
Citation: Li, C.-L.; Moi, S.-H.; Lin,

H.-S.; Hou, M.-F.; Chen, F.-M.; Shih,

S.-L.; Kan, J.-Y.; Kao, C.-N.; Wu, Y.-C.;

Kao, L.-C.; et al. Comprehensive

Transcriptomic and Proteomic

Analyses Identify a Candidate Gene

Set in Cross-Resistance for Endocrine

Therapy in Breast Cancer. Int. J. Mol.

Sci. 2022, 23, 10539. https://doi.org/

10.3390/ijms231810539

Academic Editor: Anna Kawiak

Received: 26 August 2022

Accepted: 8 September 2022

Published: 11 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Comprehensive Transcriptomic and Proteomic Analyses Identify
a Candidate Gene Set in Cross-Resistance for Endocrine Therapy
in Breast Cancer
Chung-Liang Li 1,2,3,†, Sin-Hua Moi 4,†, Huei-Shan Lin 1,2, Ming-Feng Hou 1,2,5 , Fang-Ming Chen 1,2,
Shen-Liang Shih 1,2 , Jung-Yu Kan 1,2, Chieh-Ni Kao 1,2,6, Yi-Chia Wu 1,2,7 , Li-Chun Kao 1,2 ,
Ying-Hsuan Chen 1,2, Yi-Chen Lee 8 and Chih-Po Chiang 1,2,9,*

1 Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University,
Kaohsiung 80756, Taiwan

2 Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital,
Kaohsiung Medical University, Kaohsiung 80756, Taiwan

3 Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
4 Center of Cancer Program Development, E-Da Cancer Hospital, I-Shou University, Kaohsiung 82445, Taiwan
5 Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University,

Kaohsiung 80756, Taiwan
6 Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
7 Department of Surgery, Division of Plastic Surgery, Kaohsiung Medical University Hospital,

Kaohsiung Medical University, Kaohsiung 80756, Taiwan
8 Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University,

Kaohsiung 80756, Taiwan
9 Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung 83102, Taiwan
* Correspondence: 1090111@kmuh.org.tw or blackcch73@gmail.com; Tel.: +886-7-312-1101 (ext. 2260)
† These authors contributed equally to this work.

Abstract: Endocrine therapy (ET) of selective estrogen receptor modulators (SERMs), selective
estrogen receptor downregulators (SERDs), and aromatase inhibitors (AIs) has been used as the gold
standard treatment for hormone-receptor-positive (HR+) breast cancer. Despite its clinical benefits,
approximately 30% of patients develop ET resistance, which remains a major clinical challenge in
patients with HR+ breast cancer. The mechanisms of ET resistance mainly focus on mutations in the
ER and related pathways; however, other targets still exist from ligand-independent ER reactivation.
Moreover, mutations in the ER that confer resistance to SERMs or AIs seldom appear in SERDs. To
date, little research has been conducted to identify a critical target that appears in both SERMs/SERDs
and AIs. In this study, we conducted comprehensive transcriptomic and proteomic analyses from
two cohorts of The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) to identify the
critical targets for both SERMs/SERDs and AIs of ET resistance. From a treatment response cohort
with treatment response for the initial ET regimen and an endocrine therapy cohort with survival
outcomes, we identified candidate gene sets that appeared in both SERMs/SERDs and AIs of ET
resistance. The candidate gene sets successfully differentiated progress/resistant groups (PD) from
complete response groups (CR) and were significantly correlated with survival outcomes in both
cohorts. In summary, this study provides valuable clinical implications for the critical roles played by
candidate gene sets in the diagnosis, mechanism, and therapeutic strategy for both SERMs/SERDs
and AIs of ET resistance for the future.

Keywords: breast cancer; endocrine therapy resistance; cross-resistance; selective estrogen receptor
modulators (SERMs); selective estrogen receptor degraders (SERDs); aromatase inhibitors (AIs);
The Cancer Genome Atlas (TCGA)
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1. Introduction

Breast cancer is the most common cancer in women worldwide with approximately
2.3 million incident cases (11.7%) in 2020. In the United States, breast cancer is the leading
cancer type, accounting for 30% of new cases and 15% of death among all cancer types in
women [1]. Breast cancer is a highly heterogeneous cancer that is classified based on the
histopathology of the receptor status or microarray analysis of molecular subtypes [2]. With
immunohistochemical staining, breast cancer is classified as hormone-receptor-positive
based on the expression of the estrogen receptor (ER) and progesterone receptor (PR). In
contrast, breast cancer without the expression of ER, PR, and human epidermal growth
factor receptor-2 (HER2) is classified as triple-negative breast cancer (TNBC) [3]. According
to the current guidelines, the classification is considered positive if at least 1% of the tumor
nuclei stain for the receptor with appropriate internal and external controls [4]. Nearly 80%
of breast cancers are estrogen-receptor-positive (ER+) or hormone-receptor-positive [2].

Estrogen is a critical hormone that is not only responsible for normal growth and
development of female mammary and reproductive organs, but also mammary hyperplasia
and tumorigenesis. When the estrogen receptor binds to estrogen, it dimerizes and is
translocated to the nucleus with coactivators to activate gene transcription, including
cell cycle progression [5–7]. Due to the high dependence of breast tumorigenesis on
the estrogen-ER axis, endocrine therapy with estrogen suppression or ER antagonists
is the first-line treatment for ER+ breast cancer. Clinically, endocrine therapy includes:
selective ER modulators (SERMs), such as tamoxifen, which competitively inhibit the
binding of estrogen to ER; selective ER downregulators (SERDs), such as fulvestrant, which
impair mobility/translocation of ER; aromatase inhibitors (AIs), such as letrozole, which
deplete systemic estrogen levels in post-menopausal patients by blocking the conversion
of androgens to estrogen. The above molecules of endocrine therapy are approved for
adjuvant treatment of ER+ breast cancer patients and can reduce the mortality rate of breast
cancer by 30% [8,9].

Despite the clinical benefit of endocrine therapy, approximately 20–30% of patients ac-
quire resistance and recurrence after long-term treatment with endocrine therapy [10–13]. The
mechanisms of endocrine resistance are complex and mainly focus on gain-of-function muta-
tions in ER and compensatory cross-talk between ER and growth factor receptor/oncogenic
signaling pathways [9]. Based on clinical observations, mutations in the ligand-binding
domain (LBD) of ESR1 (the gene encoding ERα) [9,14] and receptor tyrosine kinases of HER2
amplification [15] are predominantly observed in endocrine therapy resistance. In addition,
mutations in oncogenic pathways such as PI3-AKT/MAPK pathways are also frequently
observed in mutation profiles and endow endocrine resistance in breast cancer [9].

