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Abstract: Triple-negative breast cancer (TNBC) is an operational term for breast cancers lacking
targetable estrogen receptor expression and HER2 amplifications. TNBC is, therefore, inherently
heterogeneous, and is associated with worse prognosis, greater rates of metastasis, and earlier
onset. TNBC displays mutational and transcriptional diversity, and distinct mRNA transcriptional
subtypes exhibiting unique biology. High-throughput sequencing has extended cancer research far
beyond protein coding regions that include non-coding small RNAs, such as miRNA, isomiR, tRNA,
snoRNAs, snRNA, yRNA, 7SL, and 7SK. In this study, we performed small RNA profiling of 26 TNBC
cell lines, and compared the abundance of non-coding RNAs among the transcriptional subtypes
of triple negative breast cancer. We also examined their co-expression pattern with corresponding
mRNAs. This study provides a detailed description of small RNA expression in triple-negative breast
cancer cell lines that can aid in the development of future biomarker and novel targeted therapies.
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1. Introduction

Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer, representing ~15% of cases,
but ~25% of all breast cancer deaths. TNBCs are defined by their absence of estrogen and progesterone
receptor expression and HER2 amplifications. Lacking these biomarkers, TNBCs are insensitive to
current targeted therapies. Molecular heterogeneity, and a lack of high-frequency “driver” alterations
amenable to therapeutic intervention have hindered the development of new treatments for TNBC [1].
We have previously classified TNBC into distinct transcriptional subtypes, each with unique biology and
signaling [2]. Four tumor intrinsic subtypes include basal-like (BL1, BL2), mesenchymal (M), and luminal
androgen receptor (LAR), each of which can be additionally classified by an immunomodulatory (IM)
descriptor on the basis of immune infiltrate presence [3]. These transcriptional subtypes have been
independently validated by several other groups [4,5]. The initial subtyping studies were performed on
microarray gene expression, however, high-throughput sequencing (HTS) has since evolved as an unbiased
method to quantify the expression of many RNA species outside of coding transcripts.

Small RNAs (sRNAs) are short non-coding RNAs (ncRNA) of 200 nucleotides or less in length.
The discovery of novel sRNAs and their annotations have substantially enhanced our understanding
of the complex regulation of the genome. MicroRNAs (miRNAs) are, by far, the most studied small
RNA, with over 10,000 publications to date. Discovered in 1993 [6], miRNAs are single-stranded

Genes 2018, 9, 29; doi:10.3390/genes9010029 www.mdpi.com/journal/genes

http://www.mdpi.com/journal/genes
http://www.mdpi.com
https://orcid.org/0000-0002-0239-7342
http://dx.doi.org/10.3390/genes9010029
http://www.mdpi.com/journal/genes


Genes 2018, 9, 29 2 of 15

ncRNAs of 19–25 nucleotides that regulate messenger RNAs (mRNAs) through binding of the seed
sequence (first 2 to 7 nucleotides) to complementary bases in 3′ untranslated regions (3’UTR) of mRNA.
miRNAs have been recognized for their potential to serve as biomarkers for various diseases, including
cancer [7–12]. The relatively high transcript number, stable biochemical properties under clinical
conditions, and discriminating transcriptional patterns make miRNAs ideal candidates for biomarkers.

Earlier studies of sRNA have relied on low-throughput real-time quantitative polymerase chain
reaction (RT-PCR) or hybridization-based microarrays. The advancement of HTS technology has
substantially increased the detection limit of miRNAs, and more importantly, enabled the examination
of miRNA at a single nucleotide resolution, in addition to quantifying abundance. Furthermore,
HTS enables a global assessment of sRNAs and not limited to a set of previously known targets.
Subsequent bioinformatics analysis of sRNA sequencing data can identify, quantify and determine the
differential expression of a variety of small non-coding RNAs. Since size-selection sequencing methods
are agnostic to sRNA species, it has the potential to capture many species of sRNAs that include
miRNAs, miRNA isoforms (isomiRs) [13,14], transfer RNA (tRNA)-derived small RNAs (tDRs) [15,16],
and other sRNAs such as snRNA, snoRNA, yRNA, 7SK, and 7SL RNAs [17,18]. IsomiRs are the
isoforms of miRNA that usually have alternative or clipped seed sequences compared to reference
miRNA sequences [19]. The differences in seed sequence of isomiRs can result in substantial difference
in the repertoire of predicted target mRNAs [20]. In addition, transfer RNAs (tRNAs) can be detected
by HTS, usually as fragments that were actively cleaved or a product of library construction. The parent
tRNAs are adaptor molecules with a length typically ranging from 73 to 94 nucleotides. It is speculated
that the cleavage of tRNAs by an RNAse III enzyme, angiogenin, may occur in a number of reactive
conditions, to produce tRNA-derived halves (tRHs) [21,22].

