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Information is transmitted in the brain through various kinds of neurons that respond differently to 
the same signal. Full characteristics including cognitive functions of the brain should ultimately be 
comprehended by building simulators capable of precisely mirroring spike responses of a variety 
of neurons. Neuronal modeling that had remained on a qualitative level has recently advanced 
to a quantitative level, but is still incapable of accurately predicting biological data and requires 
high computational cost. In this study, we devised a simple, fast computational model that can 
be tailored to any cortical neuron not only for reproducing but also for predicting a variety of spike 
responses to greatly fl uctuating currents. The key features of this model are a multi-timescale 
adaptive threshold predictor and a nonresetting leaky integrator. This model is capable of reproducing 
a rich variety of neuronal spike responses, including regular spiking, intrinsic bursting, fast spiking, 
and chattering, by adjusting only three adaptive threshold parameters. This model can express 
a continuous variety of the fi ring characteristics in a three-dimensional parameter space rather 
than just those identifi ed in the conventional discrete categorization. Both high fl exibility and low 
computational cost would help to model the real brain function faithfully and examine how network 
properties may be infl uenced by the distributed characteristics of component neurons.

Keywords: cortical neuron, fl uctuating input, predicting spike times, leaky integrate-and-fi re model, adaptive threshold, 

parameter optimization, brain simulator

For these reasons, simplifi ed phenomenological models such as 
the leaky integrate-and-fi re (LIF) model (Stein, 1965) have been 
proposed, and these models have been useful for studying learn-
ing, memory, and the dynamics of neural networks (Gerstner and 
Kistler, 2002; Hansel and Sompolinsky, 1998). Due to this sim-
plifi cation, many details of the biophysical properties of neurons 
are abandoned. However, simplifi ed models that extend beyond 
the qualitative description of neuronal fi ring have been devel-
oped (Fourcaud-Trocmé et al., 2003; Gerstner and Kistler, 2002; 
Izhikevich, 2004). Nonlinear integrate-and-fi re models have been 
successfully applied to some typical neurons (Badel et al., 2008; 
Brette and Gerstner, 2005). The spike response model (SRM) exhib-
its fairly good predictive performances (Jolivet et al., 2004, 2006; 
Kobayashi and Shinomoto, 2007). It is feasible to fi t the LIF model 
to neurophysiological data, in particular, to reproduce the statisti-
cal features in interspike intervals (Inoue et al., 1995; Lansky and 
Ditlevsen, 2008; Lansky et al., 2006; Tuckwell and Richter, 1978), 
but parameter optimization in the SRM or nonlinear models for 
predicting spike times is a diffi cult problem because of their non-
linearity or a large number of parameters.

In this study, we propose a minimal model for accurately predict-
ing a rich variety of spike responses in vitro and develop a procedure 
for optimizing model parameters. The model consists of the simple 
leaky integrator and a multiple-timescale adaptive threshold, which 
is referred to as the MAT model. The MAT model has low compu-
tational cost and high predictive performances for both stationary 
and nonstationary fl uctuating currents. The model is adaptable to 

INTRODUCTION
Identical fl uctuating currents elicit similar spike trains from the 
same neuron (Bryant and Segundo, 1976; Mainen and Sejnowski, 
1995), but there are signifi cant differences in the spike trains of 
different neurons to the same currents. The brain comprises a 
variety of neurons possessing such different response characteris-
tics (Shinomoto et al., 2009). A model that is capable of precisely 
reproducing spike response of any neuron to any input current is 
an essential fi rst step to both building a brain simulator (Brette 
et al., 2007; Diesmann et al., 1999; Gewaltig and Diesmann, 2007; 
Izhikevich and Edelman, 2008; Markram, 2006; McIntyre et al., 
2004; Plesser and Diesmann, 2009), and understanding the com-
putational mechanisms of neurons (Abeles, 1991; Beggs and Plenz, 
2003; Diesmann et al., 1999; Ikegaya et al., 2004).

The Hodgkin–Huxley (HH) model is a standard model for 
describing neuronal fi ring, and has been continually revised by 
including ionic channels to reproduce standard electrophysi-
ological measurements of cortical neurons (Hodgkin and Huxley, 
1952; Koch, 1999). It has recently become possible to use elaborate 
simulation platforms, such as NEURON (Hines and Carnevale, 
1997) and GENESIS (Bower and Beeman, 1995), for reproducing 
experimental data. Because of nonlinearity and complexity, how-
ever, parameter optimization of the HH type models is a notori-
ously diffi cult problem (Achard and De Schutter, 2006; Goldman 
et al., 2001; Huys et al., 2006), and these models require a high 
computational cost, which hinders performing the simulation of 
a massively interconnected network.
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various types of neurons, including regular  spiking (RS), intrinsic 
bursting (IB), and fast spiking (FS) neurons, by simply fi tting three 
parameters, and is also capable of describing the spike patterns of 
chattering (CH) neurons.

MATERIALS AND METHODS
MULTI-TIMESCALE ADAPTIVE THRESHOLD MODEL
The dynamics of a nonresetting leaky integrator proposed in this 
study is given as,

τm

dV

dt
RI t= − +V ( ), (1)

where τ
m

, V(t), R, and I(t) are the membrane time constant, model 
potential, membrane resistance, and input current, respectively. 
When the model potential reaches the spike threshold θ(t), a spike 
is generated. In our model, V(t) is not reset even if the model 
assumes spikes. Instead, the spike threshold increases when the 
model assumes a spike and then decays toward the resting value. 
In the standard adapting threshold model, the spike threshold 
θ(t) decays exponentially (Brandman and Nelson, 2002; Chacron 
et al., 2003; Geisler and Goldberg, 1966). In the present study, we 
extended this adaptive threshold rule into a MAT rule.