Endocrine resistance remains a major clinical challenge for therapeutic efficacy in
most ER+ breast cancer patients. Besides the above mechanisms, there may still be other
genetic targets of endocrine resistance and this could be a potential therapeutic strategy
to overcome endocrine resistance. Moreover, endocrine resistance is commonly driven by
ligand-independent ER reactivation [9,16]. The dominant mutation of ESR1 accounts for
less than 20% of cases of endocrine resistance in patients treated with SERMs or AIs [9,17],
which indicates that patients resistant to SERMs with ESR1 mutation may also not benefit
from AIs. However, ESR1 mutations that confer resistance to SERMs or AIs seldom appear
in SERDs [14]. To date, little research has been conducted to identify a critical target that
appears in both SERMs/SERDs and AIs. Moreover, a previous study from The Cancer
Genome Atlas (TCGA) mainly focused on studies of untreated primary tumors or datasets
without treatment response [18–22]. Therefore, in this study, we aimed to comprehensively
explore the critical target by integrating transcriptomic (RNA-seq) and proteomic (reverse-
phase protein array, RPPA) approaches that appeared in both SERMs/SERDs and AIs from
the TCGA dataset of two cohorts with endocrine therapy response and survival outcomes,
and elucidating their potential in diagnostic and survival outcomes, thereby providing
genetic profiles and strategies to overcome endocrine therapy resistance.
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2. Results
2.1. Characteristics of Study Subjects from the TCGA-BRCA

In this study, 670 samples with ET were collected from TCGA-BRCA of the Genomic
Data Commons (GDC) data portal. Based on the record of treatment response, most of the
samples were recorded with “Not Applicable” or “Not Available”, and only 44 samples
were recruited in the arm of the treatment response cohort (TR cohort) with the record of
“Complete Response (CR)” and “Clinical Progressive Disease (PD)”. The 44 samples were
further divided into two groups: CR = 34 samples and PD = 10 samples. The PD group
showed clinical progress and resistance to the first-line ET regimen of AI (N = 5 samples)
and SERM/SERD (N = 5 samples). The baseline characteristics of the study population
groups according to CR and PD are summarized in Table 1. There were significant differ-
ences in the distribution of metastasis status, stage, PFS, and OS between CR and PD.

Table 1. Baseline distribution of (non-TNBC) study population.

Characteristic Overall (N = 44) CR (N = 34) PD (N = 10) CR vs. PD,
p-Value a

PD CR vs. AI vs.
SERM/D,
p-Value bAI (n = 5) SER (n = 5)

Age (years) 58 (50, 68) 58 (50, 68) 58 (49, 67) 0.889 61 (45–79) 55 (46–79) 0.917

T stage 0.606 0.444
T1–2 38 (86%) 30 (88%) 8 (80%) 5 (100.0%) 3 (60.0%)
T3–4 6 (14%) 4 (12%) 2 (20%) - 2 (40.0%)

N staging 0.306 1.000
N0 20 (45.5%) 17 (50.0%) 3 (30.0%) 1 (20.0%) 2 (40.0%)

N1–3 24 (54.5%) 17 (50.0%) 7 (70.0%) 4 (80.0%) 3 (60.0%)
M stage 0.048 1.000

M0 42 (95%) 34 (100%) 8 (80%) 4 (80.0%) 4 (80.0%)
M1 2 (4.5%) 0 (0%) 2 (20%) 1 (20.0%) 1 (20.0%)

Stage 0.043 0.524
Stage I–II 31 (70%) 27 (79%) 4 (40%) 3 (60.0%) 1 (20.0%)

Stage III–IV 13 (30%) 7 (21%) 6 (60%) 2 (40.0%) 4 (80.0%)
PFS <0.001 1.000

Disease-free 35 (80%) 34 (100%) 1 (10%) 1 (20.0%) -
Metastases 9 (20%) 0 (0%) 9 (90%) 4 (80.0%) 5 (100.0%)

OS <0.001 0.048
Alive 36 (82%) 32 (94%) 4 (40%) 4 (80.0%) -
Died 8 (18%) 2 (5.9%) 6 (60%) 1 (20.0%) 5 (100.0%)

AI 22 (50.0%) 17 (50.0%) 5 (50.0%) 1.000 5 (100%) -
SERM 20 (45.5%) 17 (50.0%) 3 (30.0%) 0.306 - 3 (60.0%)
SERD 2 (4.5%) 0 (0.0%) 2 (20.0%) 0.048 - 2 (40.0%)

a p-value is estimated using the Wilcoxon rank-sum test or Fisher’s exact test. b p-value is estimated using the
Kruskal–Wallis test or Fisher’s exact test.

We aimed to integrate the dataset of transcriptomic (RNA-Seq) and proteomic (reverse-
phase protein array, RPPA) analyses, which appeared in both SERMs/SERDs and AIs.
The baseline characteristics of the treatment response cohort (CR and PD) were further
divided into two tables, the RNA-seq and RPPA datasets, as shown in Tables 2 and 3. Of
the 44 samples, 32 possessed an RPPA dataset with CR = 25 and PD = 7, as shown in
Table 3. Both tables show significant differences in the distribution of the proportion of stage,
recurrence/metastases, and survival status between CR and PD. In addition, the baseline
characteristics of the endocrine therapy cohort (ET cohort, without treatment response,
N = 449) derived from the previous 670 samples are also included in Tables 2 and 3.
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Table 2. Baseline distribution of treatment response and endocrine therapy cohort in RNA-seq dataset.

