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Improved detection of tumor suppressor events in single-cell

RNA-Seq data

Andrew E. Teschendorff@'?* and Ning Wang'

Tissue-specific transcription factors are frequently inactivated in cancer. To fully dissect the heterogeneity of such tumor suppressor
events requires single-cell resolution, yet this is challenging because of the high dropout rate. Here we propose a simple yet
effective computational strategy called SCIRA to infer regulatory activity of tissue-specific transcription factors at single-cell
resolution and use this tool to identify tumor suppressor events in single-cell RNA-Seq cancer studies. We demonstrate that tissue-
specific transcription factors are preferentially inactivated in the corresponding cancer cells, suggesting that these are driver events.
For many known or suspected tumor suppressors, SCIRA predicts inactivation in single cancer cells where differential expression
does not, indicating that SCIRA improves the sensitivity to detect changes in regulatory activity. We identify NKX2-1 and TBX4
inactivation as early tumor suppressor events in normal non-ciliated lung epithelial cells from smokers. In summary, SCIRA can help
chart the heterogeneity of tumor suppressor events at single-cell resolution.
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INTRODUCTION

Tissue-specific transcription factors (TFs) are required for the
differentiated state of cells in a given tissue'. They are often
inactivated in cancer, which is associated with a lack of
differentiation, a well-known cancer hallmark®. Many of these
tissue-specific TFs encode tumor suppressors and their inactiva-
tion may constitute driver events that are thought to occur in the
earliest stages of carcinogenesis’™®. Estimating regulatory activity
of such tissue-specific TFs in both normal and cancer tissue is
therefore a critically important task, as this can reveal which
normal tissues are at risk of neoplastic transformation'®. There are
two main reasons why this task should be performed at single-cell
resolution''™'3, First, TFs control cell identity"'* and, thus,
estimation of regulatory activity in bulk tissue is subject to
confounding by cell-type heterogeneity. Second, to fully char-
acterize cancer heterogeneity requires identifying putative tumor
supﬂregsor events at the most fundamental scale, i.e., the single
cell>™°,

However, estimating regulatory activity of TFs at single-cell
resolution is hard because of the typically high dropout rate and
low genomic coverage of single-cell assays'®~2". In the context of
single-cell RNA sequencing (RNA-Seq) assays, one could in
principle use TF expression as a surrogate marker of TF activity
(TFA; i.e., regulatory activity reflecting the effect of the TF on
downstream expression of direct and indirect targets), and
although this strategy works well on expression data derived
from bulk tissue (see, e.g., ref. '), it is unclear how well this works
for scRNA-Seq assays*>?>. Thus, it is also unclear how best to infer
regulatory activity in the majority of scRNA-Seq cancer studies that
are performed in solid epithelial tissues.

Here we present a novel strategy called SCIRA (SCalable
Inference of Regulatory Activity in single cells), which applies an
existing regulatory inference method® to a suitably powered bulk
multi-tissue RNA-Seq dataset to identify tissue-specific TFs and
their regulons (i.e., their direct and indirect targets), from which

regulatory activity in single cells can then be estimated. We
comprehensively validate SCIRA, and demonstrate through a
power calculation and application to real scRNA-Seq data, that
SCIRA can estimate regulatory activity even for TFs that are highly
expressed only in relatively minor fractions (~5%) of cells within a
bulk tissue. We subsequently apply SCIRA to several scRNA-Seq
datasets containing both normal and cancer cells, where it reveals
preferential inactivation of tissue-specific TFs in corresponding
single cancer cells, an observation strongly consistent with
analogous results obtained in bulk tissue®, while also revealing
novel tumor suppressor events at single-cell resolution. We further
showcase an important application of SCIRA to identify tumor
suppressor events in single normal cells (lung epithelial cells)
exposed to a cancer risk factor (smoking). Our results underscore
the critical need for a method like SCIRA, as ordinary differential
expression (DE) fails to reveal the same insights, even after
imputation of dropouts.

RESULTS
Inferring regulatory activity with SCIRA: rationale

SCIRA identifies tissue-specific TFs, builds regulons for these TFs,
and uses these regulons to estimate regulatory activity of the TFs
in scRNA-Seq data (“Methods"”). SCIRA adapts the SEPIRA algorithm
(previously published by us®) to infer tissue-specific TFs and
regulons from the large Genotype-Tissue Expression (GTEX) multi-
tissue bulk RNA-Seq dataset (8555 samples, 30 tissue types)**
(“Methods,” Fig. 1a). We note that the tissue-specific TFs are
derived by adjusting for cell-type (stromal) heterogeneity, which
can otherwise strongly confound DE analyses (“Methods”)*°. To
justify inferring TFs and their regulons from bulk-tissue data, we
performed a careful power calculation, which revealed that SCIRA
has reasonable sensitivity to detect tissue-specific TFs that are
highly expressed even if only in a relatively underrepresented cell
type within the tissue (“Methods,” Fig. 1b). For instance, using
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Fig. 1 SCIRA rationale and workflow. a As bulk RNA-Seq data does not suffer from technical dropouts and is much more reliable than scRNA-
Seq data, for a given choice of tissue, we use the high-powered GTEX bulk RNA-Seq expression set (>20,000 genes, 8555 samples, 30 tissue
types) to derive a corresponding tissue-specific regulatory network, consisting of a gold-standard list of tissue-specific transcription factors
(TFs) and their targets (regulons). The inference of the network uses a greedy partial correlation framework, while also adjusting for stromal
(immune cell) contamination within the tissue. b Power/Sensitivity (SE) estimates to detect tissue-specific TFs in the GTEX bulk RNA-Seq
dataset as a function of the minor cell-type fraction (MCF) (left), number of samples in the tissue of interest (middle), and average fold change
of differential expression between the tissue of interest and the rest of tissues in GTEX (right). In the left panel, we depict SE curves for four
tissue types in GTEX (number of samples in each tissue is given) and for an average FC = 8. In the middle panel, we depict SE curves for two
MCF values, as indicated. In the right panel, we assume a sample size of 150. An MCF value of 0.05 means we assume that the tissue-specific
TFs is only highly expressed in 5% of the tissue resident cells. ¢ Given the high technical dropout rate and overall noisy nature of scRNA-Seq
data, it may not be possible to reliably infer regulatory activity from the TF expression profile alone. However, using the TF regulons derived in
a, and using the genes within the regulon that are not strongly affected by dropouts, we can estimate regulatory activity across single cells.
Depicted is an example with three lung-specific TFs (Sox18, Tbx4, Foxa2), as well as the expression pattern of the regulon genes for Tbx4, in the
context of a lung development study from embyronic day 10 to adult stage (Treutlein dataset). We use linear regressions between the
expression values of all the genes in a given cell and the corresponding TF-regulon profile, to derive the activity of the TF as the t-statistic of
the estimated regression coefficient, resulting in a regulatory activity map over the tissue-specific TFs and single cells. The same tissue-specific
TFs and their regulons can be applied to normal-cancer scRNA-Seq datasets to infer regulatory activity maps across normal and cancer cells.

reasonable values for the average fold change (Supplementary The inferred TF regulons can subsequently be applied to suitably
Fig. 1), we estimated that for tissues such as lung, pancreas, and matched scRNA-Seq data in a linear regression framework?®
liver, for which there are more than 100 samples in GTEX (total (“Methods”) to estimate regulatory activity for each single cell. By
number of samples is 8555), sensitivity to detect TFs expressed in using the actual regulon of the TF, this inference should be robust
only 5% of cells within the tissue (i.e., a minor cell fraction = 0.05) to dropouts, i.e., even if the TF itself is not detected across most, if
were generally still over 50% (Fig. 1b and Supplementary Fig. 2). not all, of the cells in the study (Fig. 1c). Finally, one can construct
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regulatory activity maps across the relevant cells within the tissue
(Fig. 1c), which can reveal deregulated TFs at single-cell resolution.