θ( ) ( )t H t tk
k

= − +∑   ω, (2)

H t tj j
j

L

( ) exp( / )= −
=
∑α τ

1

, (3)

where t
k
 is the kth spike time, L is the number of threshold time 

constants, τ
j
 (j = 1,…,L) are the jth time constants, α

j
 (j = 1,…,L) 

are the weights of the jth time constants, and ω is the resting value. 
To avoid singular bursting, we introduced an absolute refractory 
period of 2 ms during which the model is not allowed to fi re even 
if the membrane potential exceeds the threshold. If the membrane 
potential still remains above threshold for the 2 ms, the model 
assumes another spike. We refer to the model as the MAT(L) model, 
including a single timescale model as the MAT(1). Here, we inte-
grate the equation with the Euler method at a step size of 0.001 ms 
and verify results with backward Euler.

FITTING PROCEDURE
The MAT(L) model is specifi ed by the 2L + 3 parameters {τ

m
, R, τ

j
, α

j
 

(j = 1, 2,…,L), ω}. The model comprises two dynamic components: 
the membrane potential and spike threshold (Figure 1A). We fi rst 

A
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FIGURE 1 | A variety of fi ring patterns represented by the MAT* model. 

(A) Schematic representation of the MAT model: A ready-made nonresetting 
leaky integrator estimates the intrinsic subthreshold membrane potential. If 
the estimated potential (blue trace) hits a threshold (black trace) from below, 
the model assumes a spike and lifts the threshold. The adaptive threshold 
spike predictor can be tailored to individual neurons by adjusting the amount 
of fast (10 ms) and slow (200 ms) dynamics. (B) Voltage responses of the 
three types of neurons, regular spiking (RS), intrinsic bursting (IB), and fast 
spiking (FS) (red traces) induced by the same fl uctuating currents (the 
green trace at the top): The estimated potentials and predicted spikes with 

the MAT* model (blue traces) are depicted below the real membrane potentials.
The model potentials computed for the same current are identical among 
neurons. Predicted spikes are connected by dotted lines to the real spikes if they 
coincided within 2 ms. Model parameters: RS: α1 = 37 mV, α2 = 2.0 mV, 
ω = 19 mV, IB: α1 = 1.7 mV, α2 = 2.0 mV, ω = 26 mV, FS: α1 = 10 mV, 
α2 = 0.002 mV, ω = 11 mV; common parameters for the three neurons: 
τm = 5 ms, R = 50 MΩ; L = 2, τ1 = 10 ms, τ2 = 200 ms. (C) Magnifi ed view of 
the boxed area in (B): Different dynamics are manifested for the identical model 
potentials due to the difference in the three parameters of MAT* threshold 
dynamics.
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determined the parameters of the membrane potential dynamics 
{τ

m
, R} by fi tting the voltage response to fl uctuating currents with 

a nonresetting leaky integrator. These parameters were optimized 
for minimizing the squared error,

ˆ ˆ ( )τm
, m

, argmin
m

R
dV

dt

V RI t
dt

R

= + −⎧
⎨
⎩

⎫
⎬
⎭

∫
τ τ

2

. (4)

We determined the membrane time constant τ
m

 for 34 neurons (see 
Section “Electrophysiological Recordings”). The membrane time con-
stant ranged from 2.0 to 12.0 ms, with a mean ± SD of 6.2 ± 2.2 ms. 
By confi rming that predictive performance is not sensitive to this 
parameter, we adopted a common membrane time constant for all 
neurons, τ

m
 = 5 ms. The resistance R simply scales the potential and 

is unrelated to the spike time prediction of the model; therefore, we 
adopted a common resistance R = 50 MΩ for all neurons.

Second, we determined the parameters for the spike threshold 
dynamics {τ

j
, α

j
, ω}. In this study, we examined three cases, sin-

gle timescale (L = 1), two timescales (L = 2), and three timescales 
(L = 3). We selected a set of time constants τ

j
 from trial parameters 

(10, 50, and 200 ms), so that the model performance defi ned below 
is maximized on average for all neurons. Given a set of time con-
stants, the fi ring properties of individual neurons are solely rep-
resented by {α

j
, ω}. These tailor-made parameters were optimized 

so that the coincidence factor Γ defi ned below was maximized for 
the set of sample data comprising three input currents (mean ± SD, 
0.42 ± 0.14, 0.37 ± 0.25, and 0.29 ± 0.19 nA) and the corresponding 
spike trains. We used the Nelder–Mead method (Nelder and Mead, 
1965) for the maximization procedure.

ASSESSMENT OF PREDICTIVE PERFORMANCE
The performance of the spike time prediction is assessed with a coeffi -
cient measuring the degree of coincidence of a model spike train with 
a real spike train. Among various methods for measuring the similar-
ity between two spike trains (Tsubo et al., 2004; Victor and Purpura, 
1996), we adopted here the coincidence factor Γ (Jolivet et al., 2004, 
2006, 2008a; Kobayashi and Shinomoto, 2007), defi ned by

Γ
Δ

=
−
+

×
−

N N

N N
coinc coinc

data model

2

1 2ν
, (5)

where N
data

 and N
model

, respectively, represent the numbers of spikes 
in the data and the model, N

coinc
 is the number of coincident spikes 

with an allowable range of time Δ. Here, N
coinc

 is subtracted by the 
expected number of coincidences between the data and the random 
Poisson spikes of the given rate, 〈N

coinc
〉 = 2vN

data
, so that the coef-

fi cient takes a value close to 0 for mutually independent spike trains. 
The coeffi cient is divided by 1 − 2vΔ so that it takes a value 1 if all 
the spikes coincided within Δ. In this study, Δ is chosen as 2 ms.

