
© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(12):7706-7718 | https://dx.doi.org/10.21037/qims-23-441

Original Article

Can machine learning models improve early detection of brain 
metastases using diffusion weighted imaging-based radiomics?
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Background: Metastatic complications are a major cause of cancer-related morbidity, with up to 40% of 
cancer patients experiencing at least one brain metastasis. Earlier detection may significantly improve patient 
outcomes and overall survival. We investigated machine learning (ML) models for early detection of brain 
metastases based on diffusion weighted imaging (DWI) radiomics.
Methods: Longitudinal diffusion imaging from 116 patients previously treated with stereotactic 
radiosurgery (SRS) for brain metastases were retrospectively analyzed. Clinical contours from 600 metastases 
were extracted from radiosurgery planning computed tomography, and rigidly registered to corresponding 
contrast enhanced-T1 and apparent diffusion coefficient (ADC) maps. Contralateral contours located in 
healthy brain tissue were used as control. The dataset consisted of (I) radiomic features using ADC maps, 
(II) radiomic feature change calculated using timepoints before the metastasis manifested on contrast 
enhanced-T1, (III) primary cancer, and (IV) anatomical location. The dataset was divided into training and 
internal validation sets using an 80/20 split with stratification. Four classification algorithms [Linear Support 
Vector Machine (SVM), Random Forest (RF), AdaBoost, and XGBoost] underwent supervised classification 
training, with contours labeled either ‘control’ or ‘metastasis’. Hyperparameters were optimized towards 
balanced accuracy. Various model metrics (receiver operating characteristic curve area scores, accuracy, recall, 
and precision) were calculated to gauge performance. 
Results: The radiomic and clinical data set, feature engineering, and ML models developed were able 
to identify metastases with an accuracy of up to 87.7% on the training set, and 85.8% on an unseen test 
set. XGBoost and RF showed superior accuracy (XGBoost: 0.877±0.021 and 0.833±0.47, RF: 0.823±0.024 
and 0.858±0.045) for training and validation sets, respectively. XGBoost and RF also showed strong area 
under the receiver operating characteristic curve (AUC) performance on the validation set (0.910±0.037 and 
0.922±0.034, respectively). AdaBoost performed slightly lower in all metrics. SVM model generalized poorly 
with the internal validation set. Important features involved changes in radiomics months before manifesting 
on contrast enhanced-T1. 
Conclusions: The proposed models using diffusion-based radiomics showed encouraging results in 
differentiating healthy brain tissue from metastases using clinical imaging data. These findings suggest 
that longitudinal diffusion imaging and ML may help improve patient care through earlier diagnosis 
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Introduction

Intracranial metastases form when cancerous cells spread 
from the primary cancer site through the blood and form 
new tumors within the brain, leading to significant disease 
burden and patient morbidity. Metastatic complications 
are responsible for approximately 90% of cancer-related 
morbidity (1), and up to 40% of cancer patients will 
experience at least one intracranial metastasis within their 
lifetime (2), with the majority of metastases originating 
from lung, breast, or melanoma cancers. Conventional 
treatment options include surgical resection, whole-brain 
radiation therapy, stereotactic radiosurgery (SRS), systemic 
therapy, or a combination of these approaches (3,4). 
Prior to treatment with SRS, high resolution magnetic 
resonance imaging (MRI) is required to properly localize 
the metastasis to achieve local control while sparing the 
surrounding healthy brain tissue. The standard protocol for 
imaging brain metastases is using gadolinium-enhanced T1 
(Gd-T1)-weighted MRI.

