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Abstract: Objective: To generate an optimal prediction model along with identifying major contribu-
tors to intracranial infection among patients under external ventricular drainage and neurological
intensive care. Methods: A retrospective cohort study was conducted among patients admitted into
neurointensive care units between 1 January 2015 and 31 December 2020 who underwent external
ventricular drainage due to traumatic brain injury, hydrocephalus, and nonaneurysmal spontaneous
intracranial hemorrhage. Multivariate logistic regression in combination with the least absolute
shrinkage and selection operator regression was applied to derive prediction models and optimize
variable selections. Other machine-learning algorithms, including the support vector machine and K-
nearest neighbor, were also applied to derive alternative prediction models. Five-fold cross-validation
was used to train and validate each model. Model performance was assessed by calibration plots,
receiver operating characteristic curves, and decision curves. A nomogram analysis was developed
to explicate the weights of selected features for the optimal model. Results: Multivariate logistic
regression showed the best performance among the three tested models with an area under curve
of 0.846 ± 0.006. Six variables, including hemoglobin, albumin, length of operation time, American
Society of Anesthesiologists grades, presence of traumatic subarachnoid hemorrhage, and a history of
diabetes, were selected from 37 variable candidates as the top-weighted prediction features. The deci-
sion curve analysis showed that the nomogram could be applied clinically when the risk threshold
is between 20% and 100%. Conclusions: The occurrence of external ventricular-drainage-associated
intracranial infections could be predicted using optimal models and feature-selection approaches,
which would be helpful for the prevention and treatment of this complication in neurointensive
care units.

Keywords: external ventricular drainage; intracranial infection; lasso regression; logistic regression;
nomogram; machine learning

1. Introduction

External ventricular drainage (EVD) is one of the most common lifesaving procedures
performed in neurological intensive care units [1]. Various types of brain injuries, including
traumatic brain injury, intracranial hemorrhage, subarachnoid hemorrhage, hydrocephalus,
and meningitis, may benefit from the insertion of EVD. For patients in critical conditions,
EVD allows for continuous or intermittent cerebrospinal fluid (CSF) drainage, by which
means therapeutic purposes may be achieved such as intracranial pressure (ICP) monitor-
ing, lowering intracranial pressure, diverting ventricular blood, and allowing medication
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instillation [2–4]. If clinically indicated, an EVD collection system can also be accessed to
withdraw cerebrospinal fluid for cultures or to obtain malignant cells. It is reported that
over twenty thousand patients underwent EVD per annum in the United States, while the
number may be even larger in countries such as China [3,4].

Intracranial infection is one of the most common and severe complications of EVD,
with an incidence of 2–22% [5]. When EVD-associated intracranial infections are detected,
a common consensus is to apply antibiotic therapy and/or replace the catheter with a
new one, preferably at a new site [6,7]. Yet, even with dedicated therapy, EVD-associated
intracranial infections may significantly affect patients’ outcomes by increasing both mor-
bidity and mortality.

Great efforts have been made to screen features for predicting EVD-associated intracra-
nial infections. It is hoped that identifying patients with high risks of infection may facilitate
close surveillance and prophylactic treatment. Several features have been nominated by
previous studies as potential risks for EVD-associated intracranial infections, including
systemic infection, skull fracture, CSF leakage, lack of tunneling of a catheter, catheter
irrigation, CSF sampling, the duration of EVD placement, and abnormalities of metabolism
and nutrition states [8–10]. However, precise predictions are difficult for critical patients
since the occurrence of EVD-associated intracranial infections may be influenced by multi-
ple pathological processes, clinical procedures, and underlying diseases. It is also difficult
for neurointensive care (NICU) specialists to manually screen every factor on top of a heavy
workload. The application of machine learning in clinical research offers opportunities to
build disease-prediction models and uncover hidden patterns from enormous datasets,
which have been tested in many other clinical studies. Yet, how to select appropriate con-
tributing features for model training and avoid the appearance of overfitting or underfitting
are still issues that need to be addressed in various clinical studies. In this study, we assess
the possibilities of developing prediction models for EVD-associated intracranial infections
with the assistance of three popular machine-learning algorithms, the multivariate logistic
regression, the support vector machine (SVM), and the K-nearest neighbor (KNN). Detailed
methods and results are presented as follows. The least absolute shrinkage and selection
operator (LASSO) regression was applied to help feature selection. Detailed methods and
results are described as follows.