Each neuron model was tailored to every neuron using sam-
ple current–voltage data, by maximizing the coincidence score Γ. 
The model was then tested with a new current to see how well it 
predicted spike times. The predictive performances was assessed 
based on the coincidence scores normalized with the trial-to-trial 
variation of the experiments, defi ned by

Γ
Γ

ΓA
model-experiment

experiment-experiment

≡ . (6)

Various models were compared based on the predictive scores 
Γ

A
 evaluated for individual neurons under conditions in which the 

neurons were fi ring at rates close to 10 and 30 Hz (in case of FS, 
70 and 140 Hz) respectively, with different degrees of fl uctuation 
(SD/mean, 0.35 and 0.70). We took into account the predictive 
scores Γ

A
, provided that spikes were elicited within a range from 

5 to 200 Hz, and with a degree of trial-to-trial reproducibility, 
Γ

experiment-experiment
 > 0.1. As a result, 119 data among 4 × 34 = 136 

data were available, and each neuron was evaluated by the average 
score for the three or four data.

ELECTROPHYSIOLOGICAL RECORDINGS
The current injection experiments for 34 neurons in layers 2/3 
and 5 of the rat motor cortex were performed exclusively for the 
present study, whereas the conductance injection experiments for 
nine neurons were performed previously for the study of Miura 
et al. (2007). We abbreviate the animal preparation details that are 
common with the methods published in the paper, and describe 
the essentials needed in the present study. All experiments were 
performed in accordance with animal protocols approved by the 
Experimental Animal Committee of the RIKEN Institute.

Wistar rats (postnatal days, 17–27) were deeply anesthetized 
with diethyl ether gas and then decapitated. Data used for exam-
ining the spike time prediction was taken from rat cortical slices 
(400-µm thick) sectioned using a microslicer (PRO-7; Dosaka, 
Kyoto, Japan). After incubation for 30 min at 31 °C and at least 
1 h of recovery at room temperature, each slice was transferred 
to a submerged-type recording chamber continuously circu-
lating with normal artifi cial cerebrospinal fl uid (ACSF; 32°C), 
which consisted of (in mM) 124 NaCl, 2.5 KCl, 1.2 KH

2
PO

4
, 26 

NaHCO
3
, 1.2 MgSO

4
, 2.5 CaCl

2
, and 25 D-glucose and was satu-

rated with 95% O
2
 and 5% CO

2
 gas. We recorded in the current-

clamp or conductance-clamp whole-cell confi guration from the 
soma using patch pipettes fi lled with (in mM) 140 K-gluconate, 
2 NaCl, 1 MgCl

2
, 10 HEPES, 0.2 EGTA, 2 5-ATPNa

2
, 0.5 GTPNa

2
, 

and 10 biocytin, pH 7.4 (Tsubo et al., 2007). The neuron mem-
brane potentials were recorded using a current clamp amplifi er 
(Axoclamp 2B; Molecular Devices, Union City, CA, USA) in the 
conventional bridge mode. Recorded signals were digitized using 
an analog–digital interface (Digidata 1322A; Molecular Devices) 
at 40 kHz in current injection experiments and 50 kHz in con-
ductance injection experiments. To block the spontaneous input 
via AMPA, NMDA, and GABA

A
 receptors, a cocktail of 6-cyano-7-

nitroquinoxaline-2,3-dione (10 µM; Sigma, St Louis, MO, USA), 
DL-2-amino-5-phosphonopentanoic acid (25 µM; Sigma), and 
bicuculline methiodide (30 µM; Sigma) was added to ACSF and 
bath-applied to the cortical slices. Based on the criteria suggested 
by Nowak et al. (2003), the 34 recorded cells were classifi ed into 
22 RS, 8 IB, and 4 FS neurons.

For the current injection experiments, the input current

I t A I g t t A I g t t
k

k
j

j( ) = − + −∑ ∑exc inhexc inhτ τ( ) ( ), (7)

where g t

t
e t

t

t

τ

τ

τ( ) = ≥

<

⎧
⎨
⎪

⎩⎪

− /

( )

 ( )

  

0

0 0 ,
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was prepared by mimicking natural inputs comprising the  synaptic 
input from thousands of unitary excitatory and inhibitory post-
 synaptic currents (EPSCs and IPSCs) with amplitudes I

exc
 = 0.1 nA 

and I
inh

 = 0.033 nA, and decay-time constants τ
exc

 = 1 ms and 
τ

inh
 = 3 ms, respectively (Tsubo et al., 2004). A = 0.1–1.2 is a scale 

factor, and the voltage dependence of EPSCs and IPSCs were 
neglected (Stevens and Zador, 1998). Arrival time of excitatory and 
inhibitory spikes {t

k
} and {t

j
} were drawn from the Poisson processes 

with statistical rates r
exc

 and r
inh

, respectively. During the stationary 
fl uctuating current trials, the statistical rates were fi xed so that the 
mean ± SD of the input currents were 0.40 ± 0.14 nA (r

exc
 = 6.88 kHz, 

r
inh

 = 2.88 kHz) or 0.40 ± 0.28 nA (r
exc

 = 24.52 kHz, r
inh

 = 20.52 kHz). 
Then, these injected currents were scaled by a factor A; for instance, 
the current ID “0.20 ± 0.14 nA” indicates the current made from 
“0.40 ± 0.28 nA” scaled by 0.5. For nonstationary current trials, the 
statistical rates were sinusoidally time-varied so that the mean ± SD 
of the input currents were [0.30 + 0.10sin (2πt)] ± [0.21 + 0.07sin 
(2πt/2)] nA. One trial lasted 5 s and the identical currents were 
repeated twice with a 15-s intertrial interval.