Validation of SCIRA in normal tissue

As a proof of principle, we applied SCIRA to four tissue types (lung,
liver, kidney, and pancreas) using the GTEX dataset to infer
corresponding tissue-specific TFs and regulons. We identified on
average about 30 tissue-specific TFs for each of the 4 tissue types
and on average about 40-50 regulon genes per TF (Supplemen-
tary Tables 1-4 and Supplementary Data 1). The TF lists contained
well-known tissue-specific factors: e.g., for the liver, the list
included the well-known hepatocyte factors HNF1A, HNF4A, and
FOXA1 (HNF3A); for the lung, the list included well-known lung
alveolar differentiation factors TBX2 and FOXA2%"~%°, and FOXJI, a
factor required for ciliogenesis®°. To test the reliability of the TFs
and regulons, we performed four separate validation analyses.
First, although there is no logical requirement for regulon genes
to be direct targets®', some enrichment for direct binding targets
is expected. Approximately 65% of our TF regulons exhibited
statistically significant enrichment for corresponding chromatin
immunoprecipitation sequencing (ChIP-Seq) TF-binding targets
(Supplementary Figs. 3 and 4), as determined using data from the
ChlIP-Seq Atlas®? (“Methods”). For instance, in the case of liver, we
could find ChIP-Seq data for 12 of the 22 liver-specific TFs and for
9/12 we observed statistically significant enrichment (Supplemen-
tary Fig. 3D, E). In many instances, proportions of regulon genes
that were direct TF-binding targets were considerable. For
example, for the liver-specific TF HNF4G, 57% of its 37 regulon
genes (i.e, 21 genes) were bound by HNF4G within £5 kb of the
gene’s transcription start site (TSS) (Supplementary Fig. 3D). For
FOXAT1, eight of its ten regulon genes were bound by FOXAT within
+1 kb of the TSS (Supplementary Fig. 3D). Statistical significance
estimates were independent of the choice of threshold on binding
intensity values (“Methods"”) and also robust to parameter choices
in SCIRA (Supplementary Fig. 5 and “Methods”). Second, we were
able to validate the tissue specificity of the regulons and derived
regulatory activity estimates in independent multi-tissue bulk
RNA-Seq (ProteinAtlas®®) and microarray data from Roth et al.>*
(Supplementary Figs. 6-9). Given these successful validations, we
estimated on average only 10% of TF-regulon-gene associations
to be false positives (Supplementary Fig. 10). Third, we collated
and analysed scRNA-Seq datasets representing differentiation
time courses into mature epithelial cell types present within the
given tissues, encompassing two species (human and mouse) and
three different single-cell technologies (Fluidigm C1, DropSeq, and
Smart-Seq2) (Supplementary Table 5 and “Methods”)**7%, We
reasoned that most of our tissue-specific TFs would exhibit higher
regulatory activity in the corresponding mature differentiated cells
compared to the immature progenitors, a hypothesis that we were
able to strongly validate in each of the four tissue types
(Supplementary Figs. 11-14). These results could not have arisen
by random chance and were not seen if we used tissue-specific
TFs from other unrelated (non-epithelial) tissues such as the skin
or brain (Supplementary Fig. 15). We further observed that, owing
to the high dropout rate, SCIRA’s regulatory activity estimates
were much more sensitive than expression itself (Supplementary
Figs. 11-14 and Fig. 2a). As a concrete example, SCIRA’s regulatory
activity estimates for lung alveolar differentiation factors TBX2 and
FOXA2*’7?° were higher in the mature alveolar cell types
compared to the immature progenitors, as required, while
expression levels could not detect an increase (Supplementary
Fig. 11). SCIRA displayed improved sensitivity and prevision (i.e.,
lower false discovery rate) over DE even after application of
imputation methods (scimpute®®, MAGIC*, and Scrabble®'), or
even when compared to other regulatory activity estimation
methods such as SCENIC/GENIE3*? (Fig. 2a-c and “Methods”).
SCIRA also displayed improved sensitivity over the combined use
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of VIPER**** and the dorothea TF-regulon database**® (“VIPER-
D"), as well as lower false discovery rates (FDRs) (Fig. 2a-c and
“Methods”). This is noteworthy given that the TF regulons from
dorothea are not tissue-specific. Fourth, we validated the power
calculation underlying SCIRA by applying it to a differentiation
time course scRNA-Seq dataset in the liver*®, which revealed the
expected bifurcation of hepatoblasts into hepatocytes and
cholangiocytes, as well as identifying cholangiocyte-specific
factors, despite their very low frequency (5-10%) in the liver
tissue (Supplementary Figs. 16B-E and 17). We note that the
bifurcation and dynamic expression patterns were not revealed
when analyzing TF expression levels (Supplementary Fig. 18),
further supporting the view that SCIRA can improve the sensitivity
to detect correct patterns of TFA.

SCIRA predicts inactivation of tissue-specific TFs in corresponding
tumor epithelial cells

Next, we applied SCIRA to a recent lung cancer scRNA-Seq study
(Lambrecht et al.*’), which profiled a total of 52,698 cells (10x
Chromium) derived from 5 lung cancer patients (2 lung adenoma
carcinomas (LUAD), 2 lung squamous cell carcinomas (LUSC), and
1 non-small cell lung cancer (NSCLC)). We hypothesized that many
of our previously identified lung-specific TFs would be inactivated
in lung epithelial tumor cells®®, as lack of differentiation is a well-
known cancer hallmark®. We used the same dimensional
reduction and t-stochastic neighborhood embedding (tSNE)
approach as in Lambrecht et al.*’, to first categorize specific
clusters of cells as normal alveolar epithelial (n = 1709) and tumor
epithelial (n =7450) (Fig. 3a). We verified that the alveolar cells
expressed relatively high levels of an alveolar marker (CLDN18)
(Fig. 3b), whereas both alveolar and tumor epithelial cells
expressed relatively high levels of EPCAM, a well-known epithelial
marker (Fig. 3c). As noted by Lambrecht et al.*’, the great majority
of alveolar cells were from non-malignant specimens representing
normal (squamous) epithelium and clustered together irrespective
of patient-ID*’, whereas cancer cells clustered according to patient
(Fig. 3a). Next, we used SCIRA to estimate regulatory activity for all
38 lung-specific TFs in each of the (1709 4 7450) cells and
computed t-statistics of differential activity between alveolar and
tumor epithelial cells. Remarkably, 35 out of the 38 TFs exhibited a
statistically significant (Bonferroni adjusted P < 0.05) reduction in
regulatory activity in tumor cells (Fig. 3d, Wilcox test P < 1e — 8).
Using 1000 Monte-Carlo randomizations of the regulons, we
verified that this number of inactivated TFs could not have arisen
by chance (Fig. 3d, Monte-Carlo P <0.001). Among the most
significantly inactivated TFs, we observed FOXA2, a TF required for
alveolarization and which regulates airway epithelial cell differ-
entiation®®?° (Fig. 3e), and NKX2-1, a master TF of early lung
development*® (Supplementary Fig. 19). Other inactivated TFs
included the following: (i) SOX13, which has been broadly
implicated in lung morphogenesis*®; (i) HIF3A, which has been
shown to be highly expressed in alveolar epithelial cells and
thought to be protective of hypoxia-induced damage®; and (iii)
the aryl hydrocarbon receptor (AHR), which is a regulator of
mucosal barrier function and activation of which enhances CD4+
T-cell responses to viral infections®'>? (Supplementary Fig. 19).
Importantly, these findings would not have been obtained had we
performed DE or VIPER-D analysis on the 38 TFs (Fig. 3d, f). Indeed,
according to a Wilcoxon rank-sum test, 21 TFs were differentially
expressed between alveolar and tumor epithelial cells, but with no
clear trend towards underexpression in tumor cells (Fig. 3d). For
instance, according to single-cell DE analysis, TFs such as TBX4 and
FOXJ1, both with important roles in lung tissue development, were
not underexpressed in tumor cells, yet they were found to be
inactivated according to SCIRA (Fig. 3f). Given that TBX4 and FOXJ1
have been found to be inactivated/underexpressed in bulk lung
cancer tissue®, this further supports the view that SCIRA improves
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Fig. 2 SCIRA displays improved sensitivity, precision, and scalability. a Barplots with 95% confidence intervals included displaying the
sensitivity (SE) to detect increased activity or expression for a gold-standard set of tissue-specific TFs in a corresponding time course
differentiation scRNA-Seq study. Methods represented are SCIRA, ordinary differential expression (DE), imputation with scimpute, MAGIC or
Scrabble following by DE, SCENIC, running SCENIC without the TF-binding motif enrichment step (denoted “GENIE3"), and VIPER using the
dorothea regulon database (denoted “VIPER-D”). b Barplots and 95% confidence intervals displaying the false discovery rate (FDR) of each
method in the same scRNA-Seq datasets. Precision is defined as 1 — FDR and is the fraction of true positives among all positives. In this case,
tissue-specific TFs predicted to be significantly downregulated/inactivated during the time course were identified as false positives with FDR
defined as the fraction of false positives among all significantly differentially expressed (or activated) TFs. ¢ Heatmap of P-values assessing the
improvement of SCIRA over the other seven methods, in terms of both sensitivity (left) and FDR (right). P-values for each tissue were derived
from a one-tailed Binomial test. The P-values for the meta-analysis (“Meta”) were derived using Fisher’s method. The FDR for SCENIC in the liver
could not be defined as the number of positives was zero. d A plot of run times (y-axis, log scale) for five methods (SCIRA, MAGIC, Scrabble,
GENIE3/SCENIC, and VIPER-D) against the number of single cells profiled (x-axis, log scale). Filled symbols represent times estimated from
actual runs; unfilled symbols are imputed estimates obtained by extrapolation of fitted linear functions (on a log scale). Run times were
estimated using four processing cores (SCIRA, MAGIC, GENIE3/SCENIC, and VIPER-D) and one core for Scrabble (as Scrabble offers no option
for parallelization).