Brain metastasis formation is accompanied by cancer cells 
invading the tissue’s parenchyma. Angiogenesis and tumor 
growth lead to microstructural changes within the brain. 
As a result, the diffusion of water molecules change over 
time as the metastasis develops. Diffusion weighted imaging 
(DWI) is an MRI technique that utilizes the kinetics of 
water molecules within the body to create contrast (5), 
allowing for the imaging of these microstructural changes 
that may otherwise be undetected on conventional Gd-T1. 
Furthermore, apparent diffusion coefficient (ADC) maps, 
generated from DWI, provide a quantitative image set, 
allowing data from multiple DWI sessions taken at various 
times to be quantitatively compared. Most DWI research 
on brain metastases, to date, has focused on analyzing only 
one imaging session, or one image set prior to treatment 
with one or a few sets post-treatment. Our institution treats 
over two hundred SRS patients per year, with approximately 
20% of those patients requiring retreatment for metastatic 

recurrence. This provides us with a unique longitudinal 
dataset to not only examine ADC maps post-SRS, but also at 
multiple points prior to metastatic manifestation on Gd-T1. 

Given the large amount of imaging data inherent 
in longitudinal studies, proper data management and 
methodology are vital. Machine learning (ML) works by 
taking empirical data as observational input, identifying 
complex relationships and patterns, and outputting 
intelligent decisions based on these observations (6). 
Supervised ML is often used in medical research (7) since 
oncologists can provide valuable knowledge as the ‘ground 
truth’ when training prediction models. Additionally, 
advancements in data-characterization algorithms 
and texture analysis such as radiomics have allowed 
researchers to take raw images and extract useful metrics 
that have proven useful in solving many problems such 
as differentiating different histologies (8) and predicting 
future treatment outcomes (9,10). Previous studies have 
suggested that ADC maps are an effective dataset for ML 
modeling (9,11), but are still under investigation due to a 
lack of standardization in ADC protocols and small sample 
sizes. Multiple supervised ML algorithms also exist and are 
readily available for training, but it is unclear which models 
will perform the best given an ADC radiomics dataset.

Currently, metastases are diagnosed visually on computed 
tomography (CT) or MRI. Visual manifestation may take 
a long time however, and more subtle microstructural 
changes are likely to occur before they appear on 
conventional imaging. This presents an opportunity for 
using ML in combination with other imaging modalities 
sensitive to microstructural changes such as DWI, to aid 
in earlier detection of metastatic growth. The goal of this 
study is to develop and compare several supervised ML 
classifiers that can differentiate brain metastases from 
normal healthy tissue using radiomic features. By analyzing 
longitudinal DWI taken pre- and post-SRS, we hypothesize 
that subtle changes in local diffusion metrics can occur 

and increased patient monitoring/follow-up. Future work aims to improve model classification metrics, 
robustness, user-interface, and clinical applicability.
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during metastasis formation but prior to their detection on 
conventional T1 MRI. We also present which ML classifier 
is recommended for an ADC dataset based on performance 
metrics. Our results will demonstrate an application of 
ML in the cancer clinic for early detection of cranial 
metastases. We present our research in accordance with the 
TRIPOD reporting checklist (12) (available at https://qims.
amegroups.com/article/view/10.21037/qims-23-441/rc).

Methods

Patient population

This retrospective study included patients who underwent 
multiple (at least three) SRS treatments at our institution 
between 2017 and 2022. Patients who received resection 
at any point in time were excluded from the cohort. The 
study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013), and was approved by 
the Health Research Ethics Board of Alberta Cancer 
Committee (Ethics ID HREBA.CC-20-0041). This study 
was retrospective and thus, informed consent was waived. 
Figure 1 summarizes the overall study methodology and 
workflow.