For conductance injection experiments, the excitatory and 
inhibitory input conductances g

exc
(t) and g

inh
(t) were described by 

the Ornstein–Uhlenbeck processes (OUP; Uhlenbeck and Ornstein, 
1930) with time constants τ

exc
 = 2.7 ms and τ

inh
 = 10.5 ms, mean 

conductances g
exc0

 and g
inh0

 = Bg
exc0

, and SDs σ
exc

 = g
exc0

/2 and 
σ

inh
 = Bg

exc0
/4, respectively. The excitatory mean conductance g

exc0
 

was set to 0.018 and 0.024 µS for parameter determination, and 
0.012 and 0.030 µS for model assessment. The ratio of excitatory 
and inhibitory mean conductance B = g

exc0
/g

inh0
 was set to −0.348 

and −0.370, respectively. Using a conductance clamp method 
(Robinson and Kawai, 1993; Sharp et al., 1993), we injected these 
conductances as a fl uctuating current I(t):

I(t) = −g
exc

(t)(V(t) − E
exc

) − g
inh

(t)(V(t) − E
inh

), (8)

where V(t) is the recorded membrane potential, and E
exc

 = 0 mV 
and E

inh
 = −75 mV are the reversal potential of excitatory and 

inhibitory synaptic currents, respectively. One trial lasted 10 s. 
In each trial, a set of time constants, mean values, and SDs of 
excitatory and inhibitory OUP conductances were fi xed. The 
identical conductances were repeated twice with a 30-s intertrial 
interval.

RESULTS
We fi rst study the timescales essential for predicting spike times 
of cortical neuron in vitro. We design the minimal MAT model 
for predicting spike times. Second, we show that the MAT model 
accurately predicts the spike responses of a variety of cortical neu-
rons and those for various input conditions by adjusting only three 
parameters. We compare the predictive performances of this model 
with three standard models: a HH model, LIF model, and SRM. The 
parameters of each model are fi tted to data, using widely accepted 
methods (Appendix).

TIMESCALES ESSENTIAL FOR PREDICTING SPIKES
To study the timescales essential for predicting spike times, we com-
pare the predictive performances of MAT(L) models. We exam-
ine three cases, single timescale (L = 1), two timescales (L = 2), 
and three timescales (L = 3). Timescales of the adaptive threshold 

dynamics τ
j
 are selected from 10, 50, and 200 ms. The predictive 

performances achieved by all possible combinations of the three 
timescales are summarized in Table 1. The optimal timescale for 
the MAT(1) model is τ

1
 = 50 ms. The optimal timescales for the 

MAT(2) model are τ
1
 = 10 ms and τ

2
 = 200 ms, and this model 

resulted in the best performance for all combinations of the three 
timescales. It is noteworthy that the predictive performance of this 
MAT(2) model was even better than that of the MAT(3) model. 
Though adding parameters may improve fi tting, a wider class 
model does not necessarily acquire the better predictive ability by 
the learning from a fi nite set of samples, because a model with 
overabundant parameters may exhibit overfi tting for fi nite samples. 
We refer to the MAT(2) model with τ

1
 = 10 ms and τ

2
 = 200 ms as 

the MAT* model. In the following subsections, we adopt the MAT* 
model for predicting spike times.

FREE PARAMETERS OF THE MAT* MODEL REPRESENTING DIFFERENT 
KINDS OF NEURONS
Identical fl uctuating currents induce different responses in differ-
ent neurons (Figure 1B). Neurons are categorized into three types 
based on conventional categorical criteria given by McCormick et al. 
(1985) and Nowak et al. (2003): RS, IB, and FS. A variety of spiking 
patterns among these neurons elicited by the same input current are 
predicted simply by selecting three parameters of the MAT* model. 
It should be noted that the model potentials are computed with the 
same leaky integrator and therefore are identical for all neurons. In 
the MAT* model, different fi ring patterns are manifested solely due 
to the difference in the threshold dynamics (Figure 1C).

For a set of 34 neurons, three parameters α
1
, α

2
, and ω of the 

MAT* model are determined so that the fraction of common spikes 
between the model and experiment is maximized for the sample 
dataset. RS, IB, and FS neurons that are categorized based on the 
conventional categorical criteria are separately localized in a com-
ponent plane of the fast and slow threshold dynamics α

1
 and α

2
 

(Figure 2A).
H(t) (Eq. 3) are depicted with respect to three prototypical neu-

rons (Figure 2B): RS neurons contain both large amounts of fast 

Table 1 | Predictive performances achieved by all combinations of 

timescales.

Model Timescales of adaptive  Predictive performance Γ
A

 threshold (ms)

MAT(1) 10 0.72 ± 0.25

MAT(1) 50* 0.80 ± 0.23

MAT(1) 200 0.69 ± 0.22

MAT(2) 10, 50 0.82 ± 0.25

MAT(2) 10, 200* 0.89 ± 0.21

MAT(2) 50, 200 0.81 ± 0.22

MAT(3) 10, 50, 200 0.86 ± 0.22

 References 

HH – 0.51 ± 0.26

LIF – 0.66 ± 0.26

SRM 50* 0.70 ± 0.26

*Timescale(s) selected according to the high predictive performance.
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α
1
 and slow α

2
 components of the threshold dynamics, whereas IB 

neurons contain a small amount of the fast component α
1 
and a 

large amount of the slow component α
2
, and FS neurons contain 

a small amount of the fast component α
1 
and a negligible amount 

of the slow component α
2
.

MODEL PERFORMANCE
We compare the MAT* model with a HH model, LIF model, and 
SRM for their ability to predict spike times elicited from fl uctuating 
currents by neurons in a rat cortical slice preparation (Figure 3B). In 
each model, the model parameters are optimized from sample data 
consisting of injected currents and the induced membrane potential 
of an individual neuron, and then test with a new current for the 
ability to predict spike times of the same neuron. The predictive abil-
ity is evaluated with a coincidence factor Γ between predicted spikes 
and target spikes within a range of 2 ms (see Section “Materials 
and Methods”). Identical fl uctuating currents elicit similar spike 
trains from the same neuron (Figure 3A). The score is normalized 
by variation among experimental trials so that the best prediction 
could be evaluated as Γ

A
 close to 1. The mean ± SD of the predictive 

scores Γ
A
 are evaluated for 34 neurons (Figure 3C).