The present study provides an in-depth characterization of small non-coding RNA species in
TNBC, and identifies subtype-specific differences in major non-coding RNA species detectable: micro
RNA (miRNA), miRNA isoforms, transfer RNA (tRNA), small nucleolar RNA (snoRNA), small nuclear
RNA (snRNA), Y RNA (yRNA), single recognition particle RNA (7SL RNA), and 7SK RNA. These
data validate previously identified pathways, and highlight potential biomarkers for future studies.

2. Methods

2.1. High-Throughput RNA Sequencing

We cultured 26 TNBC cell lines (BT20, BT549, CAL120, CAL148, CAL51, DU4475, HCC1143,
HCC1187, HCC1395, HCC1599, HCC1806, HCC1937, HCC38, HCC70, HDQP1, HS578T, MDAMB157,
MDAMB231, MDAMB436, MDAMB453, MDAMB468, MFM223, SUM159, SUM185, SW527) for this
study; the cell culture procedures were previously described [2]. Sub-confluent cells (1–2 × 106)
were harvested and sRNA isolated (mirVana, Thermo Fisher, Waltham, MA, USA) using a standard
spin protocol. RNA quality assessment and RNA-seq was performed by the Vanderbilt Technologies
for Advanced Genomics core (VANTAGE, Nashville, TN, USA). Libraries were prepared using the
TruSeq Small RNA sample preparation kit (Illumina, San Diego, CA, USA). The sRNA protocol
specifically ligates RNA adapters to mature miRNAs harboring a 5′-phosphate and 3′-hydroxyl group
as a result of enzymatic cleavage by RNase III processing enzymes, e.g., Dicer. In the first step,
RNA adapters were ligated onto each end of the sRNA, and reverse transcription was used to create
single-stranded cDNA. This cDNA was then PCR amplified for 18 cycles with a universal primer,
and a second primer containing one of 20 uniquely indexed tags to allow multiplexing. Size-selection
of the cDNA constructs was performed using a 3% gel cassette on the Pippin Prep (Sage Sciences,
Beverly, MA, USA) to include only mature miRNAs and other sRNAs in the 5–40 bp size range, and to
remove adapter–adapter products. The resulting cDNA libraries then underwent a quality check on
the Agilent Bioanalyzer HS DNA assay (Agilent, Santa Clara, CA, USA) to confirm the final library
size, and on the Agilent Mx3005P quantitative PCR machine, using the KAPA library quantification kit
(Illumina, San Diego, CA, USA) to determine concentration. A 2 nM stock was created, and samples
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were pooled by molarity for equimolar multiplexing. From the pool, 10 pM of the pool was loaded into
each well of the flow cell on the Illumina cBot for cluster generation. The flow cell was then loaded
and sequenced on the Illumina HiSeq 3000 to obtain at least 15 million single end (1 × 50 bp) reads per
sample. The raw sequencing reads in BCL format were processed through CASAVA-1.8.2 for FASTQ
conversion and de-multiplexing. The chastity filter from Illumina’s Real-Time Analysis software was
applied, and only PF (pass filter) reads were retained for further analysis. Raw data files available at
Gene Expression Omnibus under the accession GSE108286.

We also performed total RNA-seq on the 26 TNBC cell line for comparative purpose. Total
RNA was isolated with the Aurum Total RNA Mini Kit (Bio-Rad, Hercules, CA, USA). All samples
were quantified on the QuBit RNA assay (Thermo Fisher, Waltham, MA, USA). RNA quality was
checked using Agilent Bioanalyzer. RNA integrity number (RIN) for both sRNA and total RNA
was 10. The ribosome RNA reduction was performed using the Ribo-Zero Magnetic Gold Kit
(Human/Mouse/Rat) (Epicentre, Madison, WI, USA). The RNA libraries were sequenced on Illumina
High HiSeq 3000 with paired-end 100 base pair long reads.