2. Methods
2.1. Study Cohort and Data Acquisition

This is a retrospective cohort study conducted between 1 January 2015 and 31 De-
cember 2020 at Shanghai Huashan hospital, Huashan Hongqiao Hospital, and Shanghai
Jingan Hospital. The study received approval from the institutional ethics committee and
was registered with the Chinese Clinical Trial Registry (ChiCTR1900021522). Due to the
nature of a retrospective study, informed consent was waived. Data were collected from
the hospital information system (HIS), electronic medical records (EMR), and laboratory in-
formation management system (LIS). Patients’ personal information was strictly protected
by the ethics committee. The data set for analysis involves recordings of the demographic
characteristics, diagnosis, medical history, laboratory tests on admission, and surgical
procedures (if any).

2.2. Inclusion and Exclusion Criteria

The inclusion criteria involve patients who underwent EVD therapy with a diagnosis of
traumatic brain injury (TBI), hydrocephalus, and nonaneurysmal spontaneous intracranial
hemorrhage (ICH), which were confirmed by computed tomography (CT) or magnetic
resonance (MR) scanning. Patients with confirmed preoperative intracranial infections
were excluded. Patients with incomplete data or who died within 48 h after admission
were also excluded. Figure 1 shows a flowchart of patient selection.
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Figure 1. Flow chart for identifying eligible patients. Abbreviations: TBI, traumatic brain injury; ICH,
intracranial hemorrhage; CT, computerized tomography; EVD, external ventricular drainage.

2.3. Definitions of EVD-Associated Infections and Length of EVD

The diagnosis of EVD-associated intracranial infections was established based on
confirmed CSF-culture-positive bacterial meningitis or ventriculitis. The CSF for culture
was collected through an EVD catheter or lumbar punctures. Once the diagnosis of EVD-
associated intracranial infections is established, the catheter was removed as soon as
possible. Depending on clinical need, the physician may decide whether to perform a
lumbar puncture or reperform the EVD procedure. For patients without EVD-associated
intracranial infections, physicians may decide when to remove the EVD catheter based
on disease regression. The length of EVD was defined as the time between EVD catheter
placement and removal. When there were multiple catheters (e.g., bilateral extraventricular
drainage), the length of EVD was the time from first catheter placement to full catheter
removal. For patients requiring catheter replacement due to EVD-associated intracranial
infections, the length of EVD is counted from the time of initial catheterization to the
replacement.

2.4. Statistics

Continuous variables were presented as mean ± standard deviation (SD) for normal
distribution variables and median and interquartile range (IQR) for skewed distribution
variables. For normality and homogeneity of variance, a Shapiro–Wilk W test and an F-test
were conducted on the categorical variables. Student’s t-test, Wilcoxon rank-sum test, or
one-way analysis of variance (ANOVA) were used for quantitative data from independent
groups. To compare categorical variables, we used χ2 tests or Fisher exact tests. Statistical
significance levels were all two-sided. Differences were considered statistically significant
when p < 0.05. Statistical analyses were performed using R 3.6.3 (The R Foundation for
Statistical Computing, Vienna, Austria) and Python 3.7 (The Python Software Foundation,
Beaverton, OR, USA).

2.5. Feature Selection and Machine Learning Algorithms

Clinical features, including patients’ gender, age, medical history, diagnosis, American
Society of Anesthesiologists grade (ASA), Glasgow Coma Scale (GCS) on admission, results
of first hospitalization lab tests, the length of operation, and postoperative EVD monitoring
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variables, were collected. The ASA grades were determined preoperatively and collected
from anesthesiology notes. A total number of 41 variables were analyzed as potential
contributors to EVD-associated infection.