The HH model is fi tted to experimental conductance data, 
but is weak in its ability to predict spike times, resulting in a pre-
dictive scores Γ

A
 = 0.51 ± 0.26. The LIF model and SRM with an 

adaptive threshold yield Γ
A
 = 0.66 ± 0.26, and Γ

A
 = 0.70 ± 0.26, 

respectively. The MAT* model achieves the best predictive score 
of Γ

A
 = 0.89 ± 0.21.

PREDICTION OF SPIKE RESPONSES TO NONSTATIONARY 
CURRENT INPUTS
In addition to the stationary situations in which synaptic input cur-
rents fl uctuate fi nely, we also mimic the nonstationary situation in 
which behavioral stimuli or motor commands greatly modulate the 
input currents. In this study, the temporal mean of the fl uctuating 
current is modulated sinusoidally with a period of 1 s, while the SD 
of fl uctuation is slowly modulated with a period of 2 s (Figure 4A). 
The predictive scores Γ

A
 evaluated for an RS neuron for the entire 

5 s interval are 0.49, 0.78, 0.64, and 0.84 for the HH, LIF, SRM, and 
MAT* models, respectively.

The four models are also compared for their ability to predict 
transient fi ring rate adaptation of an RS neuron to the initiation 
of current injections. All preexisting models fail to reproduce the 
transient adaptation, but the MAT* model is able to predict the 
adaptive phenomena (Figure 4B). The predictive scores Γ

A
 evalu-

ated for the initial 1 s interval are 0.49, 0.52, 0.38, and 0.68 for the 
four models.

In this way, the MAT* model is superior to the three standard 
models in predicting spikes for stationary fl uctuating currents, 
slowly modulated nonstationary currents, and the onset of cur-
rent injection.

60

A

B

FIGURE 2 | Components of the fast and slow threshold dynamics of the 

MAT* model. (A) The coeffi cients are determined for 34 neurons with 
respect to the sample data comprising three input currents and the induced 
spikes. The 22 regular spiking (RS), 8 intrinsic bursting (IB), and 4 fast 

spiking (FS) neurons are depicted with circles, triangles, and squares, 
respectively. (B) Double exponential functions H(t) (Eq. 3) of the three types 
of neurons (three closed marks). Model parameters are the same as in
 Figure 1.
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A

B C

FIGURE 3 | Spike times predicted by the four models. (A) Schematic 
fi gure of the current injection experiment: Nearly identical spike sequences 
are elicited from identical fl uctuating currents for each neuron. Asterisks 
mark the spikes that coincide within 2 ms in two experimental trials. 
(B) Voltage response of a given neuron to a novel input current, and the 
spike times predicted with the HH, LIF, SRM, and MAT* models: Dotted 

lines represent the experimental spike times. Model parameters: HH: 
C = 86 pF, gNa = 750 nS, gKd = 210 nS, gM = 210 nS, gL = 0.6 nS, 
VT = −61 mV; LIF: θ = 25 mV; SRM: α = 12 mV, ω = 13 mV, τα = 50 ms; 
MAT*: α1 = 37 mV, α2 = 2 mV, ω = 19 mV. (C) Predictive scores ΓA 
evaluated for the four models: The error bars indicate SDs among all 
neurons examined.

Current

Voltage

HH

LIF

SRM

MAT*

Another trial

500 ms 500 ms

50
 m

V
1 

nA

A B

50
 m

V
1 

nA

FIGURE 4 | Spike times for nonstationary input currents. Voltage 
responses of two RS neurons (red traces) induced by a nonstationary 
fl uctuating current (the green trace at the top). The mean of the current is 
depicted with a black dotted line. The spike times predicted by the HH, LIF, 
SRM, and MAT* models are depicted below. The model spikes that hit the 
experimentally obtained spikes are indicated by the blue bars, the excess 
spikes are indicated by the red bars, and the passes are indicated by the green 
short bars. The lowest column represents another experimental trial with 
identical fl uctuating current. (A) The mean of the current is modulated 
sinusoidally with a period of 1 s, while the SD of the current is modulated with 

a period of 2 s. The predictive scores ΓA of the models fi tted to the entire 5 s 
interval are 0.49, 0.78, 0.64, and 0.84 for the HH, LIF, SRM, and MAT* models, 
respectively. Parameters: HH: C = 70 pF, gNa = 960 nS, gKd = 25 nS, gM = 4 nS, 
gL = 5 nS, VT = −38 mV; LIF: θ = 22 mV; SRM: α = 15 mV, ω = 20 mV, 
τα = 50 ms; MAT*: α1 = 56 mV, α2 = 5 mV, ω = 9 mV. (B) At the onset of a 
current with a mean ± SD of 0.39 ± 0.13 nA, the predictive scores ΓA evaluated 
for the initial 1 s interval are 0.49, 0.52, 0.38, and 0.68. Parameters: HH: 
C = 83 pF, gNa = 840 nS, gKd = 250 nS, gM = 130 nS, gL = 0 nS, VT = −63 mV; 
LIF: θ = 21 mV; SRM: α = 11 mV, ω = 5.5 mV, τα = 50 ms; and MAT*: 
α1 = 23 mV, α2 = 1.9 mV, ω = 11 mV.
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PREDICTION OF SPIKE RESPONSES TO CONDUCTANCE INPUTS
In addition to the current injection experiments, we also exam-
ine the predictive ability of the four models for the conductance 
injection experimental data. We analyze the data assuming that 
τ

m
 = 5 ms and R = 50 MΩ. Predictive scores Γ

A
 for the HH, LIF, 

SRM, and MAT* models are 0.52 ± 0.23, 0.64 ± 0.17, 0.45 ± 0.21, 
and 0.84 ± 0.18; thus, the MAT* model consistently exhibits a better 
performance for predicting spike times.