2.2. Bioinformatics and Data Analyses

HTS data processing was performed using a custom in-house data analysis pipeline Tiger [15] for sRNA
sequencing data processing. Cutadapt [23] was used to trim 3′ adapters for raw reads. Multi-perspective
quality control [24] on raw data was performed using QC3 [25]. All reads with length less than 16 nucleotides
were discarded. The adaptor-trimmed reads were formatted into a non-redundant FASTQ file, where the
read sequence and copy number was recorded for each unique tag. The usable unique reads were mapped
to the whole genome by Bowtie1 [26], allowing only one mismatch per read. In addition, our pipeline takes
into consideration non-templated nucleotide additions [27–30] at the 3′ end of miRNAs during alignment,
resulting in more accurate miRNA expression quantification. The miRNA coordinates were extracted
from miRBase [31]. The tRNA coordinates were prepared by combining the latest UCSC tRNA database
GtRNAdb [32] with the tRNA loci of mitochondria from the Ensembl database [33]. The coordinates of
snRNA, snoRNA, yRNA, 7SK, and 7SL were extracted from the Ensembl database. The tRNA reads were
used not only for tRNA quantification, but also for tRNA mapping position coverage analysis. sRNAs
were divided into seven major categories: miRNAs (including isomiR), tRNAs, 7SK, 7SL, yRNA, snoRNAs,
and snRNAs. IsomiRs were detected by matching alignment of the reads at +1 or +2 positions from the start
of the 5′ annotation of miRNAs.

The total RNA-seq data was quality controlled following standard RNA-seq quality control
protocols [24] using tools QC3 [25], and alignment was carried out using BWA [34]. The nuclear
genome we used is the human reference genome GRCh38. RNA data alignment was performed by
TopHat2 [35]. Read count per gene was extracted using HTSeq [36]. For total RNA-seq, we sequenced,
on average, 34 million reads per sample.

Differential sRNA expression analysis among subtypes of TNBC cell lines were performed
by MultiRankSeq (Nashville, TN, USA) [37]. Due to limitation on the current curation on sRNA
functions, pathway analysis was only performed with miRNA. Correlation based co-expression
network analysis were performed with Cytoscape (San Francisco, CA, USA). Differentially expressed
miRNAs pathway analysis was performed using miRPath v3 [38]. All correlation analyses were
performed with Spearman’s correlation to minimize the effect of outliers. The Cancer Genome Atlas
(TCGA) miRNA and mRNA data for TNBC tumors were downloaded from Genomic Data Commons
(https://portal.gdc.cancer.gov/) to validate the correlation patterns identified in this study.

2.3. TNBC Subtyping

We performed TNBC subtyping as previously described [2,39], using RSEM gene-level expression
estimates determined from RNA-sequencing of each cell line. Cell lines were assigned one of four
tumor-intrinsic TNBC subtypes: basal-like 1 (BL1), basal-like 2 (BL2), mesenchymal (M), and luminal
androgen receptor (LAR) [39].

https://portal.gdc.cancer.gov/
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3. Results