The multivariate logistic regression, SVM, and KNN algorithms were each applied to
generate prediction models. Detailed descriptions of the three algorithms can be found in
other studies and therefore are omitted in this paper. For multivariate logistic regression
models, LASSO regression was applied to the training dataset for variable selection [11].
Candidate variables were excluded with a regression coefficient equal to zero after shrink-
age. LASSO regression helps in feature selection. The LASSO model uses shrinkage and
L1 regularization penalty technique, which means that the data points are recalibrated by
adding a penalty to shrink the coefficients to zero if they are not substantial. For the SVM
and KNN models, feature selection was conducted through weighting approaches using
the Gini index and correlation calculation.

To prevent overfitting and maximize generalizability, we used fivefold cross-validation
to train classifiers. The whole dataset was randomly divided into five roughly equally
numbered subsets, each called a fold. Then, four of the five subsets were used as the
training set and the remaining one as the validation set. The training used each of the five
folds as the validation set, and the above process was repeated ten times.

The area under the receiver operating characteristic curve (AU-ROC), precision, clas-
sification accuracy, recall score, and F1 score were used to evaluate the performance of
derived models. Accuracy = (TP + TN)/(TP + FP + FN + TN), recall = TP/(TP + FN),
F1 = 2 × precision × recall/(precision + recall), T = true, F = false, P = positive, and
N = negative. The ROC mean and SD of the model are calculated by repeated sampling
five times.

2.6. Nomogram Construction

Features with statistical significance and served in the best performance model were
applied to develop the nomogram. A nomogram is designed to predict the likelihood of
an interested outcome and expresses the risk factors based on patients’ characteristics. A
nomogram includes a points line for identifying the category of risk factors, a line of all
risk factors indicating the points for each category, a total points line for the sum of each
risk, and a probability line expressing the value of probability (usually from 0 to 100). The
larger the points, the higher the likelihood of disease may occur. In the present study, the
incidence of EVD-associated intracranial infections is a dependent variable, and the logistic
regression model was used to construct the nomogram.

3. Results
3.1. Patients Characteristics

A total number of 3376 patients admitted to the NICU were retrospectively screened
for analysis, among which 594 patients underwent EVD and with complete data were
involved for analysis. Table 1 describes the demographics and clinical characteristics of
recruited patients. Intracranial infections were confirmed in 143/594 (24.07%) patients
with EVD. Patients with EVD-associated intracranial infections had longer hospital stays
(24.49 ± 3.62 vs. 11.25 ± 3.75 days, p < 0.01), longer ICU length of stays (14.29 ± 6.91 vs.
5.93 ± 2.96 days, p < 0.01), and higher in-hospital mortality (32.87% vs. 5.76%). Table 1
summarized the difference between patients with or without EVD-associated intracranial
infections. For further model training and derivation, the whole dataset was randomly
divided into five subsets, four of which being used as the training set and the remaining
one as the validation set. Supplementary Table S1 indicated that there was no statistical
difference between the training and the validation sets.
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Table 1. Demographic and clinical features of recruited patients *.

Variables With EVD-Associated Intracranial
Infections (n = 143)

Without EVD-Associated
Intracranial Infections (n = 451) p

Clinical characteristics

Gender (Male) 77 (53.85%) 262 (58.09%) 0.36
Age (years) 54.08 (15.16) 55.28 (14.38) 0.39
BMI 23.22 (3.85) 23.48 (3.64) 0.48
History of diabetes 107 (74.83%) 337 (74.72%) <0.01
ASA grades 3.04 (0.94) 2.25 (0.84) <0.01
BP on admission (mmHg) 140.96 (12.30) 142.12 (12.55) 0.34
GCS 3–8 (n, %) 21 (14.69%) 70 (15.52%) 0.81
GCS 9–12 (n, %) 28 (19.58%) 87 (19.29%) 0.94
GCS 13–15 (n, %) 94 (65.73%) 294 (65.19%) 0.91
Preoperative intubation (n, %) 32 (22.38%) 84 (18.63%) 0.32
Lopt (minutes) 146.3 (92.44) 126.44 (79.85) 0.02
Cases underwent operations in addition
to EVD (n, %)