Characteristics Treatment Response
Cohort (N = 44) CR (N = 34) PD (N = 10) p Endocrine Therapy

Cohort (N = 449)

Age (years) 58 (40–85) 58 (40–85) 58 (45–79) 0.889 61 (49–68)
T staging 0.606

T1–2 38 (86.4%) 30 (88.2%) 8 (80.0%) 375 (83.5%)
T3–4 6 (13.6%) 4 (11.8%) 2 (20.0%) 74 (16.5%)

N staging 0.306
N0 20 (45.5%) 17 (50.0%) 3 (30.0%) 214 (47.7%)

N1–3 24 (54.5%) 17 (50.0%) 7 (70.0%) 235 (52.3%)
Stage 0.043
I–II 31 (70.5%) 27 (79.4%) 4 (40.0%) 333 (74.2%)

III–IV 13 (29.5%) 7 (20.6%) 6 (60.0%) 116 (25.8%)
ET regimen (first-line)

AI 22 (50.0%) 17 (50.0%) 5 (50.0%) 1.000 235 (52.3%)
SERM 20 (45.5%) 17 (50.0%) 3 (30.0%) 0.306 184 (41.0%)
SERD 2 (4.5%) 0 (0.0%) 2 (20.0%) 0.048 -

Recurrence/Metastases 9 (20.5%) 0 (0.0%) 9 (90.0%) <0.001 46 (10.2%)
Died 8 (18.2%) 2 (5.9%) 6 (60.0%) <0.001 29 (6.5%)

p-value is estimated using Fisher’s exact test and Wilcoxon rank-sum test.

Table 3. Baseline distribution of treatment response and endocrine therapy cohort in RPPA dataset.

Characteristics Treatment Response
Cohort (N = 32) CR (N = 25) PD (N = 7) p Endocrine Therapy

Cohort (N = 370)

Age (years) 58 (40–84) 58 (40–84) 55 (45–79) 0.964 61 (49–68)
T staging 0.296

T1–2 27 (84.4%) 22 (88.0%) 5 (71.4%) 305 (82.4%)
T3–4 5 (15.6%) 3 (12.0%) 2 (28.6%) 65 (17.6%)

N staging 0.678
N0 17 (53.1%) 14 (56.0%) 3 (42.9%) 167 (45.1%)

N1–3 15 (46.9%) 11 (44.0%) 4 (57.1%) 203 (54.9%)
Stage 0.005
I–II 24 (75.0%) 22 (88.0%) 2 (28.6%) 267 (72.2%)

III–IV 8 (25.0%) 3 (12.0%) 5 (71.4%) 103 (27.8%)
ET regimen (first- line)

AI 17 (53.1%) 13 (52.0%) 4 (57.1%) 1.000 189 (51.1%)
SERM 13 (40.6%) 12 (48.0%) 1 (14.3%) 0.195 156 (42.2%)
SERD 2 (6.2%) 0 (0.0%) 2 (28.6%) 0.042 -

Progressed 6 (18.8%) 0 (0.0%) 6 (85.7%) <0.001 43 (11.6%)
Died 5 (15.6%) 1 (4.0%) 4 (57.1%) 0.004 29 (7.8%)

p-value is estimated using Fisher’s exact test and Wilcoxon rank-sum test.

2.2. The Critical Target in Both SERMs/SERDs and AIs of PD Groups

To verify the critical target of transcriptomic and proteomic analyses in both SERMs/
SERDs and AIs of PD groups, a Venn diagram was conducted in both RNA-seq and RPPA from
the treatment response cohort. In the Venn diagram, the targets from each group of CR, AIs,
and SERMs/SERDs were selected based on the criteria of z-score threshold ±2 in the TCGA
database. A comprehensive workflow to display the screening and analysis approaches in
this study is shown in Figure 1. There were 1470 mRNA targets that appeared in the region of
overlap between SERMs/SERDs and AIs and among CR, SERMs/SERDs, and AIs (Figure 2A).
In addition, seven protein targets appeared in the region of overlap between SERMs/SERDs
and AIs and among CR, SERMs/SERDs, and AIs (Figure 2B). The seven protein targets were
retained for further study; however, the 1470 mRNA targets were filtered through a series of
workflows, as shown in Figure 1. We filtered 1470 targets with statistical significance for both
PFS and OS, and obtained 229 targets (significantly correlated with both PFS and OS with
the criteria of z-score threshold ±2 and p < 0.05). Then, these 229 targets were filtered with
differentiations of SERD/SERM versus CR or AI versus CR with fold changes > 0.5 or < −0.5,
and 107 targets were obtained. Subsequently, 107 targets were filtered in both the treatment
response cohort (with ET treatment response) and the endocrine therapy cohort (with survival
outcomes) based on progression-free survival (PFS). In the arm of the TR cohort, inclusion
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criteria were: (1) response of area under the curve (AUC) for CR vs. PD ≥0.6; (2) PFS ≤0.05
and PFS ≤0.1 in ET cohort; (3) PFS ≤0.05 and OS ≤0.1 in ET cohort; (4) both PFS ≤0.05 and
OS ≤0.1. In the arm of the ET cohort (without treatment response of CR and PD), inclusion
criteria were: (1) PFS ≤0.05 and PFS ≤0.1 in TR cohort; (2) PFS ≤0.05 and OS ≤0.1 in TR
cohort; (3) both PFS ≤0.05 and OS ≤0.1. Finally, we obtained 29 targets from two cohorts with
the clinical characteristics of both treatment response and survival outcomes.
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The 29 targets from RNA-seq and seven targets from RPPA were calculated based on
optimal cut-off points and individual receiving operating characteristics (ROC) analysis.
The results of RNA-seq are shown in Table 4, which lists the cut-off points of high risk in
each of the 29 targets. When the values reach the cut-off point of high risk, they receive a
score of one; otherwise, a score of zero is accorded. The score was calculated in the total
population of 44 samples for each target to obtain the results of AUC for distinguishing PD
from CR (individual AUC, shown in the column of response) and AUC for PFS and OS
(individual AUC, shown in the column of PFS, OS, and based on the criteria of optimal cut-
off points). The above analyses were also conducted on targets from RPPA (Table 5). Finally,
based on PFS, we filtered and arranged 29 targets with inclusion criteria: (1) response
AUC ≥ 0.6 and PFS ≤ 0.05 in both TR and ET cohorts (AKT1S1, NSL1, ESRRA, TMEM81,
CKB, SGEF); (2) statistical significance in PFS/OS of two cohorts (KRT19); (3) borderline
significance between CR and PD (SCG5, CEACAM1, ALOX12B) and seven targets with
inclusion criteria; (4) statistical significance in PFS of TR or ET cohort. Further cumulative
ROC analysis was conducted based on the above criteria to obtain the optimal gene set
(RNA-seq with ten targets and RPPA with five targets) of cumulative ROC values for
response AUC and PFS AUC. The differentiations of candidate genes (RNA-seq with ten
targets and RPPA with five targets) are summarized in Tables 6 and 7.
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Figure 2. The candidate gene set of RNA−seq and RPPA in both SERM/SERD and AI of ET resistance.
(A,B) The Venn diagram analysis shows that there are 1470 targets of RNA−seq and seven targets
of RPPA in both SERM/SERD and AI of ET resistance. (C–F) Based on a series of analyses and
selection, the expression of candidate gene sets from RNA−seq of ten targets and RPPA of five targets
is displayed as box plots in the treatment response cohort (TR cohort) and heatmap in the treatment
response (TR cohort) and endocrine therapy cohort (ET cohort).