To determine if different species of small RNAs species are enriched in TNBC subtypes,
we performed sRNA sequencing of 26 TNBC cell lines (Table S1). After quality control, we generated
a sRNA dataset that identified 823 miRNAs, 3762 isomiRs, 52 tRNAs, 134 snRNAs, 305 snoRNAs,
250 yRNAs, 57 7SK RNAs, and 33 7SL RNAs (Table S2). We observed a slight sRNA preference by TNBC
subtype. For example, for cell lines of mesenchymal subtype, we identified more miRNA than other
subtypes, and basal-like 1 (BL1) cell lines expressed higher levels of snRNA and 7SK RNAs (Figure 1).
To determine if sRNA species are associated with TNBC transcriptional subtypes, we performed
unsupervised hierarchical clustering of miRNA, tRNA, snRNA, snoRNA, yRNA, and 7SL/7SK RNA
species (Figure S1). To identify small non-coding RNAs highly expressed in TNBC, we plotted the
median expression across all cell lines by RNA species (Figure 2). Several miRNAs (miR-92a-3p,
let-7f-5p, miR-182-5p, miR-21-5p, let-7a-5p, miR-30a-5p, miR-222-3p, miR-181s-5p, miR-191-5p,
miR-22-3p) were highly expressed among the cell lines (Figure 2A). There were several tRNA species
highly expressed (Val_CAC, Gly_GCC, Val_ACC, Glu_CTC, Lys_CTT, Gly_CCC, and His_GTG) across
the cell lines (Figure 2B), as well as yRNAs, 7SK/7SL RNAs, snRNAs, and snoRNAs (Figure 2C,D).
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Figure 1. Number of detected sRNA by detection thresholds of read count. Plot shows number of
sRNAs identified at incremental detection threshold (read counts) (1, 5, 10, 15, 20). The number of
sRNA detected should decrease as the detection threshold increases. (A) miRNA, (B) isomer, (C) tRNA,
(D) yRNA, (E) snRNA, (F) snoRNA, (G) 7SK and (H) 7SL RNA species with each triple-negative breast
cancer (TNBC) subtype.
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Figure 2. Highly expressed non-coding RNAs in TNBC cell lines. Scatterplots show median read
counts for (A) miRNA, (B) tRNA, (C) yRNA, (D) 7SK/7SL RNA, (E) snRNA and (F) snoRNA across all
TNBC cell lines.

To identify uniquely enriched non-coding RNAs, we conducted differential expression analysis
between each of the TNBC subtypes (Table 1). Additionally, differential expression analysis was
performed to identify unique sRNAs pertaining to each TNBC subtype compared to all other TNBCs
(Table 2). Not surprisingly the LAR was found to be the most unique TNBC subtype with 104 exclusive
sRNAs, supporting the distinct hormonally driven biology of this subtype. BL2 was the least unique
TNBC subtype with six exclusive sRNAs. BL1 and M had 32 and 48 exclusive sRNAs respectively
(Figure 3). The complete lists of exclusive sRNAs pertaining to each TNBC subtype is listed in Table S3.
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Table 1. Summary of differentially expressed sRNAs between TNBC subtypes.

Comparison miRNA isomiR tRNA snRNA snoRNA yRNA 7SK 7SL Total

BL1 vs. BL2 29 33 1 1 6 0 1 0 71
LAR vs. BL2 82 74 0 9 2 0 0 0 167
LAR vs. BL1 49 40 0 9 10 2 1 0 111

M vs. BL2 26 16 0 2 6 0 0 0 50
M vs. BL1 71 84 2 3 15 0 4 2 181
M vs. LAR 105 105 0 5 19 5 0 2 241

Total 362 352 3 29 58 7 6 4 821

Table 2. Summary of sRNAs unique to TNBC subtypes.

Comparison miRNA isomiR tRNA snRNA snoRNA yRNA 7SK 7SL Total

BL1 vs. others 18 0 2 2 8 0 2 0 32
BL2 vs. others 6 0 0 0 0 0 0 0 6
M vs. others 41 0 0 2 3 0 0 2 48

LAR vs. others 82 0 0 10 6 6 0 0 104
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differential sRNAs colored by species type and binned by TNBC subtypes.

There were differences in the expression of small nuclear RNA (snRNA) components of
spliceosomes, transcription elongation, and signal recognition particle complexes across TNBC
subtypes. Spliceosomes are integral to eukaryotic precursor messenger RNA maturation. BL1 subtype
cell lines were enriched for U7 small nuclear RNAs that are involved in histone pre-mRNA processing
(RNU7-19P and RNU7-3P), while the LAR subtype displayed lower levels of U2 snRNAs (RNU2-33P,
RNU2-36P, RNU2-37P, RNU2-48P, RNU2-50P, RNU2-61P, and RNU2-7P). The BL1 subtype was
enriched in the 7SK snRNA component of the positive transcription elongation factor P-TEFb [40].
The secondary structure of 7SK associates with several proteins, regulating the stability and activity
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of the ribonucleoprotein complex. The M subtype displayed enrichment in the 7SL snRNA,
the RNA component of the signal recognition particle ribonucleoprotein complex. This universally
conserved ribonucleoprotein processes the signal peptide present on proteins destined for secretion.
Several H/ACA family snoRNAs were differentially enriched in the BL1 subtype that include
SNORA11, SNORA21, SNORA48, SNORA68, and SNORA74B that can guide 2′-O-methylation of target
RNA. yRNAs are components of the autoantigenic Ro ribonucleoproteins were uniquely enriched in
the LAR subtype. yRNAs are overexpressed in various cancers, [41] and implicated in chromosomal
DNA replication and non-coding RNA quality control [42,43].