62 (43.36%) 175 (38.80%) 0.33

Diagnosis and complications

Hydrocephalus (n, %) 17 (11.89%) 56 (12.42%) 0.87
Spontaneous ICH (n, %) 95 (66.43%) 221 (49.00%) <0.01
Traumatic brain injury (n, %) 62 (43.36%) 143 (31.71%) 0.01
Skull fracture (n, %) 41 (28.67%) 136 (30.16%) <0.01
tSAH (n, %) 69 (48.25%) 146 (32.37%) <0.01
CSF leakage due to trauma (n, %) 9 (6.29%) 27 (5.99%) <0.01
Nonintracranial infections (n, %) 12 (8.39%) 28 (6.21%) 0.36

First laboratory tests

RBC (1012/L) 4.49 (0.89) 4.50 (0.83) 0.88
HB (g/L) 75.28 (61.83) 117.85 (32.26) <0.01
WBC (109/L) 13.64 (4.24) 12.88 (5.15) 0.08
NEUT (%) 86.01 (6.21) 83.83 (10.58) <0.01
PLT (109/L) 200.86 (65.21) 202.49 (68.66) 0.8
TBIL (µmol/L) 12.28 (6.92) 11.39 (6.84) 0.18
DBIL(µml/L) 5.15 (2.91) 4.94 (2.83) 0.44
ALT (U/L) 43.17 (38.24) 33.12 (23.60) <0.01
AST (U/L) 43.23 (27.85) 38.32 (29.57) 0.15
LDH (U/L) 206.94 (69.11) 205.53 (64.56) 0.82
HDL (mmol/L) 1.93 (0.59) 1.96 (0.62) 0.62
LDL (mmol/L) 2.93 (1.15) 2.97 (1.15) 0.77
Ch (µml/L) 5.07 (1.18) 5.03 (1.15) 0.75
Ab (g/L) 33.27 (7.22) 43.74 (4.62) <0.01
GLB (g/L) 30.71 (6.62) 32.02 (7.61) 0.01
BUN (mmol/L) 6.09 (1.77) 6.05 (1.76) 0.79
UA (mmol/L) 261.83 (101.63) 250.59 (94.69) 0.23
SCR (µmol/L) 5.87 (1.21) 6.03 (1.18) 0.16

Postoperative EVD monitoring

Length of EVD (days) 9.15 (4.52) 6.85 (3.48) 0.045
Number of CSF sampling (per week) 3.07 (1.41) 3.00 (1.41) 0.62
Leakage from EVD site (n, %) 20 (13.99%) 23 (5.10%) <0.01

Outcomes

ICU length of stays (days) 14.29 (6.91) 5.93 (2.96) <0.01
Hospital stays (days) 24.49 (3.62) 11.25 (3.75) <0.01
In-hospital mortality (n, %) 47 (32.87%) 26 (5.76%) <0.01

* Continuous data are shown as mean (standard deviation). Abbreviations: EVD, external ventricular drainage;
CSF, cerebropinal fluid; ICH, intracranial hemorrhage; ASA, American Society of Anesthesiologists; Lopt, length
of operation time; tSAH, traumatic subarachnoid hemorrhage; RBC, red blood cell; HB, hemoglobin; WBC, white
blood cell; NEUT, neutrophil ration; PLT, platelet; TBIL, indirect bilirubin; DBIL, direct bilirubin; ALT, glutamic
pyruvic transaminase; AST, glutamic oxalacetic transaminase; LDH, lactate dehydrogenase; HDL, high-density
lipoprotein; LDL, low-density lipoprotein; Ch, cholinesterase; Ab, albumin; GLB, globulin; BUN, urea nitrogen;
UA, uric acid; SCR, creatinine; BP, blood pressure; GCS, Glasgow coma scale; BMI, body mass index; ICU,
intensive care unit.