sensitivity over ordinary DE analysis. To explore this further, we intestinal factors such as the enterocyte differentiation factors
compared the differential activity and DE patterns between  CDX1/CDX2°C, the crypt epithelial factor KLF5°’, and the intestinal
normal and cancer cells to the DE patterns in the two The Cancer master regulator ATOH1°%°°, Next, we obtained TFA estimates for
Genome Atlas (TCGA) lung cancer studies®>**. A stronger all 56 colon TFs across a total of 432 single cells (160 normal
agreement with the bulk RNA-Seq data of both TCGA cohorts epithelial + 272 cancer epithelial, C1 Fluidigm) from 11 different
was observed for SCIRA’s differential activity profiles compared to colon cancer patients. Hierarchical clustering over this TFA matrix
DE or when using VIPER-D to infer differential activity (Fig. 3f, g). revealed clear segregation of single cells by normal/cancer status
Indeed, ~30 of the 38 TFs exhibited differential activity patterns at and not by patient (Fig. 4a). Of the 56 TFs, 23 exhibited differential
the single-cell level that were consistent with DE in bulk, whereas activity (Bonferroni P < 0.05) with the great majority (87%, 20/23)

for DE and VIPER-D this number was only around 10 (Fig. 3h). exhibiting inactivation, indicating a strong statistical tendency for

To test the generality of our observations, we next considered a inactivation in cancer cells (Binomial test, P-3e-5, Fig. 4b). Once
scRNA-Seq study profiling normal colon epithelial cells and tumor again, had we relied on TF expression itself, no segregation of
colon epithelial cells®®. We first used SCIRA to derive a colon- single cells by normal/cancer status was evident (Fig. 4a) and only
specific regulatory network from GTEX, resulting in 56 colon- 13 TFs were differentially expressed (Bonferroni P < 0.05) with no

specific TFs and associated regulons (Supplementary Table 6 and obvious trend towards underexpression in cancer (Binomial test,
Supplementary Data 1). This list included many well-known P =0.13, Fig. 4b). Of note, although CDX7 and CDX2 were found to
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Fig. 3 SCIRA predicts inactivation of lung-specific TFs in lung tumor epithelial cells. a tSNE scatterplot of ~52,000 single cells from 5 lung
cancer patients, with a common non-malignant alveolar and (tumor) epithelial clusters highlighted in blue and red, respectively.
b Corresponding tSNE scatterplot with cells colored-labeled by expression of an alveolar marker CLDN18. ¢ As b, but with cells colored
according to expression of the epithelial marker EPCAM. Right panel depicts boxplots of the log,(counts per million + 1) of EPCAM for cells in
the non-malignant alveolar cluster, the tumor epithelial clusters and all other cell clusters combined (T-cells, B-cells, endothelial, myeloid, and
fibroblast cells). In boxplot, horizontal lines describe median, interquartile range, and whiskers extend to 1.5 x interquartile range. d Barplot
displaying the number of TFs (y-axis) passing a Bonferroni adjusted < 0.05 threshold and exhibiting decreased (DN) or increased activity (UP)
in tumor epithelial cells (SCIRA and VIPER-D) indicated in dark green and dark red, respectively, and correspondingly the same numbers for
differential expression (DE). P-values are from a Binomial test, to test whether there is a skew towards inactivation/downregulation in cancer.
Right panel depicts the Monte-Carlo (n = 1000 runs) significance analysis with gray curve denoting the null distribution for the fraction of TFs
exhibiting significant inactivation in tumor epithelial cells and dark green line labeling the observed fraction (0.92 = 35/38). Empirical P-value
derived from the 1000 Monte-Carlo runs is given. e Scatterplot as in a, but now with cells color-labeled according to activation of FOXA2 as
estimated using SCIRA. Beanplots of the predicted SCIRA activity level of FOXA2 between normal alveolar, tumor epithelial, and all other cells.
P-value is from a t-test between normal alveolar and tumor epithelial cell clusters. f Pattern of differential activity (SCIRA and VIPER-D) and
differential expression for the 38 lung-specific TFs. Dark green denotes significant inactivation or underexpression in tumor epithelial cells
compared to normal alveolar; brown denotes significant activation or expression; gray, no change (NC); white, missing regulon information
(VIPER-D). g Pattern of differential expression for the same 38 lung-specific TFs in the bulk RNA-Seq lung cancer datasets (LUAD, lung
adenoma carcinoma; LUSC, lung squamous cell carcinoma). h Barplot displaying the number of lung-specific TFs displaying significant and
directionally consistent changes in both single-cell and bulk RNA-Seq datasets. In the single-cell data, we use differential activity for SCIRA and
VIPER-D, whereas for DE we use differential expression.

be both inactivated and underexpressed, several TFs such as KLF5 increased activity. For several TFs and for each of the three
or ATOéI;IImwith established tumor suppressor roles in colorectal patients, inactivation events were seen across most, if not all,
cancer’™®" were only found inactivated via SCIRA (Fig. 4c). cancer cells (Fig. 4d): for instance, this was the case for ATOH1, or

Interestingly, using VIPER-D, there was only moderate correlation the autophagy inducer TRIM31%%, thus implicating disruption of
with SCIRA’s predictions, with VIPER-D not predicting prefer- this novel and specific autophagy pathway in colon cancer®.
ential inactivation and failing to predict inactivity of established Using the 5 patients with both normal and cancer cells profiled,
tumor suppressors such as KLF5 and CDXT (Fig. 4b). Performing ;o astimated the frequency of inactivation of all 56 colon-
the‘ analy5|'s on a per-patient level and focusing on the three specific TFs across the 5 patients, which revealed that CDX2 and
patients with the largest numbers of both normal and tumor TRIM31 were inactivated in 80% of the patients, whereas ATOH1,

epithelial cells revealed a similar skew towards inactivation with . . . !
8, 15, and 21 TFs exhibiting significantly lower activity across Z\I:rlﬁé?g CZEZ)))(II and TBX10 were inactivated in 60% (Supplemen

cancer cells (Fig. 4d), and with effectively no TF exhibiting
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Tissue specificity of TF inactivation in cancer