Transfer RNAs (tRNAs) are adaptor molecules, typically 76 to 90 nucleotides in length that
physically link mRNA and the amino acid sequence of proteins. tRNAs deliver individual amino
acids to ribosomes for protein translation. Val, Gly, Lys, Glu, and His were by far the most abundant
tRNAs across all TNBC cell lines, representing ~95% of all tRNAs (Figure 4A). tRNA differential
expression analysis was performed based on the anti-codon categories. The only significant difference
in tRNA species among TNBC subtypes were BL1 cell lines that displayed significantly less tRNA-Ser
(0.07%) compared to other subtypes (0.16% BL2, 0.12% LAR and 0.17% M). The rest tRNA anti-codon
categories were represented equally in proportion for all TNBC subtypes (Figure 4B).
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shows average fraction of tRNA species across all TNBC cell lines. (B) Plot shows tRNA quantification
by nucleotide position for all tRNA species in cell lines grouped by TNBC subtype. The sequenced tRNA
fragments overwhelmingly favor the first half (~0–40 positions) of tRNA.
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Since miRNA were the most abundant non-coding RNA species and have the ability to regulate
diverse pathways by targeting mRNAs, we performed pathway analysis on miRNAs exclusive to
each TNBC subtype (Table S4). As anticipated, the M subtype was enriched in miRNAs regulating
mesenchymal pathways, such as Wnt signaling, TGF beta signaling, adherens junction, and axon
guidance. Specifically, the miRNA-200 cluster targeting transcription factors that regulate E-cadherin
were decreased in the M subtype, supporting prior published enrichment in epithelial-to-mesenchymal
(EMT) genes [2].

We performed correlation analyses between the expression of sRNA and mRNA in TNBC cell lines.
All correlations were computed using Spearman’s correlation to minimize outlier and scaling effects
between datasets. We found that there is a slight bias toward positive correlation for miRNA vs. mRNA
in our TNBC cell lines; this bias increased with higher absolute correlation values (Figure 5). To ensure
this observation is not an artifact of our cell line dataset, we performed the same analysis using gene
expression data from primary TNBC tumor in The Cancer Genome Atlas (TCGA), and observed the
same bias toward positive correlation. Two additional studies [44,45] also found similar positive bias
for correlations between miRNA and mRNA. The plausible explanation is that miRNAs also target
inhibitive transcription factors of other mRNAs [46].
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in TCGA. Barplots show the relative fractions of miRNAs that correlate either in the positive or negative
direction with mRNAs binned by increasing correlation strength in TNBC cell lines and TNBC tumors
in TCGA.

To further study the correlations in detail, we constructed a list of known tumor suppressor genes
and oncogenes (Table S5). The notable miRNA gene targets altered by TNBC subtype are listed in
Table 3. The correlations between miRNA and tumor suppressor genes and oncogenes were selected
for co-expression analysis (Figures 6 and 7). Tumor suppressor genes involved in DNA damage repair
(ATM, BAP1, CHEK1, and BRCA1), chromatin modifying genes (ARID2, DNMT3A, TET2, SETD2,
and GATA3) and cell cycle genes (CDKN1B and FBXW7) were enriched in the number of miRNAs
negatively correlated with mRNA expression (Figure 8A). FBXW7 encodes an F-box protein and part of
the ubiquitin protein ligase SKP1-cullin-F-box (SCF) complex that negatively regulates cyclin E, c-MYC,
and notch1 proteins, of which cyclin E has been shown to be a specific marker in basal-like breast
cancer [47]. Furthermore, CDKN1B encodes the cyclin-dependent kinase inhibitor p27 that prevents
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G1/S cell cycle progression by inhibiting cyclin E/cdk2-dependent Rb phosphorylation. These data
implicate miRNAs in direct regulation of Rb activity, which is frequency diminished [48] or lost in
basal-like TNBC [49]. Increased miRNAs that correlate with decreased DNA damage repair protein
observed in TNBC cell lines may complement other mechanisms of BRCA1 pathway inactivation
outside of BRAC1 mutation and promoter hypermethylation. Interestingly, miRNAs that positively
correlated with mRNA expression were enriched in growth factor signaling (NF2, TSC2 and STK11)
and developmental pathways (NOTCH1 and AXIN1), suggesting that these miRNAs may target
a negative regulator of these tumor suppressors (Figure 8A). Oncogenes that negatively correlated
with miRNAs were enriched in MAPK pathway (NRAS, BRAF, HRAS and ETV1), while positively
correlated genes were enriched in MYC genes (MYC and MYCL1) (Figure 8B).