3.2. LASSO Regression and the Logistic Regression Model

From the potential EVD-associated intracranial infection risks listed in Table 1, can-
didate shrinkage was achieved by LASSO regression. Figure 2 indicates that during the
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LASSO regression, when the partial likelihood binomial deviance reached its minimum
value, a value of 0. 038 was the optimal tuning parameter for LASSO regression. By
this means, six features, namely HB, ASA grades, Lopt, Ab, a history of diabetes, and a
diagnosis of traumatic SAH (tSAH) were selected as the best combination (Table 2). When
these six features were introduced into the logistic-regression-model training, a prediction
model was derived with an averaged AUC of 0.846 ± 0.006 (Table 3).
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Table 2. Top weighted features for predicting EVD-associated intracranial infections.

Models Features Weight

Logistic Regression

ASA grades 0.37
HB 0.24

History of diabetes 0.19
tSAH 0.092
Lopt 0.087
Ab 0.068

SVM

HB 0.31
ASA grades 0.29

Ab 0.18
Lopt 0.16

History of diabetes 0.13
Length of EVD 0.076

KNN

ASA grades 0.37
HB 0.17
ALT 0.16
Lopt 0.14
Ab 0.095

Leakage from EVD site 0.075
Abbreviations: ASA, American Society of Anesthesiologists; SVM, Support Vector Machine; KNN, K-nearest
neighbor; EVD, external ventricular drainage; Lopt, length of operation time; HB, hemoglobin; tSAH, traumatic
subarachnoid hemorrhage; ALT, glutamic pyruvic transaminase; Ab, albumin.

LASSO regression used least absolute shrinkage and selection operator (LASSO).
Selection of tuning parameter (λ) in the LASSO regression used 5−fold cross-validation via
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minimum criteria (A-B). Partially unbiased binomial deviance was plotted vs. log (λ). At
optimum log (λ), where features are selected, dotted vertical lines were drawn using the
minimum criteria and the one standard error of the minimum criteria. A coefficient profile
plot for each clinical feature was produced along with the log (λ) sequence. The dotted
vertical line was set at nonzero coefficients, which were selected via 5−fold cross-validation,
where six nonzero coefficients were included.

Table 3. Multimodel classification—training cohort *.

Classification
Model AUC Cut-Off Accuracy Sensitivity Specificity

Positive
Predictive

Value

Negative
Predictive

Value
F1 Score

Logistic
regression

0.846
(0.006)

0.305
(0.016)

0.870
(0.004)

0.761
(0.010)

0.970
(0.005)

0.715
(0.011)

0.921
(0.003)

0.737
(0.008)

SVM 0.730
(0.008)

0.191
(0.100)

0.792
(0.029)

0.646
(0.059)

0.845
(0.054)

0.575
(0.097)

0.879
(0.009)

0.599
(0.018)

KNN 0.845
(0.003)

0.400
(0.001)

0.887
(0.005)

0.931
(0.014)

0.817
(0.012)

0.828
(0.021)

0.901
(0.007)

0.876
(0.012)

* All values are shown as mean (standard deviation). Abbreviations: AUC, Aera Under Curve; SVM, support
vector machine; KNN, k-nearest neighbor.

3.3. Models for EVD-Associated Infection Prediction

The feasibility of predicting EVD-associated intracranial infections was additionally
evaluated using the SVM and KNN algorithms. According to the AUC values, logistic
regression showed the best performance (AUC 0.846 ± 0.006) among the three tested
approaches (Table 3, Figure 3A) in the training set. Table 3 shows that the logistic regression
model also outperformed the other two algorithms in accuracy, sensitivity, specificity,
positive predictive value, negative predictive value, and F1 score. The decision curve
analysis (DCA) (Figure 3B) showed that when the risk threshold probability was set
between 20% and 100%, the logistic regression model yielded the best prediction. The top
six weighted features for prediction via the SVM and KNN models are listed in Table 2.
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SVM, and KNN models. (B) The DCA of the logistic regression, SVM, and KNN models. The thick
solid line signifies the assumption that no intracranial infection occurred in any patient on the y-axis.
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3.4. Model Validation

To assess the interpretability and generalizability of the prediction models, the three
prediction models were further tested with the validation dataset. Table 4 and Figure 4
indicated that the logistic regression model still showed the best performance with an
AUC of 0.847 ± 0.097 (Figure 4A). A linearized calibration curve showed that the logistic
regression showed a nonstatistical difference with perfect predictions (on the 45◦ line, brief
score = 0. 052, Figure 4B).

