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The amyloid β peptide (Aβ) is a critical initiator that triggers the progression of
Alzheimer’s Disease (AD) via accumulation and aggregation, of which the process
may be caused by Aβ overproduction or perturbation clearance. Aβ is generated from
amyloid precursor protein through sequential cleavage of β- and γ-secretases while Aβ

removal is dependent on the proteolysis and lysosome degradation system. Here, we
overviewed the biogenesis and toxicity of Aβ as well as the regulation of Aβ production
and clearance. Moreover, we also summarized the animal models correlated with Aβ

that are essential in AD research. In addition, we discussed current immunotherapeutic
approaches targeting Aβ to give some clues for exploring the more potentially efficient
drugs for treatment of AD.
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Introduction

Alzheimer’s disease (AD), also known as Senile Dementia, is a most common age-related
neurodegenerative disorder. More than 11 million people per year are estimated to suffer from
this disease by 2050, leading to higher cost as well as more burdens on public health and
society (Alzheimer’s, 2014, 2015). Featured by progressive memory loss and cognitive dysfunction,
AD induces the loss of motor functions and personality changes, and eventually leads to
death. Histopathologically, AD is mainly characterized by extracellular senile plaques (SPs) and
intracellular neurofibrillary tangles (NFTs), which results in the loss of neurons and synapses and
finally causes gross atrophy of the brain. NFTs are formed by the regulation of the abnormally
hyperphosphorylated and glycosylated microtubule-related tau protein, whereas SPs are associated
with the aggregation and deposition of amyloid β peptides (Aβ) (Mattson, 2004).

Aβ accumulation is considered to be the distinct morphological hallmark of early onset of
AD and it is also proposed to be an activator to induce the sequential lesion events induced by
the aggregation of P-Tau. Therefore, Aβ is predicted to be the most potentially efficient target
of the drug therapies (Karran et al., 2011). Here, this review will focus on this peptide with the
aspects of its biogenesis, regulations, as well as degradation and clearance to elucidate the potential
significance of these processes for the clinic treatment of AD.
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The Aβ Biogenesis, Toxicity, Production,
and Clearance

The Biogenesis of Aβ

The factors involved in the pathogenesis of AD have been
intensely investigated, however, the mechanisms governing this
disease are not fully understood and remain debated. One
prevailing proposal is the amyloid cascade hypothesis positing Aβ

as the initiator of subsequent events that leads to AD (Figure 1A)
(Hardy and Selkoe, 2002): Aβ peptides spontaneously aggregate
and deposit into soluble oligomers, fibrils and SPs, which then
induces oxidative injury, microglial and astrocytic activity as well
as alters kinase/phosphatase activity, eventually leading to the
neuronal death. Howerver, whether Aβ acts on tau aggregation
is still debated (Musiek and Holtzman, 2015).

Aβ is a small protein composed of 39–43 amino acids with a
variety of biophysical states. There are two major isoforms of Aβ,
soluble Aβ40, and insoluble Aβ42, and the latter peptide showing

higher percentage concentration in AD patients is more prone
to aggregate (Burdick et al., 1992; Gravina et al., 1995; Kim et al.,
2007). In a physiological condition, more than 90% of Aβ is in the
form of Aβ40 while less than 5% is generated as the longer form
of Aβ42.

Aβ is derived by proteolysis of an evolutionary conserved
large transmembrane amyloid precursor protein (APP) through
cleavage of β-secretase followed by γ-secretase. Mutations in the
gene encoding APP are the main causes of familial AD (FAD;
Chartier-Harlin et al., 1991; Goate et al., 1991). APP can also
be processed by α-secretase via non-amyloidogenic pathways to
produce non-toxic fragments, which is thought to antagonize Aβ

generation (Figure 1B; Gandy et al., 1994; Sahlin et al., 2007).
Most of intracellular Aβ normally distribute in the neuronal

cytosol, but it is also colocalized with different organelles
dependent on where APP, β- and γ-secretase reside. In particular,
it has been reported to be produced in the secretory pathway
related organelles including endoplasmic reticulum (ER), medial