Genes 2018, 9, 29  9 of 15 

 

with the expression of cell cycle gene CCNE1, and these sRNAs are necessary for DNA replication 
through interactions with chromatin and initiation proteins [50]. Small nucleolar RNAs guide 
chemical modifications of other RNAs, and we identified several small nucleolar RNAs positively 
correlated with the splicing gene SF3B1, including SNORD116, that was identified in a bioinformatics 
screen to be associated with alternatively spliced genes, suggesting a role in alternative splicing [51]. 

 
Figure 6. Tumor suppressor genes significantly correlated with miRNAs in TNBC. Network analysis 
shows miRNAs (red) that negatively (red lines) or positively (green lines) correlate with mRNA 
expression, or genes encoding known tumor suppressor genes (blue). 

Figure 6. Tumor suppressor genes significantly correlated with miRNAs in TNBC. Network analysis
shows miRNAs (red) that negatively (red lines) or positively (green lines) correlate with mRNA
expression, or genes encoding known tumor suppressor genes (blue).



Genes 2018, 9, 29 10 of 15
Genes 2018, 9, 29  10 of 15 

 

 
Figure 7. Oncogenes significantly correlated with miRNAs in TNBC. Network analysis shows 
miRNAs (red) that negatively (red lines) or positively (green lines) correlate with mRNA expression 
of genes encoding known oncogenes (blue). 

Table 3. miRNA gene targets altered by TNBC subtype. 

Subtype Gene Class Decreased miRNA Target Increased miRNA 

BL1 
Oncogene H3F3A HRAS, MDM4 

Tumor Suppressor DNMT3A CDH1, BCOR, BAP1, FBXW7 

BL2 
Oncogene EIF4A2, PPP2R1A  

Tumor Suppressor FBXW7  

M 
Oncogene MDM4, HRAS CDK4, EIF4A2, FGFR1, H3F3A, MDM4, MYB, MYCL1, NRAS, 

Tumor Suppressor FBXW7, CDH1 NOTCH2, SMAD2 

LAR Oncogene EIF4A2, HF3F3A, MDM2, MDM4, MYCL1 CDK4, EIF4A2, ETV1, FGFR1, IDH2, MDM2, MDM4 
Tumor Suppressor GATA3, VHL FBXW7, NOTCH2 
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Table 3. miRNA gene targets altered by TNBC subtype.

Subtype Gene Class Decreased miRNA Target Increased miRNA

BL1
Oncogene H3F3A HRAS, MDM4

Tumor Suppressor DNMT3A CDH1, BCOR, BAP1, FBXW7

BL2
Oncogene EIF4A2, PPP2R1A

Tumor Suppressor FBXW7

M
Oncogene MDM4, HRAS CDK4, EIF4A2, FGFR1, H3F3A, MDM4, MYB, MYCL1, NRAS,

Tumor Suppressor FBXW7, CDH1 NOTCH2, SMAD2

LAR
Oncogene EIF4A2, HF3F3A, MDM2, MDM4, MYCL1 CDK4, EIF4A2, ETV1, FGFR1, IDH2, MDM2, MDM4

Tumor Suppressor GATA3, VHL FBXW7, NOTCH2

A summary network of tumor suppressor and oncogenes correlated with all sRNA species is
provided in Supplemental Figures S2 and S3. Of note, many yRNA species were negatively correlated
with the expression of cell cycle gene CCNE1, and these sRNAs are necessary for DNA replication
through interactions with chromatin and initiation proteins [50]. Small nucleolar RNAs guide chemical
modifications of other RNAs, and we identified several small nucleolar RNAs positively correlated
with the splicing gene SF3B1, including SNORD116, that was identified in a bioinformatics screen to
be associated with alternatively spliced genes, suggesting a role in alternative splicing [51].
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4. Discussion