Table 4. Multimodel classification—validation cohort *.

Classification
Model AUC Cut-Off Accuracy Sensitivity Specificity

Positive
Predictive

Value

Negative
Predictive

Value
F1 Score

Logistic
regression

0.847
(0.097)

0.305
(0.016)

0.869
(0.050)

0.787
(0.145)

0.923
(0.058)

0.714
(0.094)

0.924
(0.048)

0.743
(0.101)

SVM 0.677
(0.111)

0.191
(0.100)

0.758
(0.069)

0.698
(0.174)

0.875
(0.135)

0.521
(0.140)

0.856
(0.050)

0.585
(0.122)

KNN 0.844
(0.072)

0.400
(0.000)

0.829
(0.053)

0.833
(0.136)

0.747
(0.156)

0.730
(0.170)

0.859
(0.051)

0.757
(0.100)

* All values are shown as mean (standard deviation). Abbreviations: AUC, Aera Under Curve; SVM, support
vector machine; KNN, k-nearest neighbor.
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3.5. Nomogram Analysis for EVD-Associated Intracranial Infections Prediction

Figure 5 presents the nomogram constructed using the logistic regression model
obtained from the results in Table 2. It is confirmed that the points of EVD-associated
intracranial infections are high in the order of ASA grades, HB, history of diabetes, diagnosis
of tSAH, length of operation, and Ab levels.
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Figure 5. Development of the prediction nomogram. The EVD-associated infection risk nomogram
was developed with the predictors including HB, ASA grades, Lopt, Ab, history of diabetes, and a
diagnosis of tSAH.

4. Discussion

For patients requiring neural intensive care, EVD is one of the most common life-
saving procedures during the treatment of multiple brain injuries such as TBI, intracranial
hemorrhage, and hydrocephalus [12]. The surgical procedure of EVD is relatively straight-
forward and can be performed by free hand. However, EVD is also one of the biggest
concerns for NICU specialists due to its high incidence of intracranial infections [7,13]. Once
occurred, EVD-associated intracranial infections are difficult to treat. Common treatments
include catheter replacement, prolonged intravenous antibiotics administration, lumbar
puncture, continuous CSF drainage, instill medications, and nutritional support. In certain
circumstances, EVD-associated intracranial infections may develop into refractory drug-
resistant bacterial meningitis, ventriculitis, systemic infections, and multiorgan failures
that lead to unfavorable outcomes [14–16]. Though the exact figure is hard to calculate, it
has been demonstrated that EVD-associated infection may significantly increase mortality,
morbidity, and medical burden [17].

Considering its hazards and high incidence (2–22% according to the published liter-
ature) [5], scholars have tried to build predictive models for EVD-associated intracranial
infections and find prevention strategies. Zhang et al. considered that ASA grades, length
of hospital stay, consecutive operation, and prolonged surgery time may contribute to
the occurrence of EVD-associated intracranial infections [18]. Yang and colleagues found
that prolonged postoperative ICU stays, frequent CSF sampling, longer duration of EVD,
and preoperative intubation were independent risk factors for EVD-associated intracranial
infections [19]. However, these screened influences were either studied individually or
reviewed as meta-analyses, which is not easy to be applied as systematic models.