FIGURE 1 | (A) The mechanism of Aβ toxicity. Accumulating Aβ will initially results in Aβ oligomerization, gradually deposits as the forms of fibrils and senile plaques.
Furthermore, Aβ aggregation alters the kinase/phosphatase activity that leads to the Tau protein hyperphosphorylated, which causes the formation of neurofibrillary
tangles (NFTs), and eventual synaptic and neuronal dysfunction and AD. (B) The proteolytic processing of the amyloid precursor protein (APP) and Aβ biogenesis.
APP is a transmembrane glycoprotein with a large luminal domain and a short cytoplasmic domain, and it is processed through amyloidogenic or non-amyloidogenic
pathway. The amyloidogenic pathway is the process of Aβ biogenesis: APP is firstly cleaved by β-secretase, producing soluble β-APP fragments (sAPPβ) and
C-terminal β fragment (CTFβ, C99), and C99 is further cleaved by γ-secretase, generating APP intracellular domain (AICD) and Aβ. The non-amyloidogenic pathway
is an innate way to prevent the generation of Aβ, as APP is firstly recognized by α-secretase within Aβ domain, generating soluble α-APP fragments (sAPPα) and
C-terminal fragment α (CTFα, C83), C83 is then cleaved by γ-secretase, producing non-toxic P3 and AICD fragments.
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Golgi saccules as well as trans-Golgi network (Hartmann et al.,
1997; Greenfield et al., 1999). It has also been found to
be correlated with the endocytic endosomes/lysosomes and
autophagic vacuoles (Koo and Squazzo, 1994; Yu et al., 2004).
Besides, Aβ also resides in mitochondria (Muirhead et al., 2010).

Toxicity of Aβ

The physiological role of Aβ is still unknown, but it indeed exists
throughout life in healthy individuals. One possible function is
to inhibit the activity of γ-secretase in a negative feedback way
(Kamenetz et al., 2003).

Aβ aggregation is considered to be the primary reason
for the neurotoxicity in the classic view, and Aβ oligomers
are the most neurotoxic form (Walsh et al., 2002). Three
“developed-stimulators” may facilitate the aggregation process.
The absolute levels of Aβ42 increased by production via APP
processing, the ratio of Aβ42 to Aβ40 elevated due to the
decreased level of Aβ40 or the soluble oligomeric Aβ (Glabe,
2005; Walsh and Selkoe, 2007). These potential stimulators
further promote the accumulation and deposition of Aβ to
develop into SPs, which eventually contributes to AD pathology.
Moreover, Aβ-induced apoptosis through interaction with cell
surface receptors and proteins is also thought to dedicate to the
dysfunction of neuronal system (Small et al., 2001; Zhu et al.,
2015).

The aggregation of Aβ might also promote free radicals such
as reactive oxidative species (ROS) to react rapidly with several
moieties of proteins and lipids, whose structures or functions are
then altered to potential “toxic” oxidized proteins and peroxided
lipids. Protein oxidation may cause harm to the membrane
integrity or damage the sensitivity to oxidative modification of
the enzymes such as glutamine synthetase (GS) and creatine
kinase (CK), which are critical to neuronal function (Aksenov
et al., 1995; Yatin et al., 1999). Lipids peroxidation usually
causes the toxic product such as 4-hydroxy-2-nonenal (HNE)
and 2-propenal (acrolein) that migrates to different parts of
the neurons to cause multiple deleterious alterations of cellular
function. It includes loss of Ca2+ homoeostasis, inhibition of
ion-motive ATPases and glial cell Na+-dependent glutamate and
disruption of signaling pathways, all of which are associated with
neuronal death (Mark et al., 1995; Varadarajan et al., 2000; Ezeani
and Omabe, 2015). Aβ-induced oxidative stress has also been
reported to cause the DNA oxidation, leading to DNA damage
(Varadarajan et al., 2000).

Continuous Aβ aggregation or sustained elevation of Aβ

would cause a chronic response of the innate immune system
by activating microglia through some immunological receptors
such as Toll-like Receptors 2 (TLR2), TLR4, TLR6, their co-
receptors CD14, CD36, and CD47, which can probably destroy
functional neurons by direct phagocytosis (Weggen et al.,
2001; Neniskyte et al., 2011; Liu et al., 2012). Besides, it also
results in inflammatory response, concomitantly releasing a lot
of inflammation related mediators including complement
factors, eicosanoids, chemokines, and proinflammatory
cytokines, which can impair microglial clearance of Aβ and
the neuronal debris and increase microglia-mediated neuronal
death and loss of neuronal synapses, contributing greatly to

AD pathogenesis. Aβ deposition also induces tau pathology
by promoting the intraneuronal formation of NFTs which
consist of hyperphosphorylated tau proteins. It influences the
late-stage of AD pathogenesis. The process is probably mediated
by the microglia-driven neuroinflammatory response or by
indirectly regulating kinase/phosphatase activity (Heneka et al.,
2015).