Table 4. The results of optimal cut-off point and individual ROC analysis in 29 targets from RNA-seq.

No Genes
High-Risk Derivation Validation

Optimal
Cut-Off Point Response PFS p OS p PFS p OS p

1 SCG5 ≥0.555 0.738 0.760 0.005 0.736 0.045 0.502 0.803 0.441 0.062
2 FANK1 ≤0.165 0.712 0.690 0.014 0.583 0.511 0.548 0.205 0.592 0.089
3 ALOX12B ≥0.699 0.709 0.721 <0.001 0.604 0.051 0.548 0.120 0.503 0.912
4 CEACAM1 ≤−0.862 0.688 0.665 0.017 0.618 0.472 0.572 0.152 0.627 0.053
5 AKT1S1 ≥−0.154 0.679 0.700 0.031 0.618 0.282 0.555 0.053 0.485 0.668
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Table 4. Cont.

No Genes
High-Risk Derivation Validation

Optimal
Cut-Off Point Response PFS p OS p PFS p OS p

6 CDKN1B ≤0.039 0.679 0.622 0.022 0.576 0.039 0.444 0.165 0.431 0.160
7 SDCBP2 ≥1.069 0.676 0.805 <0.001 0.771 <0.001 0.500 0.921 0.484 0.467
8 MRPL37 ≥0.287 0.668 0.748 0.005 0.639 0.057 0.508 0.628 0.484 0.926
9 ACO2 ≥0.264 0.665 0.748 <0.001 0.715 <0.001 0.464 0.586 0.443 0.552

10 PHLDA2 ≥1.838 0.662 0.667 <0.001 0.611 <0.001 0.495 0.521 0.495 0.662
11 NSL1 ≤−2.058 0.653 0.667 <0.001 0.611 0.002 0.518 0.002 0.512 0.141
12 SLC44A4 ≤−0.155 0.653 0.708 <0.001 0.736 <0.001 0.530 0.301 0.533 0.402
13 C9orf68 ≤−0.378 0.644 0.665 0.006 0.618 0.036 0.551 0.108 0.603 0.020
14 CALM3 ≥1.465 0.644 0.652 <0.001 0.597 0.006 0.512 0.503 0.527 0.164
15 ESRRA ≥0.281 0.644 0.717 0.045 0.771 0.037 0.563 0.035 0.554 0.132
16 NAALADL2 ≤−1.431 0.644 0.652 <0.001 0.597 0.004 0.521 0.092 0.529 0.061
17 TMEM81 ≥0.744 0.641 0.637 0.039 0.667 0.106 0.559 0.002 0.558 0.006
18 CKB ≥0.464 0.638 0.705 0.027 0.597 0.703 0.575 0.028 0.499 0.887
19 JMJD6 ≥−0.082 0.635 0.632 0.109 0.688 0.013 0.438 0.052 0.499 0.758
20 EFNB1 ≥0.501 0.632 0.705 0.048 0.750 0.062 0.549 0.126 0.532 0.464
21 CRYBA2 ≥−0.086 0.629 0.749 <0.001 0.708 <0.001 0.495 0.975 0.492 0.954
22 HS1BP3 ≥2.227 0.626 0.667 <0.001 0.611 0.002 0.495 0.526 0.495 0.646
23 CREG2 ≥3.780 0.624 0.667 <0.001 0.611 <0.001 0.494 0.421 0.494 0.573
24 ASPHD1 ≥0.850 0.615 0.762 0.001 0.653 0.011 0.523 0.193 0.492 0.681
25 SGEF ≤−3.076 0.615 0.667 <0.001 0.611 <0.001 0.508 0.026 0.496 0.787
26 C12orf35 ≤0.378 0.612 0.630 0.071 0.694 0.033 0.561 0.035 0.495 0.543
27 PTPRN ≥1.799 0.603 0.667 <0.001 0.611 <0.001 0.483 0.257 0.483 0.443
28 CNTN5 ≥0.945 0.588 0.652 0.013 0.674 0.209 0.534 0.020 0.500 0.793
29 KRT19 ≤−2.160 0.559 0.611 <0.001 0.625 <0.001 0.514 0.015 0.509 0.039

p-value is estimated using log-rank test.

Table 5. The results of optimal cut-off point and individual ROC analysis in seven targets from RPPA.

No Genes

High-Risk Derivation Validation

Optimal
Cut-off Point Response PFS p OS p PFS p OS p

1 BID ≥2.556 0.566 0.667 <0.001 0.581 0.003 0.526 0.170 0.543 0.062
2 CHEK2 ≤−0.456 0.646 0.596 0.459 0.652 0.270 0.428 0.067 0.455 0.265
3 ERBB3 ≥0.520 0.691 0.718 0.014 0.552 0.323 0.529 0.204 0.557 0.065
4 SERPINE1 ≥0.220 0.657 0.641 0.182 0.715 0.076 0.468 0.339 0.437 0.225
5 SRC ≤−0.382 0.571 0.712 0.002 0.644 0.053 0.570 0.010 0.514 0.295
6 STAT5A ≤−0.952 0.611 0.731 0.003 0.544 0.641 0.485 0.387 0.478 0.367
7 XRCC1 ≤−0.627 0.794 0.737 0.008 0.689 0.035 0.491 0.299 0.515 0.771

p-value is estimated using log-rank test.

Table 6. The RNA-seq expression with reads per kilobase million (RPKM) of candidate genes in the
treatment response and endocrine therapy cohort.