SRS and imaging

SRS treatment plans were created in Eclipse (Varian 
Medical Systems, Palo Alto, US) using multiple non-
coplanar 10 MV flattening filter free beams. A dose of  
20–22 Gy was prescribed to the planning target volume 

(tumor plus 1 mm) at the 80% isodose level in a single 
fraction according to standard institutional SRS protocol. 
As part of standard institutional protocol for SRS, Gd-
T1 and DWI MR sequences were acquired pre- and 
post-treatment. All patients received pre-SRS imaging 
within one to two weeks prior to treatment. Follow-up 
MR imaging was conducted to assess treatment response 
and disease progression at systematic intervals: every 3 
months for the first year, every 4 months for the second 
year, and biannually thereafter. Follow-ups were also 
carried out indefinitely until the patient’s death. All Gd-
T1 and DWI were acquired on a GE or Siemens scanner 
(1.5 and 3T). Vendor software was used to generate ADC 
maps from DWI using b values of either 0, 1,000 s·mm−2, 
or 0, 500 and 1,000 s·mm−2. Metastatic contours were 
drawn by the radiation oncologist at the time of treatment 
planning. Contours were defined as visible lesions, or gross 
target volume, on Gd-T1. Image sets were acquired for 
study between 2017 and 2022 via our institution’s picture 
archiving and communication system (PACS) client.

Preprocessing

Pre-processing was performed on a custom-built desktop 
running Windows 11 (Microsoft, Redmond, US) and WSL2 
Ubuntu 20.04 LTS (Canonical, London, UK). Digital 
Imaging and Communications in Medicine (DICOM) T1, 
DWI, as well as clinical tumor contours were anonymized 
using dicognito (v. 0.13.0) to remove personal identification 
tags (13). Images were then converted to the Neuroimaging 
Informatics Technology Initiative (NIFTI) format using 
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Figure 1 Study methodology and workflow. ADC, apparent diffusion coefficient; Gd-T1, gadolinium-enhanced T1; CT, computed 
tomography; NIFTI, Neuroimaging Informatics Technology Initiative; FSL, FMRIB Software Library; CSF, cerebral spinal fluid; DICOM, 
Digital Imaging and Communications in Medicine; MNI, Montreal Neurological Institute; ROC, receiver operating characteristic.
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dcm2niix (v. 1.0.20181125) (14,15). Metastases contours 
that were treated with SRS were also converted from initial 
DICOM structure files to binary NIFTI masks using 
dcmrtstruct2nii (v. 1.0.19) (16).

The FSL library (17) was used to register all imaging 
modalities and sessions. Firstly, brain extraction was 
performed on CT and Gd-T1 (18) (see Figure 2). Tissue 
segmentation was conducted on Gd-T1 to generate binary 
masks of white matter, grey matter, and cerebral spinal 
fluid (CSF) (19). Secondly, all CT and Gd-T1 images were 
linearly registered (6 degrees of freedom) to the earliest 
available CT image set (reference CT) using FSL’s Linear 
Image Registration Tool (FLIRT) (20,21). FSL’s epi_reg tool 
and white matter segmentation data were used to linearly 
register ADC maps to the same imaging session Gd-T1 
via boundary-based registration (22). Finally, individual 
registrations were concatenated, and net CT-to-ADC 
transformation matrices were generated for all patients and 
imaging dates. Transformation matrices were also applied to 
the metastasis binary masks to transfer these contours from 
clinical CT onto ADC maps.

All ADC maps were normalized across imaging sessions 
using the central ventricle’s CSF mean ADC value. This was 
performed by using additional linear registrations between 
Gd-T1 and the standard ICBM Average Brain MNI152 data 
set (23). Central ventricle probability maps from the MNI152 
atlas were extracted and applied to CSF segmentation data to 
create patient-specific CSF contours (24). Mean ADC values 
were calculated for each ADC map using these contours 
and applied to scale all ADC voxels accordingly.

Control group

Control contours were generated using existing clinical 
metastasis contours flipped contralaterally (25,26) (see 
Figure 3). Each CT image and metastasis contour are 
mirrored laterally and re-registered to the reference CT. 
This new contralateral binary mask was then transferred 
back to the original CT and then transformed onto the 
normalized ADC maps as a control. Each control was 
verified to ensure that it was generated in normal appearing 
healthy brain tissue devoid of any abnormalities, and it did 
not overlap with any other controls or metastases contours.