In this study, we developed a prediction model for EVD-associated infection based
on machine-learning algorithms. Established algorithms, including multivariable logistic
regression, SVM, and KNN, were applied to generate prediction models. To avoid possible
overfitting due to overloaded features, LASSO regression and five-fold cross-validation
were adopted for variable selection and classification. The above three algorithms each
have their own advantages and disadvantages. Logistic regression is a type of generalized
linear model, which is suitable for fitting binary or multivalued data. In machine learning,



J. Clin. Med. 2022, 11, 3973 10 of 13

logistic regression is considered a supervised learning approach, which can add or remove
variables manually, and is not easily overfitted. The SVM algorithm can be applied to
handle high-dimensional data sets, but it is sensitive to missing data. The KNN algorithm
can be used for both classification and regression, but if the samples are not balanced,
the bias of KNN prediction could be significant. In this study, the multivariable logistic
model showed the highest AUC value, the best mean net benefit in DCA, and the smallest
briefing score in the calibration curve. Based on the logistic regression model, HB, ASA
grades, Lopt, Ab, a history of diabetes, and a diagnosis of tSAH were major contributors to
predicting EVD-associated intracranial infections. To make the prediction model easier to
assess and more practicable, a nomogram was established to give explicit weights of each
selected feature [20,21].

The ASA classification is a widely used grading system for preoperative health of
surgical patients. An ASA grade may range from 1 to 6, measuring a patient’s physical
condition and risks of surgery. In this study, the ASA grades showed a significant difference
between patients with and without EVD-associated intracranial infections and served as
the top features for infection prediction in all three models. Patients with EVD-associated
intracranial infections had an average higher ASA grade on admission, suggesting they
might have more serious complications, more limited physical activity, a higher possibility
of compromised immunity, and were more vulnerable to infections [22,23]. Though it is
difficult to reverse unfavorable physical conditions immediately, efforts should be made to
treat underlying diseases and complications, and to stabilize patients in critical conditions
before an EVD or other operations.

Anemia is common among neurological critical patients. The decrease in HB level
may be related to traumatic blood loss and/or complications of neurological disorders
(e.g., gastrointestinal bleeding). A large amount of transfusion due to the correction of
shock may also lead to a decrease in HB levels. Previous research has shown that decreased
brain-tissue oxygen tension is an independent factor associated with unfavorable outcomes
for TBI patients, while hemoglobin level is an indispensable factor for maintaining normal
brain-tissue oxygen tension [24]. Oxygen is carried by the hemoglobin in the systemic
circulation. Anemia reduces the oxygen-carrying capacity, which may lead to reduced
oxygen uptake, prolonged edema, and elevated ICP after brain trauma or intracranial
hemorrhage [25,26]. Those with hypohemoglobinemia may require extended ICU stay and
drainage for ICP control, which increases the probability of EVD-associated intracranial
infections.

Traumatic SAH is a common radiologic finding in CT scans, which occurred in 33–60%
of TBI patients [27]. Causes of tSAH may involve the rupture of cortical vein and pia mater
during brain contusion, with blood entering the subarachnoid space. Alternatively, cerebral
arteries may also be injured, leading to hemorrhage due to sudden supination of the head
during injury. While most patients with mild tSAH do not require surgical treatment, severe
edema, vasospasm, and progressive lobar or intraventricular hemorrhage may develop in
severe cases [28]. Hsieh reported that in contrast to patients with an isolated tSAH, those
with tSAH and concurrent types of intracranial hemorrhage have higher mortality, and
a large number of these cases require extended EVD for diverting intraventricular blood
and continuous ICP monitoring [29]. In this study, it is indicated that the presence of tSAH
suggests more severe brain injuries. The proportions of cases with GCS9–12 and GCS3–8
were significantly higher than those without tSAH, and patients with tSAH underwent
longer EVD and had longer ICU/hospital stays (Supplementary Table S2). These could
consequently contribute to the incidence of intracranial infections.

Serum albumin is used to predict the prognosis of TBI patients. In the general pop-
ulation, hypoalbuminemia has been associated with poor clinical outcomes in acute ill-
nesses [30]. The level of serum albumin on admission has also been associated with
in-hospital mortality, length of ICU stays, and readmission. The incidence of hypoalbu-
minemia among NICU patients is not rare, and early correction may help to reduce infection
incidence and outcome improvement.
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It is controversial whether the length of operation time may increase the chances of
EVD-associated infections. While Yuen et al. reported no difference in length of operation
time between infected and noninfected cases, others have found that longer operation
time is associated with surgical-site infections and extracranial complications [31]. Al-
though the procedure of EVD is usually straightforward, the operation time could be
significantly extended when combining hematoma evacuation, decompression, and other
procedures [32]. To some extent, the operation time may reflect the severity of brain injury,
though whether the latter is associated with EVD-associated intracranial infections requires
further investigations.