In addition, Aβ precursor APP accumulation at mitochondria
membrane can cause mitochondrial dysfunction by
blocking the translocation of other mitochondrial inner
molecules/proteins and disrupting the electron-transport
chain (ETC; Anandatheerthavarada et al., 2003; Devi et al.,
2006), which may in turn increase excessive Aβ generation
to result in more toxicity. Excessive Aβ can also increase
mitochondrial ROS production to induce mitochondrial
fragmentation by activating mitochondrial fission proteins
Drp1 and Fis1 (Barsoum et al., 2006). Aβ localized in
mitochondria can bind to two pro-apoptotic factors including
Aβ-binding alcohol dehydrogenase (ABAD) and cyclophin
D (CypD), consequently increasing neurodegenerative cell
death that may be toxic to neurons (Lustbader et al., 2004; de
Moura et al., 2010). Hence, there may be a vicious feedback
loop between increased Aβ production and mitochondria
dysfunction.

Regulations of Aβ Production and Clearance
Because of the key role of Aβ in AD pathogenesis, it has been well
accepted that reducing Aβ production or enhancing Aβ clearance
may be a putative way to inhibit the cascade of Aβ-induced
pathological events.

Aβ biogenesis is tightly correlated with APP metabolism,
including processing and trafficking. There are three isoforms
of APP, APP695, APP751, and APP770 (Goate et al., 1991).
APP695 lacking the Kunitz-type protease inhibitor (KPI) domain
is predominantly expressed in neurons while the other two
isoforms are distributed in most tissues (Kang and Muller-
Hill, 1990; Rohan de Silva et al., 1997). Some evidence show
that APP751 and APP770 up-expression in brains are primarily
associated to Aβ deposition (Menendez-Gonzalez et al., 2005;
Bordji et al., 2010). APP processing is mainly regulated by α, β,
and γ-secretases (Table 1A). Alpha-secretase plays an essential
role in precluding the generation of intact Aβ on account
of the cleavage site within the Aβ domain. As a membrane-
bound endoprotease, α-secretase usually cleaves APP at plasma
membrane (Sisodia, 1992). Several members of the a Disintegrin
and metalloproteinase (ADAM) family listed in Table 1A have
been reported to possess α-secretase activity, which is responsible
for APP processing (Koike et al., 1999; Harold et al., 2007; Tanabe
et al., 2007; Kim et al., 2009). β- and γ-secretases are devoted

TABLE 1A | Member proteins of three secretases.

Secretase Members in mammals

α-secretase ADAM9, ADAM10, ADAM12, ADAM17, ADAM19, and MDC9

β-secretase BACE1 and BACE2

γ-secretase PSEN1, PSEN2, nicastrin, APH-1, and PEN-2
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to Aβ production via amylodogenic pathway (Figure 1B). Beta-
site APP cleaving enzyme 1 (BACE1) and BACE2 are the
β-secretases while γ-secretase is complex and composed of
presenilins (PSEN1 or PSEN2), Nicastrin, Presenilin enhancer 2
(PEN2), and anterior pharynx defective 1 (APH-1; De Strooper,
2003). Substantial evidence has shown that manipulation of these
secretases could perturb the generation of Aβ. For example,
with the α-cleavage abolished in ADAM17-deficient cells affectd
Aβ generation (Buxbaum et al., 1998). Knock-out of BACE1
in mice completely depleted neuronal Aβ secretion (Cai et al.,
2001). Mutations of PSEN1 and PSEN2 affected APP cleavage,
thereby altering Aβ production (Wang et al., 2010). Moreover,
regulators related with these secratase, such as the γ-secretase
activating protein (GSAP) and CD147, are also likely to be
involved in the generation of Aβ (Zhou et al., 2005; He et al.,
2010).