Genes Treatment Response
Cohort (N = 44)

CR
(N = 34)

PD
(N = 10) p Endocrine Therapy

Cohort (N = 449)

AKT1S1 0.08 (−1.44–3.47) 0.00 (−1.44–1.86) 0.23 (−0.15–3.47) 0.090 −0.14 (−2.34–4.51)
NSL1 −0.23 (−2.58–1.99) −0.07 (−1.61–1.99) −0.47 (−2.58–1.74) 0.151 0.25 (−3.49–4.00)

ESRRA 0.05 (−1.62–2.48) 0.03 (−1.62–1.70) 0.58 (−1.08–2.48) 0.177 −0.27 (−3.48–2.93)
TMEM81 −0.26 (−1.58–2.52) −0.37 (−1.58–1.26) 0.32 (−0.98–2.52) 0.186 −0.21 (−3.29–3.43)

CKB 0.21 (−1.72–3.93) 0.15 (−1.72–1.79) 0.57 (−1.61–3.93) 0.196 −0.07 (−2.78–3.55)
SGEF 0.06 (−3.46–1.88) 0.07 (−1.21–1.88) −0.01 (−3.46–0.71) 0.286 0.28 (−4.19–3.22)

KRT19 0.16 (−4.70–2.40) 0.25 (−1.54–2.40) 0.12 (−4.70−0.86) 0.591 0.19 (−4.65–1.91)
SCG5 0.29 (−2.59–4.03) 0.11 (−2.59–2.19) 0.74 (−0.72–4.03) 0.022 0.00 (−3.81–4.70)

CEACAM1 −0.09 (−2.39–1.53) 0.10 (−1.67–1.53) −0.58
(−2.39−0.81) 0.075 −0.02 (−3.62–2.17)

ALOX12B −0.49 (−1.24–3.42) −0.73 (−1.24–1.13) 0.22 (−1.24–3.42) 0.045 −0.71 (−1.24–5.67)

p-value is estimated using Wilcoxon rank-sum test.
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Table 7. The RPPA expression of candidate genes in the treatment response and endocrine therapy cohort.

Genes Treatment Response
Cohort (N = 32)

CR
(N = 25)

PD
(N = 7) p Endocrine Therapy

Cohort (N = 370)

BID 0.05 (−0.74, 0.52) 0.04 (−0.72, 0.50) 0.18 (−0.79, 1.59) 0.624 −0.22 (−0.66, 0.39)
SRC 0.13 (−0.29, 0.36) 0.14 (−0.10, 0.35) −0.20 (−0.43, 0.38) 0.592 −0.10 (−0.46, 0.31)

CHEK2 −0.18 (−0.66, 0.14) −0.16 (−0.54, 0.13) −0.46 (−0.99, −0.01) 0.261 −0.12 (−0.51, 0.24)
ERBB3 0.01 (−0.44, 0.56) −0.06 (−0.41, 0.27) 0.56 (−0.09, 1.11) 0.135 0.01 (−0.40, 0.41)
XRCC1 −0.06 (−0.63, 0.75) 0.24 (−0.48, 0.92) −0.65 (−2.03, −0.32) 0.018 0.11 (−0.40, 0.68)

p-value is estimated using Wilcoxon rank-sum test.

2.3. The Distinguishability of Candidate Gene Sets in Identifying PD versus CR

Based on a series of analyses and selections, candidate genes of transcriptomics (RNA-
seq with 10 targets) and proteomics (RPPA with five targets) were verified as critical gene
sets that appeared in both SERMs/SERDs and AIs of ET resistance. The differentiations
of RNA-seq expression with 10 targets in the treatment response cohort is illustrated in
Figure 2C with a box plot. AKT1S1, SCG5, CEACAM1, and ALOX12B reached borderline
significance between the CR and PD groups (p = 0.022 to 0.09). On the other hand, the
differences in RPPA expression of five targets in the treatment response cohort is illustrated
in Figure 2D with box plots. XRCC1 reached a significant difference between the CR and
PD groups (p = 0.018). Furthermore, the expression of candidate gene sets (RNA-seq and
RPPA) in the treatment response and endocrine therapy cohort is shown with a heatmap in
Figure 2E,F.

We further verified the accuracy of the gene set for distinguishing the PD and CR
groups. As mentioned previously, when the values of each target gene reach the cut-off
point of high risk, they receive a score of one; otherwise, they receive a score of zero. The
sum of the risk scores in the gene set was calculated using the ROC analysis. The results
of ROC analysis showed that the gene set of RNA-seq with 10 targets displayed excellent
discrimination in identifying PD and CR groups (AUC = 0.902, p < 0.001, Figure 3A,B). The
gene set of RPPA with five targets also displayed excellent discrimination in identifying
PD and CR groups (AUC = 0.92, p < 0.001, Figure 3A,B). Moreover, the risk score from the
combination of RNA-seq with RPPA with 15 targets obtained outstanding discrimination in
identifying PD and CR groups (AUC = 1, p < 0.001, Figure 3A,B). The distribution of each
subject was further illustrated using a scatter plot with the x-axis of the RNA-seq risk score
and the y-axis of the RPPA risk score. The results of the scatter plot showed a clear and
separated region between the CR and PD groups (Figure 3C). The above results indicated
that the candidate gene set of 15 targets was critical in both SERMs/SERDs and AIs of ET
resistance and provided excellent discrimination in identifying PD and CR groups.

2.4. The Candidate Gene Set in PFS/OS Outcomes of Treatment Response and Endocrine
Therapy Cohort

The survival outcomes, especially for PFS, were critical clinical points for the evalu-
ation of CR and PD. In the original groups of CR versus PD, the Kaplan–Meier analysis
revealed a significant difference in PFS and OS between the CR and PD groups (Figure 4A).
To further verify the importance of the candidate gene sets, we evaluated the PFS/OS out-
comes using the average and median risk score from Figure 3 (RNA-seq in PD groups: ≥5;
RPPA in PD groups: ≥3; RNA-seq + RPPA in PD groups: ≥5) in the treatment response
and endocrine therapy cohort. As Figure 4B,C show, based on the cut-off point of the risk
score from RNA-seq or RPPA data, the Kaplan–Meier analysis demonstrated a significant
difference in PFS and OS between the low-risk and high-risk groups in the treatment
response and endocrine therapy cohort (the score from RPPA did not show statistical
significance in the endocrine therapy cohort). Moreover, when inputting the risk score
from the combination of RNA-seq with RPPA, the Kaplan–Meier analysis also showed a
significant difference in PFS and OS between the low-risk and high-risk groups, not only
in the treatment response but also in the endocrine therapy cohort (Figure 4D). The above
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results indicate that the importance of a total of 15 targets was not only observed in the
ability to discriminate but also in the outcomes of PFS and OS.
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Figure 3. The diagnostic value of the candidate gene set between CR and PD groups. (A,B) The
risk score from RNA-seq, RPPA, and RNA-seq + RPPA analyses showed excellent and outstanding
discrimination ability in identifying PD and CR groups. A p value less than * p < 0.05, ** p < 0.01, and
*** p < 0.001 was considered statistically significant. Red line represents the ROC curve for a line of
identity. (C) The scatter plot provides a quick view of the co-expression of both RNA-seq and RPPA
cumulative risk scores of study cohorts with different clinical outcomes. Blue circles represent the
group of CR and red circles represents the group of PD.
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Figure 4. The survival outcomes with cumulative risk score in the treatment response and endocrine
therapy cohort. (A) The original outcomes of PFS/OS between CR and PD groups. (B–D) With
the mean and median value of the cumulative risk score, the survival outcomes show a significant
difference between low- and high-risk groups in the treatment response and endocrine therapy cohort.