The observed frequent inactivation of tissue-specific TFs in
corresponding single cancer cells suggests that these could be
driver events. To obtain supporting evidence for this, we reasoned
that TFs specific for other unrelated tissue types would exhibit
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much lower frequencies of inactivation. We thus compared the
lung and colon-specific TFs to additional TFs specific to the skin
and brain, two non-epithelial tissue types, as well as to stomach-
specific TFs, which should bear more resemblance to colon TFs.
Consistent with our expectation, in the case of lung cancer cells,
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Inactivation of colon-specific TFs in colorectal cancers at single-cell resolution. a Heatmaps of TF activity (left panel) and TF

expression (right panel), with cells ordered by hierarchical clustering over the 56 colon-specific TFs. TFs undergoing significant inactivation/
underexpression in cancer cells are labeled in blue, whereas those undergoing activation/overexpression are labeled in dark red. b Heatmap
of differential TFA (SCIRA and VIPER-D) and TF expression (DE) between cancer and normal cells, with colors indicating statistical significance
(Bonferroni P <0.05) and directionality of change: blue, significant inactivation/underexpression in cancer; brown, significant activation/
overexpression in cancer; gray, no change. Barplots compare the number of inactivated/underexpressed (blue) TFs to the number that are
activated/overexpressed (brown). P-values derive from a one-tailed Binomial test to assess significance of skew. ¢ Boxplots displaying TF
activity and TF expression between normal epithelial and cancer cells for two representative TFs where there is substantial discordance
between differential activity and differential expression. P-values for differential TF activity and TF expression derived from a t-test and a
Wilcoxon rank-sum test, respectively. In boxplot, horizontal lines describe median, interquartile range, and whiskers extend to 1.5 x
interquartile range. d Heatmaps of TF activity for the normal and cancer cells from each of 3 patients and displaying only the subset of the 56
colon TFs, which exhibit significant inactivity in the cancer cells (Bonferroni P < 0.05).

the TFs specific to the colon, stomach, brain, and skin exhibited
much lower frequencies of inactivation compared to lung TFs
(Supplementary Fig. 21A). In the case of colon cancer cells, colon
and stomach-specific TFs exhibited the highest inactivation
frequencies and were about twofold higher than for the skin
and brain-specific TFs (Supplementary Fig. 21B).

Inactivation of tumor suppressors in normal cells at risk of cancer

An important application of SCIRA is to normal cells at risk of
cancer, which could reveal early inactivation of key tumor
suppressor TFs. To demonstrate this, we applied SCIRA to a
scRNA-Seq dataset (CEL-Seq) encompassing 564 lung epithelial
cells, obtained from bronchial brushings of 6 healthy individuals (6
never-smokers, and 6 current smokers)®* (“Methods”). We inferred
regulatory activity profiles for our 38 lung-specific TFs in each of
the 564 lung epithelial cells and subsequently used tSNE®® for
dimensional reduction and visualization, as well as DBSCAN®® for
clustering (“Methods”), which revealed two main clusters (Fig. 5a).
Overlaying the TFA profiles over the cells revealed that FOXJT (a
marker for ciliated cells) was significantly more active in the
smaller cluster, suggesting that this cluster defines ciliated cells
(Fig. 5a). Confirming this, FOXJT expression was also higher in this
cluster, whereas expression of basal (KRT5), club (SCGB1AT), and
goblet (MUC5AC) markers were higher in the larger cluster,
suggesting that this larger cluster is composed of non-ciliated
lung epithelial cells (i.e., basal cells, goblets, and club cells) (Fig.
5b). Of note, FOXJ1 was one of the few TFs for which activity and
expression were reasonably well correlated. For instance, TBX4
exhibited higher regulatory activity in non-ciliated cells (Fig. 5a),
yet it exhibited a 100% dropout rate across all lung epithelial cells
(Fig. 5¢). Other key lung-specific TFs with very high expression in
lung tissue, as assessed in our GTEX bulk RNA-Seq data, but with
100% dropout rates included GATA2 and TBX2 (Fig. 5c). Thus,
SCIRA is able to retrieve biologically relevant variation in
regulatory activity of key TFs, when expression alone can not.
Despite the tSNE diagram being derived from the regulatory
activity profiles of only 38 lung-specific TFs, the larger cluster of
non-ciliated cells revealed clear segregation of cells according to
whether they derived from current or never-smokers, suggesting
that smoking exposure has a dramatic effect on the regulatory
activity of lung-specific TFs (Fig. 5d). We verified this by applying
PCA to the activity profiles over the non-ciliated cells only (Wilcox
test P=5e — 32, Fig. 5d). We identified a total of six TFs exhibiting
significantly lower and six exhibiting significantly higher regula-
tory activity in the cells of smokers (Fig. 5e). Interestingly, among
the six TFs exhibiting lower activation in cells from smokers, all six
were also seen to be inactivated in single lung cancer cells,
whereas two of the six exhibiting activation in exposed cells also
exhibited increased activity in lung cancer (Fig. 5f). Among the six
TFs exhibiting lower activity in both lung epithelial cells of
smokers and cancer patients, NKX2-1, a putative tumor suppressor
for lung cancer as noted recently®®, and TBX4, another putative
tumor suppressor for NSCLC are worth noting®”°®. Among the TFs
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exhibiting increased regulatory activity in smokers, we observed
EHF (Fig. 5e), a TF, which has been implicated in goblet cell
hyperplasia®®. Consistent with this, goblet hyperplasia is observed
in lung tissue from smokers®® and, according to SCIRA EHF
regulatory activity, was correlated with expression of the goblet
cell marker MUC5AC (Fig. 5g), whereas EHF expression itself was
not, highlighting once again that SCIRA can recapitulate biological
differential activity patterns not obtainable via TF expression
alone. Given that there is goblet cell expansion in smokers®*, the
increased regulatory activity of EHF and other TFs such as ELF3 in
smokers could reflect this increase. Of note, ELF3 becomes
inactivated in lung cancer cells (Fig. 5f), which is consistent with
its role in lung epithelial cell differentiation being impaired in
cancer’®”",

SCIRA is scalable to millions of cells

Finally, we note that SCIRA can estimate regulatory activity in a
manner that scales linearly with the number of profiled cells, thus
making it easily scalable to scRNA-Seq studies profiling 100s of
thousands to a million cells. In the application to the kidney
DropSeq dataset (Supplementary Table 5), which profiled 9190
cells, runtime was under 4 min for 4 processing cores, and under
10 min with the regulon-inference step in GTEX included. We
performed a subsampling analysis on the kidney set, recording
run times for manageable numbers of cells, fitted linear functions
on a log-log scale, and subsequently estimated run times for
larger scRNA-Seq studies profiling up to a million cells (“Meth-
ods”). In a scRNA-Seq study profiling one million cells, SCIRA
would take ~100 min on 4 cores, or only 4min on a 100-node
high-performance cluster (HPC), whereas other methods would
run for months on the same 100-node HPC (Fig. 2d). Only VIPER-D
exhibited a marginally improved computational efficiency com-
pared to SCIRA (Fig. 2d), owing to the fact that the TF regulons are
derived from a database and are thus precomputed. Thus, SCIRA
offers scalability where most competing methods do not.

DISCUSSION

Dissecting the cellular heterogeneity of cancer, preinvasive
lesions, and normal tissue at cancer risk is a critically important
task for personalized medicine, and it is clear that mapping such
cellular heterogeneity needs to be done at single-cell resolution. In
the context of cancer risk prediction, the ability to measure gene
expression in single normal cells from individuals exposed to an
environmental risk factor could help identify those at most risk of
cancer development. Our rationale was to focus on TFs that are
important for the specification of a given tissue type, as there is
substantial evidence that inactivation/silencing of these TFs is an
early event in oncogenesis, present in normal cells at risk of
neoplastic transformation and thus preceding cancer develop-
ment itself>*""272774 It follows that identifying such early “tumor
suppressor” inactivation events in normal cells at cancer risk in
single-cell data could allow prospective identification of
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Fig. 5 SCIRA reveals smoking-associated tumor suppressor events. a tSNE diagrams of normal lung epithelial cells obtained by application
to the SCIRA-derived regulatory activity estimates for the 38 lung-specific TFs. The left panel depicts the two main clusters inferred using
DBSCAN, whereas the right panels depict the TF activity levels for four of the lung-specific TFs. b As a, but now displaying the mRNA
expression levels of four markers, one for each of ciliated cells (FOXJT), goblet cells (MUC5AC), club cells (SCBG1A1), and basal cells (KRT5). c As b,
but now for five lung-specific TFs. d Left panel: as a, but now with cells color-labeled according to whether they derived from a smoker or non-
smoker. Right panel: PCA scatterplot (PC1 vs. PC2) obtained from a PCA on all non-ciliated cells, plus associated density plots along PC1 for
cells stratified according to smoking status. P-value is from a two-tailed Wilcoxon rank-sum test. e Hierarchical clustering heatmap over 12
lung-specific TFs exhibiting significant (Bonferroni adjusted P < 0.05) activity changes according to smoking status. Color bar to the right
indicates whether TF is more or less active in cells exposed to smoking. f Color bar indicating the pattern of differential regulatory activity for
the same 12 TFs in lung cancer cells. g Density distribution of EHF activity (left) and EHF expression (right) for cells expressing MUC5AC
(MUC5AC+), a goblet cell marker, and cells not expressing MUC5AC (MUC5AC—). P-values derived from a two-tailed Wilcoxon rank-sum test.