Like other type I transmembrane proteins, APP is synthesized
and translocated into ER followed by matured in the Golgi
apparatus where APP is mainly concentrated in neurons at the
steady state (Hartmann et al., 1997; Xu et al., 1997; Greenfield
et al., 1999; Caster and Kahn, 2013). And then APP would
traffic through the constitutive secretory pathway. Once reaching
the cell surface, it is either cleaved by α-secretase to produce
sAPPα (Sisodia, 1992) or rapidly re-internalized by recognition
of a “YENPTY” motif and subsequently recycled back to the
cell surface by the recycling compartments or delivered to the
lysosome for degradation through the endosomal–lysosomal
systems (Golde et al., 1992; Caster and Kahn, 2013). Generally,
promoting APP delivery or inhibiting APP internalization
from the cell surface favors the non-amyloidogenic processing,
thereafter antagonizing the generation of Aβ. Elevating retention
of APP in acidic compartments such as endosomes greatly adds
the chances for amyloidogenic processing and consequent Aβ

production. Mutations within the “YENPTY” internalization
motif have been addressed to block APP internalization and
consequently decrease Aβ generation (Perez et al., 1999). In
contrast, mutation within extracellular KPI domain existing
in APP751 and APP770 that assists APP sorting to plasma
membrane causes APP retention in the ER, thereby elevating the
Aβ production (Ben Khalifa et al., 2012). Synaptic transmission
indicated to accelerate APP endocytosis has also been shown to
result in increasing the level of secreted Aβ (Cirrito et al., 2005).
Some general modulators that could regulate APP trafficking,
such as dynamin I (Carey et al., 2005), the RAB GTPase family
including RAB1B, RAB6, RAB8, and RAB11 (Huber et al., 1993;
Dugan et al., 1995; McConlogue et al., 1996; Thyrock et al., 2013;
Udayar et al., 2013), and the SNX family including SNX17 and
SNX33 (Lee et al., 2008; Schobel et al., 2008), have also been found
to be associated with Aβ generation. In addition, factors that
function in the trafficking of the three secretases may also change
the production of Aβ by affecting APP processing (Wahle et al.,
2006;Wen et al., 2011; Bhalla et al., 2012). The G-protein-coupled
receptor protein GPR3, which is responsible for the cell surface
localization of matured γ-secretase, stimulates Aβ production
when it is overexpression (Thathiah et al., 2009).

Proteolytic degradation is thought to take a large part of
responsibility in preventing Aβ aggregation or deposition into

plaques. The enzymes or proteases in proteolytic degradation
play important roles by cleaving Aβ into shorter soluble
fragments without neurotoxic effect. The proteases including
cathepsin B (CatB), cathepsin D (CatD), Gelatinase A, serine
protease factor Xia (FXIa), matrix metalloprotein-9 (MMP-9),
neprilysin (NEP), presequence protease (Prep) and the α2M
complex are involved in Aβ clearance (Saporito-Irwin and Van
Nostrand, 1995; Yamada et al., 1995; Hamazaki, 1996; Carvalho
et al., 1997; Iwata et al., 2001; Mueller-Steiner et al., 2006;
King et al., 2014), while enzymes such as angiotensin-converting
enzyme (ACE), endothelin-converting enzyme (ECE), insulin-
degrading enzyme (IDE), and uPT and tPA have been found to
be involved in the degradation of Aβ (Table 1B; Ledesma et al.,
2000; Tucker et al., 2002; Eckman et al., 2003; Farris et al., 2003;
Hemming and Selkoe, 2005; Baranello et al., 2015).

Besides the proteolysis for Aβ degradation, receptor-mediated
endocytosis of Aβ that delivers Aβ to lysosome for degradation
also contributes to the clearance of toxic Aβ peptide and
Aβ deposits. Low-density lipoprotein receptor-related protein
1(LRP1) is considered to be the vital modulator in this
process by probably direct binding to Aβ for uptake (Li
et al., 2000) or through Aβ receptor such as heparin sulphate
proteoglycan (HSPG; Kanekiyo et al., 2011) and GPI-anchored
cellular prion protein (PrPc; Taylor and Hooper, 2007) to
facilitate Aβ trafficking. In addition, Aβ aggregates may also
undergo maropinocytosis or phagocytosis for clearance, of which
the critical step about actin polymerization is regulated by
LRP1(Kanekiyo and Bu, 2014). Apolipoprotein E (ApoE), as a
major ligand for LRP1 and an important partner of Aβ, plays dual
roles in Aβ clearance (Li et al., 2012; Kanekiyo and Bu, 2014).
Moreover, induction of another degrading pathway of autophagy
serves to accelerate the clearance of both soluble Aβ and Aβ

aggregates (Nixon, 2007).