2.5. Gene Ontology Analysis (GO) of Candidate Gene Set from PD Groups

The candidate gene set of RNA-seq + RPPA was further analyzed through the cor-
relation matrix and gene set enrichment analysis (GSEA) of gene ontology analysis to
determine gene function. From the correlation matrix, we found most of the candidate gene
sets were significantly correlated with each other in both cohorts. For example, the high-risk
cut-off points for AKT1S1 were as follows: ≥−0.154, ESRRA: ≥0.281, NSL1: ≤−2.058. The
correlation matrix showed that the expression of AKT1S1 was positively correlated with
ESRRA (r = 0.57, 0.41) and negatively correlated with NSL1 (r = −0.46, −0.25) in both
cohorts (Figure 5A,B). Thus, the candidate gene sets were not only involved in survival
outcomes but were also significantly correlated with each other in both cohorts. Finally,
we elucidated the function of candidate gene sets by using the gene ontology analysis,
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including biological processes, cellular components, molecular functions, and pathways.
Regarding biological processes, the candidate gene set was mainly associated with cell
death and the metabolic process. Regarding cellular components and molecular functions,
the candidate gene set was mainly associated with cytosol and kinase activity. Regarding
pathways, the candidate gene set was mainly associated with neuregulin, DNA double-
strand break repair, and cancer-related signaling pathways (Figure 5C). The above results
provide a potential mechanism and therapeutic strategy for both SERMs/SERDs and AIs
of ET resistance in the future.
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Figure 5. Correlation matrix and GSEA analysis of candidate gene set with 15 targets. (A,B) Most of
the candidate gene sets were significantly correlated with each other in both cohorts. (C) The main
function of the candidate gene set was associated with cell death, metabolic process, kinase activity,
neuregulin, DNA double−strand break repair, and cancer−related signaling pathways. A p value
less than * p < 0.05, ** p < 0.01, and *** p < 0.001 was considered statistically significant.

3. Discussion

In this study, we integrated transcriptomic (RNA-seq) with proteomic (reverse-phase
protein array, RPPA) data that appeared in both SERMs/SERDs and AIs from the clinical
database of TCGA-BRCA of the GDC data portal to comprehensively analyze the critical
targets in endocrine resistance. As previously described, most studies from TCGA mainly
focused on the dataset of untreated tumors or datasets without treatment response [18–22]. In
our studies, we used two cohorts in which one cohort showed treatment response (treatment
response cohort: CR+PD) and the other cohort was without treatment response information
but possessed the outcomes of survival (endocrine therapy cohort). In terms of clinical
characteristics, the PD groups that were resistant to the first-line ET regimen correlated with
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a higher proportion of N status and higher stage. Resistance to ET was also correlated with
poor PFS and OS. To elucidate the critical targets that appeared in both SERMs/SERDs
and AIs from PD groups, a Venn diagram was produced in the region of overlap between
SERMs/SERDs and AIs, and among CR, SERMs/SERDs, and AIs.

Regarding the mechanisms of endocrine resistance, loss of ER expression occurs in
less than 10% of patients [23,24]. In most cases, endocrine resistance is driven by ligand-
independent ER reactivation and is mainly focused on genomic alteration and activation
of oncogenic pathways. To date, most studies have concentrated on the mechanisms of
genomic alteration. For instance, mutations in ESR1 are observed in approximately 20% of
recurrent ER+ breast cancers following long-term treatment with AIs or tamoxifen [9,17];
mutations in oncogenic pathways PI3K (including PIK3CA, PTEN, and AKT1) and MAPK
(including NF1, KRAS/NRAS/HRAS, BRAF, and MAP2K1) are also frequently observed and
endow endocrine resistance in breast cancer [9,17,25,26]. In addition to genomic alteration,
the expression of specific targets is also involved in endocrine resistance; for example,
high expression of FGFR1 and c-Myc was associated with tamoxifen resistance [27,28], and
overexpression of RAD51 was associated with AI resistance [29]. However, little is known
about the specific targets involved in the cross-resistance of ET in breast cancer.

Cross-resistance refers to resistance to several drugs or treatment strategies with a
similar mechanism of resistance. In several circumstances, ESR1 mutations confer resistance
to AI/SERMs but not to SERD [14], indicating that patients resistant to SERMs with
ESR1 mutations may also not benefit from AIs but a clinical benefit from fulvestrant
may be yielded [30]. In addition, the loss of NF1 causes resistance to ET in both SERMs
and SERDs [25]. To date, few studies have been conducted on the cross-resistance of
ET, including SERMs /SERDs and AIs in breast cancer. In this study, we provide the
first evidence to elucidate specific targets of transcriptomics and proteomics in the cross-
resistance of ET in breast cancer. In the TCGA-BRCA database, the amount of data in RPPA
was less than RNA-seq, such that seven targets in the Venn diagram were retained for
further study, whereas 1470 mRNA targets were filtered using a series of workflows. Finally,
we obtained the optimal gene set of cumulative ROC values for RNA-seq (10 targets) and
RPPA (five targets).