individuals at higher risk of cancer development. As demonstrated
here, using scRNA-Seq profiles to identify silencing of tissue-
specific TFs lacks sensitivity due to the high dropout rate. Instead,
we have presented an alternative strategy called SCIRA, which we
have very comprehensively validated on many scRNA-Seq
datasets profiling normal cells, demonstrating that it can
substantially improve the sensitivity and precision to detect
correct dynamic TFA changes at single-cell resolution.
Application of SCIRA to two scRNA-Seq datasets profiling both
normal and cancer cells revealed preferential inactivation of
tissue-specific TFs in the corresponding cancer cells, an important
biological and clinical insight, which we would not have obtained
had we used DE. These results are not only in line with analogous
findings obtained in bulk RNA-Seq cancer studies®, but helps to
further establish which key tissue-specific TFs are inactivated in
cancer epithelial cells independently of changes in stromal
composition, which could otherwise confound results. For
instance, in a tissue such as the lung, at least 40% of cells are
stromal cells’®, and so DE changes seen in bulk cancer tissue may
not be observed or may not be due to expression changes in the
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epithelial compartment. On the other hand, some consistency
with observations in bulk data should be expected, and in this
regard we stress that, unlike SCIRA, DE approaches on single-cell
data did not reveal any consistent patterns with those observed at
the bulk level. This inconsistency between single cell and bulk DE
in cancer is therefore another important insight which demon-
strates the need and added value of SCIRA to uncover key tumor
suppressor events. For instance, many of the lung-specific TFs
which SCIRA predicts to be inactivated in lung tumor epithelial
cells (e.g., NKX2-1, FOXA2, FOXJ1, AHR, and HIF3A)*° implicate key
cancer pathways (lung development, alveolarization, ciliogenesis,
immune response, and hypoxia response), and their inactivation
likely represent key driver events. Supporting this, epigenetically
induced silencing of NKX2-1 has been proposed to be a key driver
event in the development of lung cancer®®’®, In the case of colon,
our results in the scRNA-Seq data confirm a tumor suppressor role
for TFs such as CDX1/CDX2”7, but also serve to reinforce a novel
putative tumor suppressor role for ATOH17, for the autophagy
inducer TRIM31%% and KLF57°. Of note, these last three TFs did not
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exhibit clear significant DE changes, yet they were highly
significant via analysis with SCIRA.

In the application to normal lung cells from smokers and non-
smokers, no preferential inactivation of lung-specific TFs in
smokers was observed, consistent with observations derived from
buccal (squamous epithelial) cells®. This would suggest that in
normal cells exposed to a risk factor, such inactivation events may
not yet be under significant selection pressure, yet some of the
inactivation events, if present, could be important indicators of
future cancer risk. In line with this, out of the six lung-specific TFs
that were observed to be inactivated in normal lung cells from
smokers, all six were also inactivated in lung cancer cells. This list
included NKX2-1 and TBX4, both of which have tumor suppressor
functions®”7¢. We also observed 6 lung-specific TFs exhibiting
increased regulatory activity in cells from smokers, which included
ELF3, XBP1, and EHF. Interestingly, EHF has been implicated as a
driver of goblet hyperplasia®®, which is observed in the lung tissue
of smokers®*. Our data support the view that EHF is a marker of
goblet cells and that the increased expression in smokers could be
due to an increase in relative goblet cell numbers as observed by
Duclos et al.%*. Although ELF3 has been reported to be a tumor
suppressor in many epithelial cancer types, its function has also
been observed to be highly cell-type specific with reported
oncogenic roles in LUAD®®. Here we observed ELF3 activation in
the lung non-ciliated cells from smokers and overexpression in
bulk LUSC tissue, but inactivation in single lung cancer cells
(predominantly LUAD) and no expression change in bulk-tissue
LUAD. Thus, in future it will be important to profile larger numbers
of cells in the lung epithelial compartment of healthy smokers and
non-smokers, including lung cancer patients from LUAD, LSCC,
NSCLC subtypes, to determine whether differential activity
patterns are specific to individual lung epithelial cell subtypes.

Here, and due to obvious limitations on data availability at single-
cell resolution, we could not assess the specific mechanism
associated with tissue-specific TF silencing in cancer. However, in
the context of bulk-tissue data from the TCGA, we have previously
shown that the preferential silencing of tissue-specific TFs in cancer
is predominantly associated with promoter DNA hypermethylation’.
Indeed, inactivation through somatic mutation or copy-number
loss/deletion is not a frequent event when considering tissue-
specific TFs®, in contrast to other gene families such as kinases,
epigenetic enzymes, or membrane receptors, which do exhibit
more frequent genetic alterations®"®, Thus, it is very likely that the
observed inactivation of tissue-specific TFs in individual cancer cells
is also associated with promoter DNA hypermethylation.

In summary, we have presented and validated a computational
strategy called SCIRA that can improve the sensitivity and
precision to detect regulatory activity changes of key tissue-
specific TFs in scRNA-Seq data, and that can reveal tumor
suppressor events at single-cell resolution which would otherwise
not be possible using DE. SCIRA has shown that tissue-specific TFs
are preferentially inactivated in corresponding cancer cells,
suggesting that these could be tumor suppressor driver events.
Importantly, SCIRA also provides a scalable framework in which to
infer tissue-specific regulatory activity in scRNA-Seq studies
profiling even millions of cells. We envisage that SCIRA will be
particularly useful for scRNA-Seq studies aiming to identify altered
differentiation programs in normal tissue exposed to cancer risk
factors, preinvasive lesions and cancer at single-cell resolution.
This is important as this may offer clues and insight into the
earliest stages of oncogenesis.

METHODS
Single-cell data and preprocessing
We analyzed scRNA-Seq data from a total of six studies as follows:
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Lung differentiation set. This scRNA-Seq Fluidigm C1 dataset derives from
Treutlein et al.3>. Normalized (fragments per kilobase of transcript per
million mapped read, FPKM) data were downloaded from Gene Expression
Omnibus (GEO) under accession number GSE52583 (file: GSE52583.Rda).
Data were further transformed using a log2 transformation adding a
pseudocount of 1, so that 0 FPKM values get mapped to O in the
transformed basis. After quality control, there are a total of 201 single cells
assayed at 4 different stages in the developing mouse lung epithelium,
including embryonic day E14.5 (n = 45), E16.5 (n = 27), E18.5 (n = 83), and
adulthood (n = 46).

Liver differentiation set. This scRNA-Seq Fluidigm C1 dataset was derived
from Yang et al.3%, a study of differentiation of mouse hepatoblasts into
hepatocytes and cholangiocytes. Normalized transcripts per million reads
(TPM) data were downloaded from GEO under accession number
GSE90047 (file: GSE90047-Singlecell-RNA-seq-TPM.txt). Data were further
transformed using a log2 transformation adding a pseudocount of 1, so
that 0 TPM values get mapped to 0 in the transformed basis. After quality
control, 447 single cells remained, with 54 single cells at embryonic day
10.5 (E10.5), 70 at E11.5, 41 at E12.5, 65 at E13.5, 70 at 14.5, 77 at 15.5, and
70 at E17.5.

Pancreas differentiation set. This scRNA-Seq Smart-Seq2 data derives from
Yu et al.¥’, profiling single cells during murine pancreas development, from
embryonic stages E9.5-E17.5. Normalized (TPM) data were downloaded
from GEO (GSE115931, file: GSE115931_SmartSeq2.TPM.txt"). Data were
further log2-transformed with a pseudocount of 1. After quality control,
2195 cells remained: 113 (E9.5), 211 (E10.5), 263 (E11.5), 252 (E12.5), 421
(E13), 338 (E14.5), 242 (E15), 185 (E16.5), and 170 (E17.5).