A VARIETY OF RESPONSES OF MAT* MODEL TO A RECTANGULAR 
CURRENT
We also explore a space of the parameters α

1
, α

2
, and ω to examine 

if MAT* model can produce the typical fi ring responses to a rec-
tangular current. As we confi rmed in the application to biological 
data, the MAT* model can represent response characteristics of the 
RS, IB, and FS neurons. Numerical simulations were performed 
with various parameter values (Figures 5A,B).

It is noteworthy that the specifi c fi ring pattern of the “chattering” 
(CH) neuron (Gray and McCormick, 1996) can be reproduced in 
the parameter range α

1
 < 0 and α

2
 > 0: A negative factor for the fast 

timescale, α
1
 < 0, lowers the fi ring threshold and initiates bursting 

with the given absolute refractory period. However, as bursting 
continues, the positive factor for the longer timescale, α

2
 > 0, accu-

mulates and eventually terminates bursting. This cycle is repeated 
to produce “chattering”.

DISCUSSION
We have proposed a new model named “MAT” that is equipped 
with a multi-timescale adaptive threshold predictor and a nonre-
setting leaky integrator. The minimal MAT* model is capable of 
reproducing a rich variety of neuronal spike responses from RS, 
IB, and FS neurons by simply adjusting three adaptive threshold 
parameters (Figure 1). The model expresses a variety of the fi ring 
characteristics rather than a conventional discrete categorization 
(Figure 2). The MAT* model provides the highest predictive per-
formance among four models including the conventional HH, LIF, 
and SRM (Figure 3), and is superior for predicting spikes for greatly 

fl uctuating inputs (Figure 4). It also has a potential for generating 
the specifi c fi ring pattern of the CH neurons (Figure 5).

BIOLOGICAL ENTITIES RELATED TO ADAPTIVE THRESHOLD DYNAMICS
An essential component of the MAT* model is the introduction 
of multiple time constants into the threshold dynamics. Adaptive 
threshold time constants were selected from among trial parameters 
of 10, 50, and 200 ms. These time constants would be related to 
biological ionic currents (Hille, 2001; Koch, 1999): [10 ms]: Fast 
transient Na+ current and delayed rectifi er K+ current, [50 ms]: 
hyperpolarization-activated cation current, and K+ A-current, and 
[200 ms]: noninactivating K+ current, hyperpolarization-activated 
cation current, and Ca+2-dependent K+ current.

Eventually, 10 and 200 ms were selected for the MAT* model 
based on its predictive performance. Different types of neuronal 
fi ring can be reproduced and predicted by simply adapting com-
ponents of shorter and longer timescale dynamics to experimental 
data. RS, IB, and FS neurons are separately localized in a compo-
nent plane of the two timescale dynamics. RS neurons have a large 
amount of both shorter and longer timescale threshold dynamics; 
IB neurons have a smaller amount of shorter one; and FS neurons 
have a small amount of shorter one and a negligible amount of 
longer one. If the fi ring characteristics are modifi ed by some exter-
nal operations on ion channel densities, it would be worthwhile to 
fi t the MAT model and examine how the weight parameters vary 
in such a process.

The effectiveness of our MAT model implies that neuronal fi ring 
dynamics are mainly governed by multiple refractory effects with 
different timescales, and the characteristics are mainly determined 
by their combination. The time constants (10, 50, and 200 ms) 
were chosen as trial parameters, and turned out to be good. When 
targeting individual neurons, there is still room for improvement 
in performance, by adding more timescales or selecting the more 
suitable set of time constants for individual neurons.

We examined a three timescale MAT(3) model that employs all 
three timescales (10, 50, and 200 ms) for its ability to predict spike 
times. The results showed that the MAT(3) model  performance was 

A B

FIGURE 5 | Components of fast and slow dynamics and the model 

simulations. (A) Distributions of MAT* parameters α1 and α2 for RS, IB, 
and FS neurons are represented as the 1/2 quantiles of the Gaussian 
distributions fi tted to the data in Figure 3. (B) Spikes generated by a 
rectangular current of 0.60 nA (500 ms): The parameters of the MAT* 

model are, RS: α1 = 30 mV, α2 = 2.0 mV, ω = 20 mV, IB: α1 = 7.5 mV, 
α2 = 1.5 mV, ω = 19 mV, and FS: α1 = 10 mV, α2 = 0.2 mV, ω = 10 mV. 
It is possible to mimic the chattering phenomenon by choosing a 
negative value for the fast component, CH: α1 = −0.5 mV, α2 = 0.4 mV, 
ω = 26 mV.
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slightly inferior to that of the two timescale MAT(2) model (Table 1). 
Mathematically, the MAT(2) model is a special case of the MAT(3) 
model. These would have occurred because a model with too many 
parameters tends to over-fi t to sample data and its predictive per-
formance is poorer than the simpler models. In devising a model 
of reality, we have to remember the principle of Occam’s razor. As 
long as the experimental time for parameter identifi cation is fi nitely 
available, the model should be as concise as possible.

TIME CONSTANT OF THE MEMBRANE POTENTIAL DYNAMICS
The membrane time constant τ

m
 fi tted to the 34 neurons were 

distributed as 6.2 ± 2.2 ms, which was much shorter than the 
most common membrane time constant estimates of 10–20 ms 
(McCormick et al., 1985; Yang et al., 1996). The signifi cant differ-
ence between these estimates was due to the difference in condi-
tions; traditional experiments measure the neuronal reaction from 
the resting state, whereas we were measuring the ongoing neuronal 
reaction as neurons were fi ring in a frequency close to the in vivo 
condition. Therefore, our membrane time constant represented an 
effective leak that sums up the effects of all ion channels.