Radiomics and clinical features

The open-source package Pyradiomics (27) was used to 
calculate radiomic features using the normalized ADC 
maps and binary masks (clinical metastases and healthy 
brain tissue controls). Both normalized ADC maps and 
filtered images were used as input with default parameters 
during extraction. Default filters included wavelet, 
Laplacian of Gaussian, square, square root, logarithmic, 
and exponential filters applied to the normalized ADC 
maps. Anatomical location data was also extracted by using 
the MNI152 atlas (28) and FSL’s atlasquery. Additional 
demographic and clinical data such as patient age at time 
of ADC imaging, gender, original primary histology, and 
chemotherapy regimen were recorded and added to the 
dataset as features. Chemotherapy features were assigned 
to each metastasis based on the type of chemotherapy 

CT Gd-T1 ADC

Figure 2 Axial images taken within 1 week prior to SRS using CT, T1, and the corresponding ADC map derived from DWI. Linear 
registration was performed to align all the images sets across modalities and time points pre- and post-SRS. CT, computed tomography; Gd-
T1, gadolinium-enhanced T1; ADC, apparent diffusion coefficient; SRS, stereotactic radiosurgery; DWI, diffusion weighted imaging.
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received (normal chemotherapy, immunochemotherapy, 
targeted chemotherapy, hormonal chemotherapy, or any 
combination of treatments). Chemotherapy data was 
encoded using one-hot encoding.

Feature engineering

MRI obtained from pre-SRS imaging, post-SRS follow 
up, and all subsequent treatments were temporally aligned 

to create a unique longitudinal image timeline showing 
the evolution of ADC maps for each patient. Metastases 
were then arranged in chronological order of detection 
to establish which metastases were viable for analysis by 
having at least three pre-SRS image sets (see Figure 4). 
Each radiomic feature was calculated for every time point 
available pre- and post-SRS. Additional features included 
slope and intercept from linear regression of pre-SRS 
radiomic values. Finally, two random noise features were 

CT Flipped CT Control generated ADC map

Figure 4 Longitudinal ADC map analysis methodology. This example patient received six MRI sessions between 2017 and 2019. Three 
examples are presented, with approximate treatment dates indicated by the black circles. Solid colored contours show metastases that have 
occurred while outlined contours show future recurrence sites. Metastases #1 and #2 are excluded from further analysis due to a lack of 
required number of pre-SRS imaging data. The exact timelines for each imaging session are not to scale and only highlight longitudinal 
study methodology. ADC, apparent diffusion coefficient; MRI, magnetic resonance imaging; SRS, stereotactic radiosurgery.

Figure 3 Axial CT images and ADC maps showing how metastases contours (red) transformed into contralateral healthy tissue controls (blue). 
CT, computed tomography; ADC, apparent diffusion coefficient.
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introduced to the data set to remove unimportant features 
that ranked less than noise during training. Features that 
were missing numerical data were imputed with zero.

Statistical analysis and ML

Correlation analysis was performed and any features with 
>95% Pearson correlation were excluded. The dataset was 
then divided into training and validation sets using an 80/20 
split with stratification and scaled using Scikit-Learn’s 
StandardScaler (29). Four ensemble binary classification 
ML algorithms were trained and analyzed in this study: 
Random Forest (RF) Classifier (30), Linear Support Vector 
Machine (SVM) (31), Adaptive Boost (ADA) (32), Extreme 
Gradient Boost (XGB) (33). Each classifier performed 
supervised learning using the training set and optimized 
towards accuracy. For RF, ADA, and XGB, features were 
ranked based on each classifier’s respective importance 
metric. Any features that ranked lower than the two random 
noise features were excluded from further training using 
that specific algorithm. For SVM, iterative construction was 
performed to establish feature importance (25). New SVM 
sub-models were created, trained, and scored by iteratively 
adding the most important features one at a time based on 
their original SVM feature importance rankings. The sub-
model’s feature set with the highest accuracy was selected 
as the final feature set. Each ML model’s selected features 
were based on their overall predictive power, without 
any input about the actual outcomes to further minimize 
bias and data leakage during training. Grid search was 
used to tune hyperparameters for each algorithm using  
10-fold cross validation (CV), optimizing towards balanced 
accuracy. Finally, a summed classifier was generated by 
integrating the four models into a soft-voting pipeline. 
Classifiers were evaluated based on area under the receiver 
operating characteristic curve (AUC), accuracy, recall, and 
precision, and presented with 95% confidence intervals (34)  
for both the training set and the internal validation set. 
Additional comparisons were also performed against models 
trained only on first-order statistics (excluding radiomic 
features). Performance differences were analyzed using a 
Mann-Whitney U statistical test and P values are presented.