Kidney-organoid differentiation set. This scRNA-Seq DropSeq data derives
from Wu et al.*8, profiling single cells in a kidney-organoid differentiation
experiment (Takasato protocol) starting out from iPSCs, with 218 cells
profiled at day 0, 1741 at day 7, 1169 at day 12, 1097 at day 19, and 4965 at
day 26. Read count data for all 9190 high-quality cells were downloaded
from GEO (GSE118184, file: GSE118184_Takasato.iPS.timecourse.txt”).
Counts were scaled for each cell by the total read count, multiplied by a
common scaling factor of 10* and subsequently log2-transformed with a
pseudocount of 1.

Normal and cancer lung tissue dataset. This scRNA-Seq 10x Chromium
dataset was derived from ref. ¥/, a study profiling malignant and non-
malignant lung samples from five patients. We downloaded all.Rds files
available from ArrayExpress (E-MTAB-6149), which included the processed
data and tSNE coordinates, as well as cluster cell-type assignments. After
quality control, a total of 52,698 single cells remained, of which 1709 were
annotated as alveolar, 5603 as B-cells, 1592 as endothelial cells, 1465 as
fibroblasts, 9756 as myeloid cells, 24911 as T-cells, and 7450 as tumor
epithelial cells. A small cluster of 212 cells was annotated as normal
epithelial, yet they derived from a malignant sample®’; thus, given this
inconsistency we removed these cells from any analysis, as according to us
their “normal” nature is far from clear. The alveolar epithelial cell cluster
derived mainly from non-malignant samples and was therefore considered
most representative of the normal epithelial cells found in lung.

Normal and cancer colon dataset. This scRNA-Seq Fluidigm C1 dataset is
derived from ref. *°, a study profiling malignant and non-malignant colon
epithelial cells from 11 patients. We downloaded the normal mucosa and
tumor epithelial cell FPKM files from GEO under accession number
GSE81861. In total, there were 160 and 272 normal and tumor epithelial
cells, respectively, as determined by the original publication.

Normal lung from smokers and non-smokers. This scRNA-Seq dataset is
derived from ref. %%, where fluorescence-activated cell sorted (FACS) lung
epithelial cells from six never-smokers and six smokers were analysed with
the CEL-Seq platform. We downloaded the raw unique molecular identifier
(UMI) counts from GEO under accession number GSE131391. We followed
a similar normalization and QC procedure as described in ref. ®*, although
we used a more stringent cell quality criterion, removing any cells with a
total UMI count <2400. This threshold was chosen because the total UMI
count per cell exhibit a natural bimodal distribution, with the value 2400
defining the natural decision boundary between low and high quality cells.
This resulted in 564 epithelial cells. For these cells data was further
normalized by scaling UMI counts to TPM, adding a pseudocount of 1 and
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finally taking the log, transformation. We note that results reported here
were unchanged if not scaling UMI counts, i.e., if using log,(UMI + 1).

Bulk tissue mRNA expression datasets

For applying SCIRA to data from epithelial tissues, we used the bulk RNA-
Seq dataset from the GTEX resource®* to infer regulons. Specifically, the
normalized RPKM data was downloaded from the GTEX website and
annotated to Entrez gene IDs. Data was then log, transformed with a
pseudocount of +1. This resulted in a data matrix of 23929 genes and
8555 samples, encompassing 30 tissue types (adipose =577, adrenal
gland = 145, bladder = 11, blood =511, blood vessel = 689, brain = 1259,
breast =214, cervix uteri=11, colon =345, esophagus =686, fallopian
tube = 6, heart =412, kidney = 32, liver =119, lung = 320, muscle = 430,
nerve =304, ovary =97, pancreas = 171, pituitary = 103, prostate = 106,
salivary gland = 57, skin =891, small intestine = 88, spleen = 104, stomach
=193, testis = 172, thyroid = 323, uterus =83, vagina =96). In addition,
we also analyzed the bulk RNA-Seq dataset from the lung TCGA
studies®>>*, which was normalized as described in our previous publica-
tions >3,

The SCIRA algorithm

The SCIRA algorithm has two main steps as follows: (i) construction of a
tissue-specific regulatory network and (ii) inference of regulatory activity in
single cells for the TFs in the network constructed in step (i).

Construction of tissue-specific regulatory network. For a given tissue type,
SCIRA infers a corresponding tissue-specific regulatory network using a
greedy partial correlation algorithm framework called SEPIRAZ, The greedy
partial correlation approach is similar in concept to the GENIE3 algorithm®*
(which was found to be one of the best performing reverse-engineering
methods in the DREAM-5 challenge®®), in the sense that it infers the
candidate regulators for each gene in turn. However, we use partial
correlations instead of regression trees. By computing partial correlations
over the GTEX dataset, which consists of 8555 samples across 30 different
tissue types, it is possible to identify direct regulatory relations that are
relevant in the context of differentiation and development. Briefly, having
log-transformed the GTEX RNA-Seq set, as described previously®, we first
select genes with a standard deviation larger than 0.25, so as to remove
genes with no significant expression variation across the 8555 samples. A
total of 19,478 genes with Entrez gene annotation were left after this step.
Next, we used a list of 1385 human TFs as defined by the TRANSC_FACT
term of the Molecular Signatures Database®®, of which 1313 had
representation in our filtered GTEX set. Genes not annotated as TFs, were
considered putative targets, and we first estimated Pearson correlations
between the 1313 TFs and the 18,165 targets. Using a conservative P-value
threshold of 1e — 6 to define putative interactions between TFs and
targets, we next selected TFs with at least ten putative targets. For each
target gene g and its putative TF regulators f, we then computed partial
correlations between g and f, as

- Qqf

ST o
where Q is the inverse of the expression covariance matrix, which is of
dimension (1 + nf) X (1 + nf) with nf the number of putative TF regulators.
Importantly, by estimating the partial correlations in a greedy fashion, i.e.,
for each target gene separately, the inverse of the covariance matrix is
always well defined (no need to estimate a pseudo-inverse) since nf « 8555,
i.e, much less than the number of samples over which the partial
correlations are estimated. In other words, we estimate the partial
correlations between each target gene and its candidate regulators from
the marginal analysis above, and we do this for each target gene
separately, which thus provides a natural regularization. Partial correlation
thresholds of +0.2, or even *0.1 are statistically significant given the large
number of samples (8555) in the GTEX set (as verified by random
resampling), so we use either one of these thresholds depending on the
number of TFs desired, although the number of resulting TFs is similar for
both choices of threshold. This then defines a global regulatory network
between TFs and target genes, where indirect dependencies have been
removed due to the use of partial correlations®’.

The final step is the construction of a tissue-specific regulatory network
as the subnetwork obtained by identification of tissue-specific TFs, i.e., TFs
with significantly higher expression in the given tissue type compared to
all other tissues combined. This is done using the empirical Bayes
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moderated t-test framework (limma)®8. Importantly, a second limma
analysis is performed by comparing the tissue of interest to individual
tissue types if these contain cells that are believed to significantly infiltrate
and contaminate the tissue of interest. Thus, in the case of liver we perform
two limma analyses: comparing liver to all other tissue types, and
separately, liver to only blood and spleen combined, as blood/spleen
consists of immune cells (ICs), which are known to infiltrate the liver tissue
accounting for ~40% of all cells found in liver’®. We require a liver-specific
TF to be one with significantly higher expression in both comparisons:
when comparing to all tissues we use an adjusted P-value threshold of 0.05
and a log2(FC) threshold of log2(1.5) = 0.58, whereas when comparing to
blood/spleen we only use an adjusted P-value threshold of 0.05. This
ensures that the identified TFs are not driven by a higher IC infiltration in
the tissue of interest compared to an “average” tissue where the IC
infiltration may be low. As applied to liver and using a significance
threshold on partial correlations of +0.2, SCIRA/SEPIRA inferred a network
of 22 liver-specific TFs and their regulons, with the average number of
genes per regulon being 41, and with range 10-151. This network is
available as an Rds file “netLIV.Rds” in Supplementary Data 1. The same
procedure was used for the other tissue types and the corresponding
networks for pancreas (netPANC.Rds), kidney (netKID.Rds), and colon
(netCOL.Rds) are also available in Supplementary Data 1.