Animal Models Related with Aβ for AD

Various types of animal models related to Aβ have been created
to dissect the mechanisms for the development and progression

TABLE 1B | Proteases/enzymes involved in the cleavage of Aβ peptide.

Protease/enzyme Description

ACE Angiotensin-converting enzyme

CatB Cathepsin B, a cysteine protease in lysosome

CatD Cathepsin D, a cysteine protease in lysosome

ECE Endothelin-converting enzyme

FXIa Serine protease factor XIa

Gelatinase A Secreted endopeptidase

IDE Insulin-degrading enzyme

MMP-9 Matrix metalloproteinase

NEP Neprilysin, neutral endopeptidases

PreP Presequence protease

The plasmin system Components including plasmin and urokinase-type
plasminogen activator (uPA), tissue plasminogen activator
(tPA)

α2M complex Serine protease-α2 macroglobulin complex
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TABLE 1C | Summary for Aβ related transgenic animal models.

Organism Aβ related transgenic strains Description

Caenorhabditis elegans Punc−54::SP:: Aβ1−42 β-amyloid constitutive formation in muscles

Pmyo−3::SP:: Aβ1−42::long 3′UTR Inducible larval paralysis in muscles

Psnb−1::SP:: Aβ1−42::long 3′UTR Inducible β-amyloid expression in Pan-neurons

Peat−4::SP:: Aβ1−42 β-amyloid formation in glutamatergic neurons

Drosophila gmr-Gal4 > UAS-BACE;UAS-dPsn;UAS-APP Aβ generated from APP that are cleaved by β-secretase and γ–secretase in retina

elav-Gal4 > UAS-Aβ42 Inducible Aβ42 expression in the brains

gmr-Gal4 > UAS-Aβ42 Inducible Aβ42 expression in the retina

act5c-Gal4 > UAS-Aβ42 Inducible Aβ42 ubiquitous expression

Mouse Tg2576 Aβ plaques as well as some vascular amyloid are induced by overexpression a mutant form of
APP (APPK670/671L)

APP23 Excessive Aβ production induced by overexpression of mutant human APP carrying the
Swedish mutation.

PDAPP Expression of mutant human APP carrying the Swedish mutation under the PDGF promoter.

TgCRND8 Expression of human APP carrying the Swedish and Indiana mutations under the PrP
promoter.

PS1M146V Expression of human PS1(M146V) under the PDGF promoter.

APP/PS1 Excessive Aβ production induced by Overexpression of two mutant forms of APPSWE and
PSEN1d E9

5xFAD Double transgenic APP/PS1 mouse model with co-expression five AD mutations including
APP Swedish,Florida and London mutations and PS1 M146L and L286V mutations.

Rat TgAPPswe Expression of hAPP751with the Swedish mutation driven by the PDGF promoter

UKUR28 Expression of hAPP751with the Swedish and Indiana mutations driven by the PDGF promoter

UKUR25 Expression of hAPP751with the Swedish and Indiana mutations as well as PS1(M146L) driven
by the PDGF promoter

hAPP695 Expression of hAPP695 (wild type) driven by the UbiquitinC promoter

Tg6590 Expression of hAPP695 with the Swedish mutation driven by the UbiquitinC promoter

APP21APP31 Expression of hAPP695 with the Swedish and Indiana mutations driven by the UbiquitinC
promoter

PSAPP (Tg478/Tg1116/Tg11587) Triple transgenic strain carrying expression of hAPP695 with the Swedish mutation under the
Rat synapsin I promoter, hAPP695 with the Swedish and London mutations under the PDGFβ

promoter and expression of human PS1(M146V) driven by the Rat synapsin I promoter.

TgF344-AD Expression of hAPP695 with the Swedish mutation and PS�E9 under the murine PrP
promoter.

McGill-R-Thy1-APP Aβ accumulation induced by expression the human APP carrying both the Swedish and
Indiana mutation under the control of the murine Thy 1.2 promoter.

of AD, the majority are overexpression transgenic lines (see the
summary in Table 1C; Oakley et al., 2006; Elder et al., 2010;
Do Carmo and Cuello, 2013; Lublin and Link, 2013; Lim et al.,
2016).