The functions of non-coding RNAs are continuously being uncovered, and are implicated in
epigenetic, transcriptional, and post-transcriptional regulation. NGS has expanded our ability to
investigate RNA expression outside of the coding genome. While many studies have implicated
miRNAs that associate with prognosis, little is known about the expression pattern of non-coding
RNAs in triple-negative breast cancers [52,53]. Using TNBC cell line models, we performed a global
analysis of small non-coding RNAs. Using corresponding mRNA expression, we identified tumor
suppressor and oncogenes that correlated with miRNA expression. The expression of several tumor
suppressor genes was decreased, and correlated with increased miRNA expression. These were
enriched in DNA damage, cell cycle checkpoints, and chromatin modifying genes. It is likely that these
associated miRNAs may serve to inhibit the function of these specific tumor suppressor pathways
in TNBC.

Using differential expression analysis, we identified non-coding RNAs that are associated with
biological TNBC subtypes. The majority of the differentially expressed small non-coding RNAs
were miRNAs, and correlation with mRNA validated several targets. The BL1 and BL2 subtypes
were enriched in mRNA targeting members of the ErbB receptor tyrosine kinase family. However,
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the BL2 subtype displayed enrichment in miRNAs regulating Wnt signaling and pathways regulating
pluripotency of stem cells. Furthermore, the BL2 subtype was enriched in miRNAs regulating calcium
and cyclic GMP protein kinase G signaling, suggesting modulation of this pathway made be potentially
therapeutic as in head and neck squamous cancer [54]. The LAR subtype was enriched in miRNAs
regulating biosynthetic pathways known to be regulated by androgen receptor, such as fatty acid
biosynthesis [55], and N-glycan biosynthesis [56,57]. As expected, the mesenchymal TNBC subtype
is characterized by enrichment in mRNAs regulating adherens junction, axon guidance, TGF-beta,
and Wnt signaling. There was enrichment in EMT gene expression and loss of epithelial markers,
like E-cadherin, in the M subtype. We confirmed decreased expression of the miRNA-200 cluster and
decreased E-cadherin in the mesenchymal subtype. These data support prior studies demonstrating
miR200 targets the zinc finger E-box-binding homeobox (ZEB2) transcription factor suppression of
E-cadherin transcription [58].

In addition to miRNA, we identified several other species that were differentially enriched in
TNBC subtypes. The BL1 subtype cell lines were enriched in U7 snRNAs that are involved in histone
pre-mRNA processing, likely due to the increased cell cycle and proliferation associated with this
subtype [2]. The BL1 subtype was also differentially enriched in H/ACA snoRNAs that are required for
telomerase activity [59]. We identified several yRNA species in the LAR subtype that may be hormone
dependent. There is increasing evidence that anti-androgen targeted therapies are efficacious in this
subtype [60]. yRNA fragments have recently been found in the extracellular space of cultured breast
cancer cells [61]. The ability to detect yRNA fragments in serum from breast cancer patients [62] may
provide an opportunity for a minimally invasive way to serially monitor this TNBC subtype during
treatment, similar to PSA for prostate cancer patients. We also found the 7SL snRNA component
of the signal recognition complex enriched in the M subtype, suggesting that this subtype may be
more dependent on processing secreted proteins. This finding is consistent with the enrichment in
mRNAs encoding secreted growth factor and developmental signaling proteins. The diversity of small
non-coding RNAs present in TNBC subtypes reflects the complexity of the disease and the variety of
mechanisms to regulate tumor suppressor and oncogenes.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4425/9/1/29/s1.
Figure S1: Unsupervised hierarchical clustering of TNBC cell lines by sRNA species. Figure S2: Correlation
network for tumor suppressors and small non-coding RNAs in TNBC cell lines. Figure S3: Correlation network
for oncogenes and small non-coding RNAs in TNBC cell lines. Table S1: The 26 TNBC cell line and their subtypes.
Table S2: Detected sRNA and their read counts. Table S3: Unique sRNAs pertaining to each TNBC subtype.
Table S4: Pathway analysis results. Table S5: List of oncogenes and tumor suppressor genes used for co-expression.
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