We note that regulon genes could be selected further based on whether
they are direct binding targets of the TF, as for instance determined by a
ChIP-Seq assay. However, we did not pursue this strategy here, for a
number of good reasons. First, the definition of a regulon, as originally
proposed by Andrea Califano’s lab®'#°, does not require a member of the
regulon to be a direct target of the regulator. Indeed, it could well be that a
downstream gene in the pathway is an equally good if not even better
marker of upstream regulatory activity. Thus, it makes sense to keep all
inferred regulon genes in the regulon, following previous studies. On the
other hand, some enrichment for direct targets is to be expected, and we
indeed checked enrichment for ChIP-Seq binding targets using data from
the ChIP-Seq Atlas®%. A second reason is that reducing the number of
regulon genes also means a loss of power, specially so if the regulon genes
are bona-fide markers of upstream regulatory activity. Third, ChIP-Seq data
are still very limited in the number of cell types profiled, which may not
include a representative cell type of the tissue in question. In other words,
the sensitivity of a ChIP-Seq assay is also limited and if a gene is not
predicted to be a binding target in cell type “A,” it could still be a direct
target in the tissue/cell type of interest.

Estimation of regulatory activity. Having inferred the tissue-specific TFs
and their regulons, we next estimate regulatory activity of the TFs in each
single cell of a scRNA-Seq dataset. This is done by regressing the log-
normalized scRNA-Seq expression profile of the cell against the “target
profile” of the given TF, where in the target profile, any regulon member is
assigned a +1 for activating interactions and a—1 for inhibitory
interactions. All other genes not members of the TF's regulon are assigned
a value of 0. The TFA is then defined as the t-statistic of this linear
regression. Before applying this procedure, the normalized scRNA-Seq
dataset is z-score normalized, i.e., each gene is centered and scaled to
unit SD.

We note that SCIRA relies on the tissue-specific regulatory network
inferred in step 1. As such, SCIRA is particularly useful for scRNA-Seq
studies that profile cells in the tissue of interest, either as part of a
developmental or differentiation time course experiment, or in the context
of diseases where altered differentiation is a key disease hallmark, e.g.,
cancer and precursor cancer lesions.

Pseudocode implementing SCIRA algorithm

The previously described steps implementing SCIRA can be run using the
functions provided as part of the SEPIRA Bioconductor package, or
preferably from the SCIRA-package: https://github.com/aet21/scira. Briefly,
assuming the normalized GTEX RNA-Seq dataset matrix is stored in an R-
object called “data.m,” with rows labeling genes and columns labeling
samples, and assuming we choose liver as our tissue of interest, we would
run the following set of commands to construct the liver-specific
regulatory network:

net.o < -sciralnfReg(data = data.m, sdth = 0.25, sigth = 1e-6, pcorth =
0.2, spTH = 0.01, minNtgts = 10, ncores = 4)

livernet.o <- sciraSelReg(net.o, tissue = colnames(data.m), toi = "Liver”, cft
= "Blood”, 576 degth = c(0.05,0.05), Ifcth = c(log2(1.5),0)).
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In the above, colnames(data.m) labels, the tissue type of each sample
(column) of the data matrix. It is noteworthy that the parameter cft labels
the confounding tissue type, which in this case is blood, because ICs, the
main component of blood, is a major contaminant cell type in the liver
tissue’>. One important parameter in the above function, which directly
controls the number of retrieved TFs is spTH: this parameter controls the
number of significant correlations in the marginal analysis to be included
in the subsequent partial correlation analysis. By default, this is set at 1% of
all possible interactions, but increasing this threshold to 5% or 10% will
increase the number of interactions and thus the number of retrieved TFs.
The tissue-specific regulatory network can be found in the livernet.oSnetTOI
entry, which is a matrix with columns labeling the tissue-specific
transcription factors and rows labeling gene targets. The entries in this
matrix are either 1 for a positive interaction, 0 for no interaction, and —1
for inhibitory associations. This matrix provides the regulons to the
function for estimating regulatory activity in a bulk sample or in single
cells. For instance, assuming that we have a log-normalized scRNA-Seq
dataset representing liver development in humans, scRNA.m, we would
obtain regulatory activity estimates for each of the transcription factors'’
present in livernet.o$netTOl, by running:

actTF.m < -scirakstRegAct(data = scRNA.m, regnet = livernet.o$netTOl,
norm = "z",ncores = 4),

where the norm argument specifies that genes in the scRNA.m data
matrix should be z-score normalized, before estimating regulatory activity.
We note that the output object actTF.m would define a matrix with rows
labeling the tissue-specific TFs and columns labeling the single cells, and
with matrix entries representing regulatory activities. We further note that
the tissue-specific regulatory networks derived from GTEX, as used in this
work, are provided in Supplementary Data 1. Full details of how to run scira
are provided in the vignette of the scira R-package.

Power calculation for SCIRA

We derived a formula to estimate the sensitivity (which we shall denote by
SE) of SCIRA to detect highly expressed cell-type-specific TFs in a given
tissue, as a function of the corresponding cell-type proportion in the tissue.
The main parameters affecting the power estimate include the relative
sample sizes of the two groups being compared (n; and n,), the average
expression effect size e (in effect the average expression fold change) of
the cell-type-specific TFs compared to all other cell types, which will
depend on the proportion of the cell type (w) within the tissue of interest.
Indeed, it is not difficult to prove that under reasonable assumptionsgo, the
sensitivity (SE) is given by the formula

"t

SE(t,n1,na,e(FC,w)) ~ 2<1 7/

—0o0

Ta(t',ni,ny,e(FC,w, 0))dt’> ()]

where t is the statistic value (we assume a t-statistic) dictating the
significance threshold and T, denotes the non-central Student's t-
distribution with non-centrality parameter y equal to

niny
=,/——e(FC,w,0 (3)
K=o ( )

We note that the effect size e is of the form |x; — X;|/0, i.e., the ratio of
the difference in average expression between the two groups divided by a
common pooled SD that reflects the intrinsic variance in each group. We
note that we are assuming that the bulk RNA-Seq data has been log-
normalized so that e is derived from the log-transformed data. For
instance, if a gene (say a TF) shows the same expression distribution for all
cell types in the tissue of interest compared to all other tissues, then
X1 — X, = log, (I /1), where I; denotes the average intensity (i.e,, FPKM/
TPM) value in group-i. Assuming that the given TF is only more highly
expressed in a cell type that makes up only a proportion w of the cells in
the tissue of interest, then e = log, [FC*w + 1*(1 — w)] /0, where FC is the
average fold change. To estimate the sample sizes for the power
calculation, we note that the median number of samples per tissue type
in GTEX is ~170. We took a more conservative value of n; =150 to
represent the number of samples in our tissue of interest, with the rest of
samples in GTEX, i.e., n, =8555— 150 = 8405, defining the number of
samples from other tissue types. To estimate the average expression fold-
change FC for top DEGs between single-cell types in a tissue, we analysed
expression data from purified FACS-sorted luminal and basal cells from the
mammary epithelium®’. As FACS-sorted cell populations are still hetero-
geneous, we thus expect the resulting fold-change estimates to be
conservative. Using limma®®, we estimated FC to be 8 for the highest
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ranked DEGs, and ~6 for the top 200-300 DEGs. We note that these
estimates are for a scaled basis where o= 1. Thus, we approximate the
effect size e = log, [FC*w + 1*(1 — w)] with FC=8 or 6, so as to consider
two different effect size scenarios. For the proportion w, we assumed two
values: w=0.05 and w = 0.2 representing 5% and 20% of the cells in the
tissue of interest. It is noteworthy that if w =1, all cells within the issue of
interest exhibit DE at magnitude FC, and if w=0, no cell is differentially
expressed. Finally, to compute the sensitivity as a function of the
significance level threshold t, we used the parameters above as input to
the TOC function of the OCplus R-package.