From the gene ontology analysis, the candidate gene sets are involved in different
categories, including cell death, metabolic process, kinase activity, neuregulin, DNA double-
strand break repair, and cancer-related signaling pathways. In these candidate gene sets,
CEACAM1 expression is reduced or lost in breast cancer compared to normal tissues and
controls the switch of epithelial-to-mesenchymal transition (EMT), which is involved in
endocrine resistance [31–34]. The KRT locus of keratin family, KRT19, is a tumor suppressor
gene in breast cancer and regulates drug sensitivity through cancer stem cell reprogram-
ming and NOTCH signaling pathways [35–37]. TMEM81 is a transmembrane protein which
is involved in the response to fulvestrant treatment [38]. One of the members, TMEM119,
has been reported to promote the stemness of breast cancer and is negatively correlated
with the survival of patients [39]. ESRRA is overexpressed in a variety of cancers, including
breast cancer, and is associated with recurrence, poor prognosis, and tamoxifen/fulvestrant
treatment response [40–42]. ERBB3 is a typical oncogenic RTK that is upregulated in breast
cancer and is directly involved in the development of resistance to both tamoxifen and
fulvestrant [43–45]. SRC is a non-receptor tyrosine kinase, participating in several onco-
genic pathways and promoting tamoxifen resistance in breast cancer [46,47]. AKT1S1 is a
substrate of AKT that binds the 14-3-3 protein and is involved in the oncogenic PI3K-Akt
pathways, which are critical for endocrine resistance [48,49]. SGEF is a guanine-nucleotide
exchange factor which is overexpressed in prostate cancer and its depletion enhanced
invadopodia formation in breast cancer [50,51]. SCG5 encodes a neuroendocrine protein
and is overexpressed in brain metastatic breast cancer and breast cancer stem cells [52,53].
ALOX12B encodes an enzyme to transfer arachidonic acid to 12R-hydroxyeicosatetraenoic
acid. ALOX12B has been reported to promote the carcinogenesis of cervical cancer and is
associated with an increased risk of breast cancer [54,55]. CKB is a creatine kinase brain
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isoform that promotes invasion and metastasis of breast cancer [56]. BID is a pro-apoptotic
protein of the Bcl-2 family, participating in drug-induced apoptosis and tamoxifen resis-
tance [57,58]. XRCC1 is a well-known DNA repair gene, and deficiency of XRCC1 promotes
an aggressive phenotype of breast cancer [59,60]. NSL1 is a kinetochore-associated pro-
tein for cell division, normal development, and accumulation of tumor suppressor gene
BRCA1 [61,62]. CHEK2 is also a tumor suppressor gene involved in DNA repair and
endocrine resistance [63].

Based on the literature, the function and expression of the candidate gene sets were
consistent with our differentiation analysis between CR and PD. For instance, upregulation
of ERBB3 in resistance to both tamoxifen and fulvestrant was also consistent with the high
expression level in PD groups. Moreover, increased ESRRA expression was associated with
both tamoxifen and fulvestrant resistance and was consistent with the high expression
level in PD groups. According to the individual optimal cut-off point for RNA-seq and
RPPA expression of each target gene, we further showed that scores from the combination
of candidate gene sets were higher in PD groups than CR groups, providing excellent
discrimination in identifying PD and CR groups. Moreover, the survival outcomes were
critical for the therapeutic response in which the PFS/OS was significantly reduced in
the endocrine resistance of PD groups. As previously mentioned, most studies from
TCGA mainly focused on the dataset without treatment response in which the authors
utilize the outcomes of survival to predict ET-resistance-related genes based on the dataset
without therapeutic response information [20–22]. However, in our studies, we obtained
the candidate gene sets from two cohorts with the clinical characteristics of both treatment
response and survival outcomes. In our studies, when the average and median scores from
PD groups (high risk) were input, we observed a significant difference in PFS/OS not only
in the treatment response but also in the endocrine therapy cohort, which indicates that
at least 15% of the population may develop endocrine resistance in this cohort. However,
the score from RPPA did not reach statistical significance in the endocrine therapy cohort
of PFS/OS. The above results may be due to the characteristics of highly heterogeneous
factors in endocrine resistance [17]; only five targets in RPPA could not accurately reflect
and discriminate the complexity of endocrine resistance, which requires more abundant
markers and more functional categories, such as targets in RNA-seq.

The present study still has certain limitations. Due to the limited number of medical
records of treatment responses, the number of subjects in the arm of the treatment response
cohort was quite small. In the future, we will verify candidate gene sets in a larger
number of clinical participants with detailed treatment response records. However, our
findings reveal potential targets in the cross-resistance of SERMs/SERDs and AIs based on
transcriptomics and proteomics, thereby providing a potential therapeutic approach for
endocrine resistance in breast cancer in the future.

4. Materials and Methods
4.1. Study Population

All data were downloaded from the TCGA-BRCA project in the GDC database us-
ing TCGAbiolinks packages. Breast cancer patients who were hormone-positive and had
received endocrine therapy (ET) were recruited, and those with incomplete clinical charac-
teristics, RNA sequencing (RNA-seq), and reverse-phase protein array (RPPA) expression
profiles were excluded. A total of 44 patients with a record of treatment response (treat-
ment response cohort, TR cohort) and 449 patients (endocrine therapy cohort, ET cohort,
without a record of treatment response but with survival outcomes) were analyzed. Both
cohorts were used to determine the candidate gene sets and the risk score based on the TR
cohort. Baseline clinical characteristics included age at diagnosis, TNM staging, and the
pathological stage. The survival endpoints included progression-free survival (PFS) and
overall survival (OS).
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4.2. RNA-Sequencing and Reverse Phase Protein Array (RPPA) Analysis

The RNA-seq expression profile was determined experimentally using the Illumina
HiSeq 2000 RNA Sequencing platform at the University of North Carolina TCGA genome
characterization center. Differential gene expression (DGE) analysis was conducted to
obtain standardized reading count data and to conduct a statistical analysis to identify
quantitative changes in gene expression levels based on RNA-seq level 3 data. RNA-seq ex-
pression was reported in reads per kilobase million (RPKM), and the current dataset shows
the gene-level transcription estimates as log2(x + 1)-transformed RNA-seq by expectation-
maximization (RSEM) normalized counts. RPPA is a high-throughput antibody-based
technique for protein analysis. RPPA expression was first derived from a single curve using
all the samples on a slide with the signal intensity as the response variable and the dilution
steps as independent variables. The fitted curve was plotted with the signal intensities
on the y-axis and the log2-concentration of proteins on the x-axis for diagnostic purposes.
The current dataset abstracted the level 3 RPPA normalized data across all proteins and
samples [64].