LIMITATION OF MAT MODELS AND POSSIBLE MODEL EXTENSION
Although the MAT model devised in this study outperformed other 
models for predicting spikes of cortical neurons, it still failed to pre-
dict approximately 10% of the spikes compared to the trial-to-trial 
variation in experiments. The apparent imperfection of our model 
is associated with a lack of nonlinearity in the model membrane 
dynamics. There are a number of nonlinear models that are suc-
cessful in representing a variety of fi ring patterns in response to 
rectangular and ramp currents (Izhikevich, 2004). Nonlinear models 
are also capable of predicting spike times, and some models such 
as the adaptive nonlinear integrate-and-fi re models are effi cient 
(Badel et al., 2008; Brette and Gerstner, 2005; Fourcaud-Trocmé 
et al., 2003). However, the parameter optimization of these models 
is a very diffi cult problem; the different optimization methods and 
the different initial conditions can lead to vastly different results 
(Achard and De Schutter, 2006; Goldman et al., 2001). It should 
be noted that even if we have a complete set of models, the model 
identifi cation method cannot always fi nd the true parameters, but 
rather it often determines parameters that render the model worse 
than simpler models. The single timescale adaptive threshold model 
MAT(1) is less powerful than nonlinear models in describing the 
mathematical details of spiking mechanism, but it nevertheless won 
the fi rst place at the “International Competition on Quantitative 
Neuron Modeling” in both 2007 and 2008 (Jolivet et al., 2008a,b).

Another possible extension of the MAT model is the introduction 
of soma shape and dendritic spatial structure (Pinsky and Rinzel, 
1994). In another competition for predicting somatic spike times in 
response to current injection in both the soma and apical dendrite 
(Jolivet et al., 2008b; Larkum et al., 2004), we extended the leaky 
integrator in the MAT(1) model into a two compartment model 
and succeeded in predicting spike times with the highest score. This 
fact indicates the effi ciency of the compartment model.

There is also room for revising adaptive threshold dynam-
ics. In our MAT model, the dynamic threshold depends sim-
ply on previous spike times. The level of membrane potential 
for the initiation of an action potential depends not only on 

the  preceding spike times but also on the instantaneous rising 
trend of the potential level (Azouz and Gray, 2000; Kobayashi 
and Shinomoto, 2007).

Recently, Mihalas and Niebur (2009) proposed a dynamic 
threshold model that is equipped with not only multiple timescales 
but also the above-mentioned voltage dependence. The Mihalas and 
Niebur model and our MAT model have contrasting advantages 
that are also shortcomings, mostly due to the difference in the 
model complexity; the Mihalas and Niebur model can reproduce 
rich phenomena such as the inhibitory rebound due to elaborate 
setups including the voltage-dependent threshold, while the MAT 
model can readily achieve a good predictive performance due to 
its simplicity and the small number of free parameters.

ADVANTAGE OF USING THE MAT MODEL FOR SIMULATING THE 
CORTICAL CIRCUIT
Modeling neuronal microcircuitry has been initiated based on 
either the HH models (Markram, 2006; Traub et al., 2005) or LIF 
model (Diesmann et al., 1999; Gewaltig and Diesmann, 2007). The 
HH models are biologically plausible in its biophysical features, 
but have disadvantages in their hard parameter optimization and 
high computational cost. In contrast, the LIF model need much 
lower computational cost, but it cannot account for the spiking 
characteristics in vivo (Shinomoto et al., 1999).

A nonlinear model proposed by Izhikevich (2004) is worth 
notice, because this is not only simple but also versatile enough to 
represent a variety of neurons. In contrast to the Izhikevich model, 
our MAT model is essentially linear. Nonlinear changes of the state 
of the neuron are only required at the time of input or output 
spikes. Accordingly, it may be possible to speed up the numeri-
cal simulation of the neuronal circuitry by exactly integrating the 
subthreshold dynamics (Plesser and Diesmann, 2009). Thus the 
linearity may be benefi cial in considering large-scale simulation.

In conclusion, the multi-timescale adaptive threshold model can 
be tailored to any cortical neuron to reproduce and predict precise 
spike times for any input current. This MAT model is a step toward 
building a brain simulator that comprises a variety of neurons with 
broadly distributed characteristics. The next step will be to include 
interactions between model spike neurons.

APPENDIX
In this study, we describe three standard neuron models namely 
a Hodgkin–Huxley (HH) model, leaky integrated-and-fi re (LIF) 
model, and spike response model (SRM), which are compared with 
the MAT model in their ability to predict spike times. As with the 
MAT model, all models are numerically integrated with the Euler 
method with a suffi ciently small time step of 0.001 ms. Accuracy 
of the numerical integration is ascertained using the backward 
Euler method.

HODGKIN–HUXLEY MODEL
Model equations
As a HH model, we adopted the Destexhe model (Destexhe and 
Paré, 1999),

C
dV

dt
I I I I I t= − − − − +Na Kd M leak ( ) , (9)
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I
leak

 = g
L
(V − E

L
), (10)

where C is the membrane capacitance, V is the membrane potential, 
E

L
 = −80 mV is the reversal potential of the leak current, and I(t) 

is the input current.
The voltage-dependent Na+ current is described by,

I
Na

 = g
Na

m3h(V − E
Na

),  (11)

dm

dt
V m V mm m= − −α β( )( ) ( )1 , (12)

dh

dt
V h V hh h= − −α β( )( ) ( )1 , (13)

αm

V V

V V
= − − −

− − − −
0 32 13

13 4 1

. ( )

exp[ ( )/ ]
T

T

, (14)

βm

V V

V V
= − −

− − −
0 28 40

40 5 1

. ( )

exp[( )/ ]
T

T

, (15)

α
h
 = 0.128exp[−(V − V

T
 − V

S
 − 17)/18], (16)

βh V V V
=

+ − − − −
4

1 40 5exp[ ( )/ ]T S

, (17)

where E
Na

 = 50 mV is the reversal potential of Na+ and V
S
 = 10 mV 

is the inactivation shift. V
T
 was optimized to each neuron from the 

sample data.
The “delayed rectifi er” K+ current is described by,

I g n V EKd Kd Kd K= −4 ( ) , (18)

dn

dt
V n V nn n

Kd
Kd KdKd Kd

= − −α β( )( ) ( )1 , (19)

αn

V V

V VKd

T

T

= − − −
− − − −
0 032 15

15 5 1

. ( )

exp[ ( )/ ]
, (20)

βn V V
Kd T= − − −0 5 10 40. exp[ ( )/ ] , (21)

where E
K
 = −90 mV is the reversal potential of K+.