Results

Sample characteristics

A total of 116 patients received SRS between 2017 and 

2022. Of those patients, 789 intracranial metastases were 
examined, and 189 metastases were excluded due to the 
insufficient pre-SRS imaging data. Five hundred ninety-five 
control contours were generated using contralateral healthy 
tissue and used as the negative case for ML prediction. Each 
patient underwent a median of 6 DWI scans as part of their 
SRS treatment or follow-up imaging protocols. Median 
follow up time post-SRS was 95 days. A total of 790 Gd-
T1 image sets, 790 ADC maps, and 275 clinical CT were 
retrieved and processed. Patient characteristics, primary 
histology, and chemotherapy regimen are summarized in 
Table 1.

Feature importance 

Each of the four algorithms used reduced feature subsets to 
decrease the complexity of the algorithm while improving 
ML performance and generalization. XGB, ADA, and RF 
used reduced feature sets created by removing features 
found less important than the introduced noise variables. 
Following reduction, there were 325, 141, and 258 features 
used to train and test XGB, ADA, and RF, respectively. 
SVM feature importance was cutoff using iterative 
construction, resulting in 823 features for the final SVM-IC 
feature set. Top 5 ranking features for each algorithm are 
shown in Table 2. Most features used by all trained classifiers 
related to a change in ADC radiomics pre-SRS, the linear 
intercept, or from the previous imaging session (lag1). 
Additionally, the majority of top radiomic features relied on 
derived ADC maps (mainly wavelet and log filtering) and 
not on the raw ADC maps.

ML analysis

Four ML binary classification models were analyzed, and 
results are summarized in Table 3. All analyzed algorithms 
underwent hyperparameter optimization and were tuned 
to optimize classification accuracy. Training set AUC 
curves are shown in Figure 5A. XGB provided the strongest 
prediction accuracy (0.877±0.021, P<0.05) during cross-
validation training. XGB’s AUC also performed strongly 
(0.949±0.013, P<0.05) when compared to the other analyzed 
algorithms. SVM performed similarly to XGB in accuracy 
(0.857±0.021, P<0.05) and AUC (0.906±0.020, P<0.05) 
during training with its corresponding feature subset (found 
during SVM-IC). RF and ADA performed slightly lower 
than SVM and XGB both in accuracy (RF: 0.823±0.024, 
ADA: 0.810±0.024, P<0.05) and AUC (RF: 0.901±0.018, 
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ADA: 0.894±0.020, P<0.05). Algorithm rankings regarding 
recall are identical, with XGB exhibiting the highest 
recall (0.880±0.021). The soft voting classifier, comprising 
of a combination of the four algorithms, performed 
strongly in AUC (0.921±0.016) and classification accuracy 
(0.837±0.023). XGB and RF provided the best overall 
accuracy and recall on both dataset splits while maintaining 
relatively low training times (XGB: 1.415, RF: 1.092, SVM: 
0.975, and ADA: 11.288 min).