Implementation of scimpute, MAGIC, and SCRABBLE

scimpute (version 0.0.9)>° was run with default parameters (labeled =
FALSE, drop_thre =0.5) in all analysis, with the exception of the Kcluster
parameter, which was chosen to reflect the number of underlying cell
types in each tissue analysed: Liver = 3, Lung = 4, Pancreas = 15, Kidney =
14, i.e., this parameter was set for each tissue following the numbers of cell
types as specified in the original papers. For MAGIC (version 1.4.0)*° in the
liver, lung, and pancreas, we used the following parameters: k = 15, alpha
=5, t="auto”, knn_dist.method = “euclidean”. For the kidney, because of
the much larger number of cells, we chose larger values for k=30 and
alpha = 10. The number of PCs (npca) was determined in all tissues as the
npca explaining 70% of variation in the data, as recommended®. For
SCRABBLE (version 0.0.1)*', the average bulk RNA-seq expression vector
was computed using the corresponding tissue-type samples from the
GTEX dataset. The alpha parameter in the function was chosen for each
tissue type, following the recommendations given in the paper: Liver =1,
Lung =1, Pancreas = 0.1, Kidney = 0.1. The other parameter values were
beta=1e — 5 and gamma = 0.01. For all other parameters, we used the
default choices: nlter =20, error_out_threshold = 1e — 04, nlter_inner =
20, error_inner_threshold = 1e — 04.

Implementation of GENIE3 and SCENIC

SCENIC is a pipeline of three distinct methods (GENIE3, RcisTarget, and
AUCell), each with its own Bioconductor package. We used the following
versions: GENIE3_1.4.0, RcisTarget_1.2.0, and AUCell_1.4.1. As the lung,
liver, and pancreas scRNA-Seq sets are from mice, we used as regulators a
list of 1686 mouse TF from the RIKEN lab (http://genome.gsc.riken.jp/TFdb/
) together with the homologs of the human TFs in our lung-, liver-, and
pancreas-specific networks if these were not in the RIKEN lab list. GENIE3
was run with default parameter choices (treeMethod="RF", K="sqrt”,
nTrees = 1000) but on a reduced data matrix where genes with an SD < 0.5
were removed. Regulons of TFs were obtained from GENIE3 using a
threshold on the inferred weights (representing the regulatory strength
and termed “importance measure” in GENIE3) of 0.01, and only positively
correlated targets were selected using a Spearman correlation coefficient
threshold > 0. In SCENIC, the targets are then scanned for enriched binding
motifs using RcisTarget. We used the 7species.mc9nr feather files for both
500 bp upstream of the TSS and also for a 20 kb window centered on the
TSS. Any enriched motifs in both analyses were combined to arrive at a
single list of enriched motifs and associated TFs. We then found the
overlap with the annotated TFs from GENIE3 and only those that
overlapped were considered valid TF regulons. For these, we then
estimated a regulatory activity score using an approach similar to the
one implemented in AUCell, but one that is threshold independent, and
therefore an improvement over the method used in AUCell. Specifically,
the activity score was defined as the Area Under the Curve (AUC) of a
Wilcoxon rank-sum test, whereby in each single cell, genes are first ranked
in decreasing order of expression, and the AUC statistic is then derived by
comparing the ranks of the regulon (all positively correlated) genes to the
ranks of all other genes.

Implementation of VIPER-D

To assess the importance of the tissue-specific regulons used in SCIRA, we
compared SCIRA to a method that uses non-tissue-specific TF regulons. We
note that there are tools such as PAGODA®, which can infer activity scores
from gene sets, yet a regulon also entails directionality (i.e., positive or
inhibitory interaction) information, which also needs to be assessed.
Hence, motivated by the recent work by Holland et al.*, we decided to
test SCIRA against the combined use of VIPER** and the dorothea TF-
regulon database®. Of note, VIPER infers regulatory activity in any given
sample/cell given a TF regulon, and that the dorothea TF-regulon database
is not tissue specific, although one of the sources in building dorothea is
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the same GTEX dataset used by SCIRA to build its tissue-specific regulons.
We ran viper with the following argument choices: dnull = NULL,
pleiotropy = FALSE, nes = TRUE, method = c(“none”), bootstraps = 0, min-
size =5, adaptive.size = FALSE, esetfilter =TRUE, mvws =1, cores=4.
Dorothea also provides likelihood information that a given regulatory
interaction in the database is true, and VIPER allows such likelihood
information to be used when inferring regulatory activity. We ran VIPER-D
in two ways as follows: (i) assigning the same likelihood to all listed
regulatory interactions (i.e., equal weights) and (ii) by using the likelihood
information. In Dorothea, the likelihood is encoded as an ordinal
categorical variable: A, B, C, D, and E, with A indicating highest confidence.
To run this with VIPER, we transformed these categories into confidence
weights using the mapping: A=1, B=0.8, C=0.6, D=0.4, and E=0.2.
Results in this manuscript are reported for the case of equal weights. We
note that these likelihoods vary mostly between TFs and not between the
targets of a given TF, which is why results are largely unchanged had we
used the likelihood information.

Differential expression analysis

In this work, we compare SCIRA to ordinary DE analysis, as implemented
using a Wilcoxon rank-sum test for binary phenotypes, or using non-
parametric Spearman rank correlations for ordinal phenotypes (e.g.,
multiple timepoints or stages). The use of a non-parametric test, which
is distribution assumption free, works well for scRNA-Seq with high
dropout rates. When comparing statistics of differential activity from SCIRA
to those from DE analysis, we transform Wilcoxon rank-sum or Spearman
test P-values into z-statistics using a quantile normal distribution, taking
into account the magnitude of the AUC value from the Wilcoxon test (i.e.,
AUC values > 0.5 correspond to higher expression in one group compared
to other, whereas AUC < 0.5 represents the opposite case), or the sign of
the Spearman correlation coefficient in the case of ordinal phenotypes.

Comparative sensitivity and precision analysis

We compared SCIRA to seven other methods in their sensitivity and
precision, to identify gold-standard sets of tissue-specific TFs. These gold-
standard sets were constructed from GTEX and validated in orthogonal
bulk-tissue gene expression datasets from NormalAtlas®® and Roth et al. 3.
The number of tissue-specific TFs for the liver, lung, pancreas, and kidney
were 22, 38, 30, and 38, respectively. The seven other methods were
ordinary differential DE analysis, scimpute + DE, MAGIC + DE, Scrabble +
DE, GENIE3, SCENIC, and VIPER-D. We note that SCENIC runs GENIE3 as a
first step and then selects TF regulons for which corresponding TF-binding
motifs are enriched. Thus, for the method denoted “GENIE3,” we drop the
requirement of TF-binding motif enrichment. For SCIRA, GENIE3, SCENIC,
and VIPER-D, we obtain TFA estimates, whereas the other methods rely on
direct gene expression, measured or imputed. SE was estimated as the
fraction of gold-standard TFs which exhibited significant increased
activation/expression with differentiation timepoint, as determined using
a Bonferroni adjusted P < 0.05 threshold. Precision equals 1 — FDR, with the
FDR defined by the ratio of significantly inactivated TFs to the total number
of significantly differentially active TFs, since inactivation of these TFs is
inconsistent with known biology and therefore represent false positives.
Correspondingly, for methods relying on DE, the FDR is defined by the
ratio of significantly downregulated TFs to the total number of significantly
differentially expressed TFs.

Comparative runtime and scalability analysis

Objective comparison of run times of the different algorithms is hard
because each method has different requirements for input, and because
run times depend critically on the choice of method-specific parameters.
Nevertheless, we compared run times for 5 important algorithms (SCIRA,
MAGIC, Scrabble, GENIE3/SCENIC, and VIPER-D), both in terms of their
actual implementations on the liver, lung, and pancreas and kidney sets,
but also in a scaling analysis with largely default parameters, where we
applied all 5 methods to varying subsets of the kidney scRNA-Seq set (total
9190 cells). Briefly, we processed the scRNA-Seq kidney DropSeq data as
described earlier and filtered genes with sufficient variance resulting in
12,596 genes. We then constructed subsets with variable cell numbers by
randomly subsampling 200, 400, 600, 800, 1000, and 1500 cells, and ran
each of these methods on each of these subsampled datasets. In the case
of SCIRA, MAGIC, GENIE3/SCENIC, and VIPER-D, we ran the algorithms with
four processing cores on a Dell PowerEdge server with Intel Xeon CPU E5-
4660 v4 and clock speed of 2.20 HHz. Unfortunately, Scrabble does not
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offer a parallelizable option and is excruciatingly slow for larger, e.g.,
a 10,000 cell dataset. Thus, for each method, we obtained run times as a
function of cell-number, and fitted a linear regression to the data on a
log-log scale. On a log-log scale where both runtime and cell-number are
logged, the relation is generally linear. Next, we imputed run times for
much larger datasets up to a million cells.

Ethics

All data analyzed in this manuscript are freely available in the public
domain.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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