A noninactivating K+ current is described by,

I
M

 = g
M

n
M

(V − E
K
) (22)

dn

dt
V n V nn n

M
M MM M

= − −α β( )( ) ( )1  (23)

αn

V

VM
= +

− − +
0 0001 30

1 30 9

. ( )

exp[ ( )/ ]
 (24)

βn

V

VM
= − +

− +
0 0001 30

1 30 9

. ( )

exp[( )/ ]
 (25)

Due to the current I
M

 the model exhibits spike frequency 
adaptation.

Fitting procedure
The Destexhe model is specifi ed by the six parameters {C, g

Na
, g

Kd
, 

g
M

, g
L
, V

T
}. First, we determined the conductance parameters a = {C, 

g
Na

, g
Kd

, g
M

, g
L
} with a fi xed value of the threshold V

T
 by the method 

of Huys et al. (2006), which has widely been used for reproducing 
the membrane dynamics. These parameters were optimized for 
minimizing the squared error with non-negative constraints,

ˆ : ( ( ))a
a

= + + + + −⎧
⎨
⎩

⎫
⎬
⎭∑argmin

        

Na Kd M leak

dV

dt C
I I I I I t

t

1
2

                    s.t. a  i,i ≥ 0 ∀

 (26)

Second, the threshold V
T
 was optimized so that the coincidence 

factor Γ (see Section “Materials and Methods) was maximized for 
the sample data set. We defi ned the spike time of the HH model 
neuron as the time when the derivative of the membrane potential 
exceeded 10 mV/ms.

LEAKY INTEGRATE-AND-FIRE MODEL
Model equations
In the LIF model, the dynamics of membrane potential are given 
by,

τm

dV

dt
V RI t= − + ( ), (27)

where τ
m

, V(t), R, and I(t) are the leak time constant, model 
potential, membrane resistance, and input current, respectively. 
The model assumes a spike if the membrane potential V exceeds a 
threshold θ. In this study, we adopt a partial resetting rule proposed 
by Bugmann et al. (1997) and Troyer and Miller (1997),

If V(t) > θ, then V(t + 2 ms) = θ − 6 mV (28)

Fitting procedure
The LIF model is specifi ed by three parameters {τ

m
, R, θ}. As with 

the MAT model, we fi rst determined {τ
m

, R} by fi tting the volt-
age response to fl uctuating currents with the leaky integrator. By 
confi rming that predictive performance is not sensitive to these 
parameters, we adopted a common time constant and resistance 
for all neurons, τ

m
 = 5 ms and R = 50 MΩ. Second, we optimized 

θ for maximizing the coincidence factor Γ (see Section “Materials 
and Methods”) for the sample data set.

SPIKE RESPONSE MODEL
Model defi nition
In SRM (Gerstner and Kistler, 2002), the membrane potential is 
given by,

V t s I t s ds t t f( ) ( ) ( ) ( )= − + −∫κ η , (29)

where t
f
 is the last spike time, and

 
κ(t) and η(t) represent the inte-

gration kernel and a spike shape, respectively. Among the various 
types of SRM, we adopted the adaptive threshold type (Jolivet et al., 
2006) in which the spike threshold θ(t) is lifted when fi red and 
decays exponentially (Brandman and Nelson, 2002; Chacron et al., 
2003; Geisler and Goldberg, 1966) as,

θ α
τ

ω
α

( ) expt
t tk

k

= − −⎛
⎝⎜

⎞
⎠⎟
+∑ . (30)



Frontiers in Computational Neuroscience www.frontiersin.org July 2009 | Volume 3 | Article 9 | 10

Kobayashi et al. Multi-timescale adaptive threshold model

In this equation, t
k
 is the kth spike time, α is the weight, τα is 

the time constant of the threshold, and ω is the resting value of 
the threshold. As with the MAT model, we introduced an absolute 
refractory period of 2 ms.

Fitting procedure
The SRM with adaptive threshold is specifi ed by two functions and 
three parameters {κ(t), η(t), τα, α, ω}. We fi rst fi tted {κ(t), η(t)} by 
fi tting the voltage response to fl uctuating currents. These functions 
were optimized for minimizing the squared error (Kobayashi and 
Shinomoto, 2007),

ˆ( ), ˆ( ) arg min ( ) ( ) ( ) ( )
{ ( ), ( )}

κ η κ η
κ η

t t V t s I t s ds t t
t t

f 
 

= − − − −{ ∫ }}∫
2

dt , (31)

Second, we determined the spike threshold parameters {τα, α, 
ω}. The time constant τα was selected from 10, 50, and 200 ms, 
and we adopted a common time constant for all neurons. Then, 
we optimized {α, ω} to maximize the coincidence factor Γ for 
the sample data set. The best performance was achieved when 
τα = 50 ms.

Relationship to the MAT model
Mathematically, the MAT model is very similar to a special case 
of SRM. We consider the MAT model (Eqs. 1–3) and take the new 
variable U:U t V t H t t

k
k( ) ( ) ( )= − −Σ  to translate into an SR-like 

model. U is not the membrane potential, but U is given by the 
SRM-like equation as,

U t s I t s ds t t U ek
k

t( ) ( ) ( ) ( ) ( ) /= − + − +∑∫ −κ ηMAT MAT
m0 τ , (32)

κMAT
m

m( ) /t
R

e t= −

τ
τ ,

 
ηMAT( ) ( )t H t= − . (33)

In this representation, the threshold is constant. When the 
potential U(t) exceeds the threshold ω, a spike is generated.
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