4.3. Individual Receiving Operating Characteristics (IROC)

The individual optimal cut-off points for RNA-seq and RPPA expression for each target
gene were derived by receiving operating characteristics (ROC) using a treatment response
cohort. Each data point was used to dichotomize the study population into high-risk and low-
risk groups according to the estimated outcome (initial ET response for TR cohort or survival
status for ET cohort). The case numbers of both risk groups and estimated outcome were
summarized into four values including true positive (TP), true negative (TN), false negative
(FN), and false positive (FP). TP indicates the high-risk subjects with unfavored outcomes
(i.e., PD, metastases, or death), TN indicates low-risk subjects with the favored outcome (i.e., CR,
disease-free, or survived), FP indicates high-risk subjects with the favored outcome, and FN
indicates low-risk subjects with the unfavored outcome. Then, the area under the curve
(AUC) of each data point was computed using TP, TN, FP, and FN values based on the area
formula as shown in equation [65]. In general, 0.7 ≤ AUC ≤ 0.8 (acceptable discrimination);
0.8 ≤ AUC ≤ 0.9 (excellent discrimination); 0.9 ≤ AUC ≤ 1.0 (outstanding discrimination).

AUC =
TP

2(TP + FN)
+

TN
2(FP + TN)

The cut-off point that provided the maximized accuracy metric was selected as the
optimal cut-off point. An individual AUC (IAUC) of the corresponding optimal cut-off point
was computed, and a higher IAUC indicates better predictive ability for the initial ET response.
The high-risk characteristic of each target gene was defined by IROC, and an individual risk
score of one was scored if the study population obtained high-risk characteristics for the
corresponding target genes. In contrast, the individual risk score was zero.

4.4. Cumulative Risk Score and Scatter Plot

Subsequently, the individual risk scores of each target gene were combined to generate
a cumulative risk score. The specificity and sensitivity of the risk score from RNA-seq,
RPPA, and RNA-seq + RPPA were determined using the ROC curve and AUC value using
GraphPad Prism 8 (GraphPad Software, La Jolla, CA, USA). The co-expression of the
cumulative risk score based on RNA-seq and RPPA was illustrated using a scatter plot.
The x-axis indicates the RNA-seq cumulative risk score, the y-axis indicates the RPPA
cumulative risk score, and markers with different shapes and colors indicate different
clinical outcomes. Furthermore, the study cohorts were dichotomized into high- and low-
risk subgroups based on the mean or median cumulative risk score. Subjects who obtained
a cumulative risk score greater than or equal to the mean or median value of PD groups
were defined as a high-risk subgroup, and those who obtained a cumulative risk score
lower than the mean or median value were defined as low-risk subgroups. The survival
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difference between the high-risk and low-risk subgroups was estimated to validate the
predictive ability of the cumulative risk score for survival outcomes.

4.5. Statistical Analysis and Correlation Matrix

Baseline characteristics were summarized as median, range, frequency, and percentage.
Differences in baseline characteristics between subgroups were compared using Fisher’s
exact and Wilcoxon rank-sum tests. The RNA-seq and RPPA expression of the study cohorts
was summarized as median and range, and the difference between groups was estimated
using the Wilcoxon rank-sum test. The Venn diagram was conducted based on the criteria
of the z-score threshold ± 2.0. The differentiations of the candidate genes in the treatment
response cohort were visualized using a box plot. The middle line within the box represents
the median and the upper and bottom borders of the box represent the interquartile range.
The upper and lower whiskers represent the minimum and maximum values before the
fence (Q1/Q3 + 1.5*IQR), and the dots represent the maximum or minimum outliers of
the corresponding subgroup. The expression of candidate genes in the treatment response
and endocrine therapy cohort was illustrated using a heatmap and annotated with either
the treatment response to endocrine therapy or PFS status. The survival rates of the ET
response and cumulative risk score subgroups were estimated using the Kaplan–Meier
estimator, and the survival difference between subgroups was tested using the log-rank
test. Both p-values of PFS and OS were estimated using a log-rank test. The distribution
and correlation between each target gene were summarized using a correlation matrix, and
the correlation between each target gene was tested using the Pearson correlation test. The
diagonal shows the histograms for each gene together with the density functions, the lower
diagonal shows the scatter plots, and the upper diagonal shows the Pearson correlation
coefficients. Moreover, the x-axis indicated the expression of a target from up to down
and the y-axis indicated the expression of a target from right to left. All p-values were
two-tailed, and a p-value less than 0.05 was considered statistically significant. All analyses
were performed using R 4.0.2 software (R Core Team, 2021) [64] and GraphPad Prism 8
(GraphPad Software, La Jolla, CA, USA).

4.6. Gene Set Enrichment Analysis (GSEA)

Gene set enrichment analysis (GSEA) was conducted using the target genes to further
explore related gene functions, including biological processes (BP), cellular components
(CC), molecular functions (MF), and enrichment pathways. GSEA was performed using
the TCGAbiolinks package in R software, and a comprehensive set of efficient and concise
annotation tools was derived from the Database for Annotation, Visualization, and Inte-
grated Discovery (DAVID) [66]. The cutoff criterion for GSEA was set at a false discovery
rate (FDR) < 0.05 [64].

5. Conclusions

In conclusion, we conducted comprehensive transcriptomic (RNA-seq) and proteomic
(RPPA) analyses of ET-resistance-related targets from the clinical TCGA-BRCA PanCancer
Atlas database. With a series of analyses and selections from both cohorts, we elucidated
a candidate gene set of 15 targets that was critical in both SERMs/SERDs and AIs of ET
resistance. The candidate gene set provided excellent discrimination in identifying PD
and CR groups and was significantly correlated with the survival outcomes of PFS/OS in
the treatment response and endocrine therapy cohort. The present study still has certain
limitations: (1) some uncertainties and variable factors (different methodologies) exist in
the approach with information and computational technology; (2) we lack the time and
space characteristics for fully elucidating the interaction and function of targets; (3) we did
not take into account the factor of post-translational modification sites (PTMs); (4) there are
differences among transcription, translation, and PTM level (not all RNAs are coding for
proteins). To overcome the above limitations, we will verify candidate gene sets in a larger
number of clinical participants with detailed treatment response records, in vitro cell lines,
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and in vivo animal models in the future. However, this study provides valuable clinical
evidence that candidate gene sets may play a critical role in the diagnosis, mechanism, and
therapeutic strategy for both SERMs/SERDs and AIs of ET resistance in the future.
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