Looking at the internal validation test results, XGB 
again had higher accuracy in all calculated metrics (P<0.05) 
but was lower than RF, which performed the strongest. 
RF validation results were found to be slightly higher than 

the training results in all metrics. ADA performed very 
similarly to its training set results. The soft voting classifier 
performance worse compared to its training set results but 
remained comparable to the top performing XGB and RF. 
SVM performed significantly worse during its validation 
set when compared to its training set results, presenting the 
largest generalization gap seen from the ML algorithms. 
Validation set AUC curves are shown in Figure 5B.

The performance metrics of our radiomics-based 
models were also superior to the same models trained on 
first-order statistics only. Both XGB balanced accuracy 
(0.752±0.027, P<0.05) and AUC (0.843±0.023, P<0.05) 
dropped in performance significantly when compared to 

Table 1 Patient characteristics

Characteristics Total cohort Training cohort Internal validation cohort 

Demographic

Sex (male/female) 43/73

Median age at DWI scan (years) [range] 61.8 [35–89]

Median No. of metastases [range] 5 [2–22]

Primary histology (by patient), n [%]

Lung 57 [49]

Breast 21 [18]

Melanoma 14 [12]

Bladder 3 [3]

Colon 4 [3]

Other 17 [15]

Primary histology (by metastasis), n [%]

Lung 253 [42] 198 [41] 55 [46]

Breast 133 [22] 113 [24] 20 [17]

Melanoma 117 [20] 94 [20] 23 [19]

Bladder 17 [3] 12 [3] 5 [4]

Colon 13 [2] 10 [2] 3 [3]

Other 67 [11] 53 [11] 14 [12]

Systemic therapy (by metastasis), n [%]  

Chemotherapy 304 [51] 249 [52] 55 [46]

Immunotherapy 352 [59] 280 [58] 72 [60]

Targeted 169 [28] 143 [30] 26 [22]

Hormonal 19 [3] 15 [3] 4 [3]

DWI, diffusion weighted imaging.
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Table 2 The top five feature importances for each algorithm’s feature subset. Variable names are default from Pyradiomics and shorthand prefixes 
(italicized for clarity) are presented to detail the specific technique used to calculate the feature. ‘change_’ is the calculated linear slope found via 
linear regression of pre-SRS data, ‘intercept_’ is the calculated linear intercept (corresponding to the expected radiomic value on treatment date), 
‘lag1_’ is the radiomic value one imaging session prior to metastasis discovery on Gd-T1, and no prefix denotes the raw radiomic value using the 
closest pre-SRS imaging session (within 1 week of treatment)

Feature 
ranking

Linear SVM Random Forest Adaptive Boost Extreme Gradient Boost

1 change_log-sigma-
5-mm-3D_gldm_
DependenceEntropy

original_gldm_DependenceNonUnifor
mityNormalized

intercept_wavelet-HLH_glszm_
LargeAreaLowGrayLevelEmphasis

change_log-sigma-
2-mm-3D_firstorder_
Mean

2 log-sigma-3-
mm-3D_gldm_
DependenceVariance

log-sigma-1-mm-3D_
firstorder_10Percentile

intercept_wavelet-HLH_glszm_
SizeZoneNonUniformityNormalized

change_log-sigma-1-
mm-3D_glcm_MCC

3 change_log-sigma-5-
mm-3D_glcm_Imc1

lag1_wavelet-LLH_firstorder_Median change_log-sigma-4-mm-3D_
firstorder_Maximum

intercept_wavelet-LLH_
glcm_InverseVariance

4 intercept_log-sigma-
3-mm-3D_glrlm_
RunVariance

intercept_wavelet-HHH_glszm_GrayLe
velNonUniformityNormalized

intercept_wavelet-LHH_glszm_
SmallAreaLowGrayLevelEmphasis

change_wavelet-LHH_
firstorder_Median

5 lag1_wavelet-HHH_
firstorder_Mean

change_logarithm_glszm_
SizeZoneNonUniformityNormalized

lag1_log-sigma-4-mm-3D_gldm_
LargeDependenceLow 
GrayLevelEmphasis

wavelet-HHL_firstorder_
Median

SRS, stereotactic radiosurgery; Gd-T1, gadolinium-enhanced T1; SVM, Support Vector Machine; LLH, low-low-high pass filter; HHH, high-
high-high pass filter; HLH, high-low-high pass filter; LHH, low-high-high pass filter; MCC, maximal correlation coefficient; HHL, high-high-
low pass filter.