A history of diabetes serves as a high-weighted predictor for EVD-associated intracra-
nial infections. Diabetes may cast negative influences on the rehabilitation progress of
many diseases [33,34]. In patients with diabetes, the immune system may be compromised.
In addition to causing natural barrier damage, diabetes can also impair cellular immunity
due to insulin deficiency and hyperglycemia, causing the host to be more susceptible to
infection [35,36].

In previous studies, clinical characteristics such as EVD duration were suggested as
potential contributors for intracranial infections [8,9]. Our study showed that the average
EVD duration for patients with intracranial infections was statistically longer than those
without infections. The length of EVD was selected as a major predicting feature in the SVM
model, but was excluded from the top features in the logistic regression and KNN models.
One possible explanation is that the number of cases with extended periods of EVD in the
current dataset was small. In our center, CSF drainage catheters were routinely removed
once cerebral edema or SAH was relieved. For patients with hydrocephalus requiring
emergency CSF drainage, subsequent shunts were arranged at the earliest opportunity.
Therefore, although prolonged EVD has been indicated as a risk for intracranial infections,
the importance was not identified within this dataset.

As with many other studies combining machine learning and disease models, we
hope the findings of this study would be valuable for clinical practice and to improve
patient outcomes. There are two key points in this study that make further translational
research promising. First, the optimal algorithms and predictive models showed good and
stable performance in both the training and validation dataset. Second, the six selected
top-weighted predictors of the model are amenable to integration with clinical practice.
For example, correcting preoperative hypoproteinemia and anemia, reducing EVD surgery
time by standardized surgical training, and improving preoperative ASA scores by treating
primary morbidity and complications may help to reduce the risk of EVD-associated
intracranial infections. In addition, more attention should be paid to individuals with a
history of diabetes mellitus and tSAH (or severe injuries), who are considered patients with
high risks of EVD-associated intracranial infections. Further prospective clinical studies
are needed to determine to what extent each of the above features is corrected (to derive
cut-off values) and to what extent this correction can affect patients’ prognosis.

This research has some limitations. Firstly, no records were kept regarding patients’
courses after discharge and no information was available about patients’ outcomes when
transferring hospitals. EVD-associated intracranial infections may be confirmed within
rehabilitation hospitals after being discharged from NICU. Second, CSF-culture-negative
infection may present under the effects of systemic antibiotics administration. The ac-
tual occurrence of EVD-associated infections could be higher than that reviewed in this
manuscript. Third, despite the generation of an efficient prediction model, the prevention of
EVD-associated infection is not easy. To reduce the occurrence of EVD-associated infection,
a typical practice is to apply prophylactic antibiotic therapy covering typical skin flora
during EVD. Yet, this may also contribute to the development of resistant organisms. Some
other measures include reducing the frequency of CSF sampling, monitoring the EVD
dressing site for possible leaks, maintaining the collection system upright, and not routinely
replacing drain tubing. In some units, EVD catheters coated with antibiotic-impregnated
and ionized silver particles have also been suggested to replace common catheters though
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they usually come at a cost. Yet, these measures, either alone or in combination, do not
eliminate the occurrence of infection.

5. Conclusions

This study provides an example of a systematic analysis of data on EVD-associated
intracranial infections in NICU patients. A practical prediction model has been generated
using the logistic regression algorithm. ASA grade, serum Ab, duration of operation,
diagnosis of tSAH, and a history of diabetes have been identified as major features for
EVD-associated intracranial infections.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jcm11143973/s1, Table S1. Demographic and clinical features
between training-set and validation-set. Table S2. Characteristic of patients with tSAH.
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