Despite the existing innate disadvantages. e.g., the transgenic
flies that express both human APP and β-secretase BACE1
displayed Aβ accumulation, the animal models are useful to
screen genes involved in APP processing (Ye and Fortini,
1999; Greeve et al., 2004), making a great contribution to the
development of this field. The secreted-Aβ model in Drosophila
is a direct approach to investigate the toxicity caused by Aβ

(Finelli et al., 2004; Crowther et al., 2005; Iijima et al., 2008).
The Caenorhabditis elegans Aβ-expressing models developed in
different tissues are also helpful for examining genes involved in
Aβ-induced toxicity (Link, 2006; Wu et al., 2006). Phenotypes
were also analyzed in zebrafish through high-throughout screen
by treatment with Alzheimer’s γ-secretase inhibitors to determine
efficient compounds for blocking Aβ generation (Arslanova et al.,
2010).

Aβ infusion models are that different species of Aβ peptides
is directly injected in the rodent brains. They could mimic
the most aspects of AD and deliver experimental results for
analysis in a relatively short time (Nag et al., 1999; Harkany
et al., 2001; Nakamura et al., 2001). However, these approaches
usually induce much higher levels of Aβ in the brains than
that exists in the patients, and the results usually vary due
to differences in methodology and the concentration of Aβ

and the duration treatment. Although most of the models do
not show Tau pathology and other shedding fragments from
APP processing may also influence neuron systems, transgenic
rodent models with overexpression of wild type or mutated
human APP can recapitulate some features of AD pathology
and provide great convenience to discover more regulators
involved in the onset of AD (Clarke et al., 2007; Agca et al.,
2008; Leon et al., 2010; Rosen et al., 2012). Nevertheless,
no model system is impeccable, further understanding of the
molecular mechanisms for Aβ-initiated AD pathology would still
be desirable.
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Overviews of Current Therapeutics
Targeting Aβ

According to the conventional approaches targeting Aβ,
therapeutic strategies focus on reducing Aβ production via
inhibition of β- and γ-secretases to prevent Aβ aggregation and
facilitate Aβ clearance. However, the results are not so inspiring,
as all the strategies have failed in clinical trials. Recently,
immunotherapies by two monoclonal antibodies against Aβ have
been tried. One is Bapineuzumab that could recognize both
soluble and insoluble forms of Aβ; the other one is Solanezumab
that targets Aβ central domain and recognizes only soluble Aβ.
Yet both of them failed to improve the clinical outcomes in
patients in phage III trials (Doody et al., 2014a,b; Salloway et al.,
2014), which suggests that targeting Aβ alone might not be
enough to impede AD progression and multiple steps of Aβ

modulations should be taken into consideration according to the
different clinical phenotypes in AD patients. e.g., the activity of
Foxp3+ regulatory T cells (Tregs) has been reported to be related
with Aβ plaque clearance, suggesting novel immunosuppression
curing way (Baruch et al., 2015). Moreover, other approaches
besides immunotherapy also need to be explored in order to
understand multiple regulations of Aβ for the development of
therapies for treating AD.

Conclusion and Perspectives

The vital role of Aβ as an initiator in the pathology of AD
has been well accepted. Aβ production mainly depends on
APP processing, whereas Aβ removal is largely associated with
proteases and lysosomal enzymes. Subcellularlly, Aβ production
together with Aβ precursor protein APP seems closely related
with mitochondria, the major source of energy for the brain.
Mitochondrial changes including increasing ROS production
and reducing ATP generation are in an age-dependent manner.
ROS-related oxidative stress induces more Aβ production, while

Aβ and APP localized to mitochondrial membranes cause
mitochondrial damage by elevating ROS production, blocking
the transport of nuclear-encoded mitochondrial protein and
disrupting ETC activities. However, the mechanisms of Aβ and
APP transport into mitochondrial membranes are still unknown.
Future work focus on this part might provide well understanding
between mitochondria and APP as well as Aβ production, which
might be helpful for exploring new compounds.

On the other hand, microglial cells play very important roles
in the removal of accumulated Aβ not only by phagocytosis but
also by releasing proteases such as IDE for degradation, and it is
also associated with the innate immune system induced by the
aggregated Aβ. Therefore, further researches are needed to find
how to keep the clearance function of microglial cells without
being impaired by the proinflammatory cytokines.

Although tremendous progress has been made in the
development therapeutic strategies targeting Aβ, more work are
still needed to find efficient drugs for curing AD. Network
regulations of Aβ should be taken into consideration for the
therapy approaches, and it would be instrumental to create
good animal models and find more specific biomarkers for the
Aβ-mediated pathogenesis of AD.
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