Table 3 ML results for each classifier. Soft voting comprised of a combination of the four ML algorithms

Classification algorithm
Training set Internal validation set

AUC Accuracy Recall Precision AUC Accuracy Recall Precision

Linear Support Vector 
Machine

0.906±0.020 0.857±0.021 0.857±0.021 0.857±0.021 0.766±0.059 0.711±0.056 0.711±0.056 0.711±0.056

Random Forest 0.901±0.018 0.823±0.024 0.823±0.024 0.823±0.024 0.922±0.034 0.858±0.045 0.858±0.046 0.858±0.046

Adaptive Boost 0.894±0.020 0.810±0.024 0.811±0.024 0.810±0.024 0.882±0.043 0.816±0.051 0.817±0.051 0.816±0.050

Extreme Gradient Boost 0.949±0.013 0.877±0.021 0.880±0.021 0.878±0.021 0.910±0.037 0.833±0.047 0.833±0.046 0.833±0.046

Soft Voting Classifier 0.921±0.016 0.837±0.023 0.837±0.023 0.837±0.023 0.890±0.040 0.820±0.046 0.822±0.046 0.820±0.046

Data are shown as performance value ± 95% confidence interval. ML, machine learning; AUC, area under the receiver operating 
characteristic curve.

using radiomics data. Similar decreases were also found 
in RF balanced accuracy (0.753±0.026, P<0.05) and AUC 
(0.833±0.024, P<0.05).

Discussion

The goal of this study was to develop a DWI-based 
feature set and ML pipeline that can differentiate 

between metastatic and healthy brain tissue prior to their 
manifestation on standard T1 imaging. We trained multiple 
ML classifiers on longitudinal ADC maps taken pre-SRS. 
The radiomic and clinical data set, feature engineering 
methodology, and pipeline presented demonstrated that 
our ML models can identify metastases with an accuracy of 
87.7% on the training set, and 85.8% on an unseen test set. 
This is in line with a previous systematic review reporting 
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ML classification results between 84–93% (35). RF and 
XGB classifiers were the top performers in all ML metrics 
analyzed. While ADA performed comparably, training times 
were an order of magnitude longer (11.3 minutes for ADA 
versus <2 minutes for all other models). SVM displayed 
comparable training metrics but did not generalize well. 
The main features that contributed to our model accuracy 
included the change in ADC-based radiomic values months 
before the actual SRS treatment, suggesting that ML can 
be used to detect subtle diffusion changes prior to visual 
confirmation of metastases on conventional Gd-T1 MRI.

Changing ADC values have been shown to relate to 
increasingly restricted diffusion and increased hyper-
cellularity or cell density of cancerous tissue (36,37). This 
is due to decreased mobility of water molecules in the 
extracellular space (38,39). Our previous work (40) built the 
foundation for this current study by showing that significant 
changes in first-order ADC metrics within metastatic 
regions occur months prior to their manifestation on Gd-
T1. This supports other previous studies that have also 
suggested first-order statistics of diffusion imaging such as 
mean, median, and percentiles, can be valuable for studying 
brain metastases (41-44). The multiple differing conclusions 
regarding which ADC metric is best to use however implies 
that the exact relationship between metastasis formation 
and diffusion is unclear. First order statistics may fail to 
capture the structural complexity of malignant tissue, such 
as local voxel patterns and heterogeneity. In this study our 

processing pipeline and models accounted for this variation 
by allowing all these first-order metrics, and additional 
higher-order statistics, to play a role in the final calculation 
model. The significant difference in performance that we 
saw between the first-order only dataset and our radiomics 
dataset supports our methodology. The results suggest that 
changes in diffusion metrics are a key indicator for future 
metastatic occurrence given the large number of ‘change’ 
metrics that ranked highly in future importance across the 
ML models.

