided 67 persons with T2DM and 243 non-
matched controls. In Figure 2(b), people with T2DM logged 
10 000 fewer steps in four days pre-influenza and seven 

days postinfluenza period compared to their baseline, with a 
lowest of 5500 daily steps (28.4% reduction from baseline) 
occurring approximately two days after the influenza diag-
nosis event. A similar pattern was noted for controls in the 
same time period. Figure 2(c) shows the day-to-day changes 
in sleep patterns for people with and without T2DM in 
14 days pre- and postinfluenza. People with T2DM also saw 
a shift of up to 30 minutes in sleep start time in the days 
before diagnosis with influenza, as well as an increase in 
restless nights and naps taken. These changes persisted for 
several days postinfluenza diagnosis. We also examined 
step and sleep activity as well as heart rate data from the 
wearable fitness device in the 14-day period before and after 
an influenza vaccination. As shown in Figure 2(d), influenza 
vaccination in this subcohort did not have a significant 
impact on behaviors or heart rate, supporting the overall 
safety of influenza vaccination.

Discussion

Health care systems are increasingly looking to add digital 
health technologies to support type 2 diabetes care.22 Here, 
we used PGHD derived from consumer digital mobile tech-
nologies, including wearable sensors to determine how influ-
enza impacts adults living with type 2 diabetes and matched 
controls in addition to conventional real-world claims data 
from a large US health company.

Among those with documented influenza infection, we 
observed markedly increased rates of pneumonia, ischemic 
heart disease, and sepsis in the peri-influenza compared to 
baseline periods especially for individuals with type 2 diabe-
tes. Taken together with the larger number of emergency 
room visits and hospitalizations, these results suggest that for 
people with type 2 diabetes influenza increases the risk for 
more severe medical outcomes and health care utilization 
compared to the background population. Our findings are 
consistent with prior research that influenza adds to the mor-
bidity burden among people with diabetes23-25 and support 
recent studies on the effect of influenza infection on the risk 
of developing ischemic heart disease.5,26-28

Among those wearing simple tracking devices, we did not 
observe significant changes in daily average step or sleep 
activity when comparing the six-week period surrounding 
the influenza infection (peri-influenza period) to baseline 
(nonperi-influenza period). This likely reflects the small 
number of individuals with documented influenza infection 
in this group, and the long observation period over which 
activity is averaged (six weeks), which may be washing out 
the short-term activity change around the event. However, in 
individuals with a high density of PGHD, a clear signal was 
observed in terms of changes in steps, sleep, and heart rate 
over two weeks before and after an influenza diagnosis. Of 
note, the activity disturbances in this cohort preceded influ-
enza diagnosis by up to five days with detectable changes 
from baseline activity.
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To our knowledge, this is the first study to characterize the 
immediate impact of influenza on medical outcomes and activ-
ity levels for adults with type 2 diabetes compared to matched 
controls. Using individual PGHD to complement conventional 
population level claims data is valuable for a number of rea-
sons. First, PGHD with medical claims allow a more nuanced 
description of the impact of influenza on people with diabetes. 
For example, a potential area of exploration is whether step and 

sleep disturbances lead to behavioral reasons for poor diabetes 
control during active infection. The finding that vaccination 
itself leads to no observable adverse activity effects provides 
additional incentives for influenza vaccination in the popula-
tion with diabetes; this reinforces recommendations for annual 
vaccination by the WHO, US Advisory Committee on 
Immunization Practices (ACIP), the ADA, and other public 
health bodies and vaccine policymakers globally.2,9,10

Figure 2.  Time series visualization of trackers with rich activity data around an influenza event. (a) Selection strategy of patients 
with dense step tracking data from wearable activity devices in the surrounding 14 days of documented influenza infection. (b) 
Impact of influenza infection on steps taken in 14 days before and after influenza diagnosis. Step activity is aggregated per day for 
people with diabetes (n = 67) and controls (n = 243) in two weeks before and after influenza diagnosis. (c) Impact of influenza 
infection on sleep patterns in 14 days before and after influenza diagnosis. (d) Impact of influenza vaccination on daily steps taken, 
sleep duration, and average daily heart rate in 14 days before and after vaccination. Aggregated time series are smoothed to 
reduce noise. Effect size may be underestimated. Timing of effects may be considered accurate within a five-day tolerance.
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Second, the clear signals we observed in the days lead-
ing up to an influenza diagnosis point to the potential of 
PGHD for personalized and population level disease sur-
veillance. Further research is warranted to understand 
whether changes in daily activity can predict influenza 
onset for targeted early intervention with antiviral medi-
cations. Likewise, population level changes in activity 
may signal impending influenza outbreaks to public 
health officials or care providers, providing valuable lead 
time to garner resources and minimize the spread of dis-
ease. Policy makers can also use this information to gain 
greater insight into the economic costs of influenza. 
Digital information such as online searches have been 
shown to precede influenza outbreaks,29,30 but PGHD has 
the added advantage of passive monitoring at much 
higher time granularities, reducing the need for large 
sample sizes to detect signal.

Third, PGHD within the appropriate medical context 
may be applicable to a number of other diseases. The 
PGHD in this study uses a novel data stream in the form of 
consumer wearable devices, which are gaining traction 
among health insurers seeking to improve population 
health with wellness approaches.31 Many acute illnesses or 
exacerbations of chronic disease manifest symptomati-
cally with disturbances in activity before being diagnosed. 
Digital data obtained from unobtrusive passive monitoring 
with consumer wearable devices could fulfill an important 
need for early detection of a number of public health 
conditions.

Our study has limitations. The analysis focused on adults 
with commercial insurance and does not fully represent 
older people with diabetes within the United States or at risk 
underserved populations. However, the large cohort size 
still provides valuable population level insights into the 
effects of influenza on people with diabetes. Medical claims 
and pharmacy data may not capture all episodes of influenza 
infection or vaccination. Still, the identification of influenza 
event with claims data minimizes the chances of false label-
ing. Finally, even with the population scope of our study, the 
number of people with usable PGHD was small, and we 
needed to expand the influenza analysis period to find suf-
ficient numbers of people on which to evaluate the digital 
information. Furthermore, people with PGHD likely reflect 
different behavioral patterns from the general population. 
Yet, consumer mobile health technology is still in its early 
stages. As more novel data streams become available and 
mobile technology becomes more commonplace, the ability 
to detect relevant digital health signals in a population will 
only improve.

In conclusion, we introduce a novel framework linking 
PGHD from consumer wearable devices with conventional 
medical claims data to gain population insights into influ-
enza and its impact on people with type 2 diabetes. Compared 
to prior approaches for disease surveillance which skew 
toward those with more severe outcomes, this framework 

allows for a more nuanced analysis of a more representative 
population of diabetes. We believe this approach has poten-
tial for broader applications in disease surveillance beyond 
influenza and other infectious illnesses. These data also 
strengthen the need for annual influenza vaccination for 
people with diabetes in accordance with international and 
national guidelines.
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