The main areas of interest for ML in radiology are image 
segmentation, registration, and computer-aided detection 
and diagnosis. ML has greatly risen in popularity, with 
modeling used to process the vast amount of imaging data 
taken in clinical practice (45). The idea of differentiating 
brain tissue using ML-aided detection was explored in 
our study, and has been investigated previously using 
other characterizations, such as between metastases 
and glioblastoma (8). Another example is a recent study 
demonstrating ML models achieving greater specificity 
compared to neuroradiologists when distinguishing 
radionecrosis from non-necrotic tissue post-SRS (9). While 
other ML studies often use modalities such as CT, T1, and 
even DWI as input data to their models, our methodology 
uniquely utilized extensive longitudinal ADC maps for 
radiomic data analysis. This allowed us to augment our 
feature set with the change in diffusion metrics over time, as 
opposed to single instance radiomic measurements. Finally, 
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particular attention was given to improve ADC stability 
(36,46) and generalization of the trained models through 
normalization of ADC maps and multipoint regression 
analysis of radiomic features.

We acknowledge several limitations with the study. 
Firstly, the imaging dataset used was limited to a single 
institution and may generalize better if multi-institutional 
ADC maps from a heterogenous dataset were integrated 
into the ML model input. Secondly, the patients chosen in 
this study all underwent SRS to treat cranial metastases, 
with controls generated from those same patients due to a 
lack of longitudinal DWI data from healthy patients. The 
lack of an external validation group may restrict the results 
to SRS patients and limit our models’ usage in other patient 
demographics. Lastly, there may be more clinical features 
that are missing from our feature set. The subgroup analysis 
within different therapies and primaries is an interesting 
topic but was not pursued in this study due to the large 
sample size required for each group, instead we tried to 
incorporate as many relevant patient and therapy features 
that may potentially impact ADC, e.g., chemotherapy & 
immunotherapy into the analysis.

Results of this study indicate that longitudinal DWI-
based ML models can be used as a tool for early brain 
metastases detection. Future work will explore extending 
this model for generalized search across the brain for high-
risk patients. Integration of such a tool would require 
minimal additional resources as DWI is commonly included 
in standard imaging protocols for SRS patients. Exporting 
the calculated ADC maps and going through our proposed 
processing pipeline, whether in a standalone application or 
integrated into existing treatment planning software, can 
be done in parallel to current standards and would serve 
as an additional source of information for the physician. If 
the model identifies areas at risk of developing metastases 
due to diffusion changes, closer surveillance with shorter 
interval imaging can be considered. Conversely, if no high-
risk areas are noted, less frequent imaging follow-up may be 
appropriate, allowing departmental resources to be deployed 
according to patients’ underlying risk of recurrence.

Conclusions

Longitudinal diffusion-based ML models were trained to 
accurately differentiate intracranial metastatic tissue from 
healthy brain tissue. Given the complexity of diffusion 
changes within the brain, ADC-based radiomics provided 
the necessary data for training the model, with XGBoost 

and RF classifiers providing the best predictive power. 
The main features that contributed to our model accuracy 
primarily were changes in diffusion metrics months before 
the actual SRS treatment of the metastasis and detection 
on Gd-T1. Although ML in the cancer clinic is still being 
investigated, our results and methodology using longitudinal 
diffusion-based radiomics opens the door for the proactive 
screening and early detection of future cranial metastases 
using artificial intelligence. Future work will focus on clinical 
integration of the model as a diagnostic aid. 
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