
Modeling cis-regulation with a compendium
of genome-wide histone H3K27ac profiles

Su Wang,1,2,8 Chongzhi Zang,3,4,8 Tengfei Xiao,3,4,5 Jingyu Fan,2 Shenglin Mei,2

Qian Qin,2 Qiu Wu,2 Xujuan Li,2 Kexin Xu,6 Housheng Hansen He,7 Myles Brown,4,5

Clifford A. Meyer,3,4 and X. Shirley Liu3,4
1Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Shanghai, 200433, China; 2Department of Bioinformatics,
School of Life Science and Technology, Tongji University, Shanghai, 200092, China; 3Department of Biostatistics and Computational
Biology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02215, USA; 4Center
for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA; 5Department of Medical
Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA; 6Department of Molecular
Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900,
USA; 7Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 1L7, Canada

Model-based analysis of regulation of gene expression (MARGE) is a framework for interpreting the relationship between

the H3K27ac chromatin environment and differentially expressed gene sets. The framework has three main functions:

MARGE-potential, MARGE-express, and MARGE-cistrome. MARGE-potential defines a regulatory potential (RP) for

each gene as the sum of H3K27ac ChIP-seq signals weighted by a function of genomic distance from the transcription start

site. The MARGE framework includes a compendium of RPs derived from 365 human and 267 mouse H3K27ac ChIP-seq

data sets. Relative RPs, scaled using this compendium, are superior to superenhancers in predicting BET (bromodomain and

extraterminal domain) -inhibitor repressed genes. MARGE-express, which uses logistic regression to retrieve relevant

H3K27ac profiles from the compendium to accurately model a query set of differentially expressed genes, was tested on

671 diverse gene sets from MSigDB. MARGE-cistrome adopts a novel semisupervised learning approach to identify cis-reg-
ulatory elements regulating a gene set. MARGE-cistrome exploits information from H3K27ac signal at DNase I hypersen-

sitive sites identified from published human andmouse DNase-seq data. We tested the framework on newly generated RNA-

seq and H3K27ac ChIP-seq profiles upon siRNA silencing of multiple transcriptional and epigenetic regulators in a prostate

cancer cell line, LNCaP-abl. MARGE-cistrome can predict the binding sites of silenced transcription factors without matched

H3K27ac ChIP-seq data. Even when the matching H3K27ac ChIP-seq profiles are available, MARGE leverages public

H3K27ac profiles to enhance these data. This study demonstrates the advantage of integrating a large compendium of his-

torical epigenetic data for genomic studies of transcriptional regulation.

[Supplemental material is available for this article.]

Cis-regulation of gene expression is an essential aspect of molecu-
lar biology that underlies developmental processes and disease eti-
ology. Several genomic techniques, including ChIP-seq (Barski
et al. 2007; Johnson et al. 2007; Mikkelsen et al. 2007), DNase-
seq (Crawford et al. 2006; Hesselberth et al. 2009; Boyle et al.
2011; He et al. 2014), and ATAC-seq (Buenrostro et al. 2013),
have been developed to experimentally identify cis-regulatory
regions genome-wide. Attempts to use these data to understand
gene expression have, however, been impeded by the following
factors: Data for only a small subset of transcription factors
(TFs) participating in any system can be generated in practice
(Gerstein et al. 2012); not all TF binding sites necessarily play roles
in gene regulation; mapping between enhancers and genes is still
an open question; the regulatory environment that controls a
gene may depend on a complex interaction of many factors at
the promoter and enhancers that may act cooperatively or antago-

nistically (Montavon et al. 2011; Spitz and Furlong 2012); and
technical biases in chromatin profiling data may obscure biologi-
cally relevant signal (Meyer and Liu 2014). Most importantly,
chromatin profiling capabilities are available to a limited number
of pioneering laboratories on select tissue samples, and only a
minority of gene expression studies are interpreted in this per-
spective. Therefore investigations into the cis-regulation of gene
expression have been carried out only by a limited number of
groups in well-characterized systems.

Nevertheless, several developments in genomics suggest that
information about gene regulationmay be revealed using a combi-
nation of surrogate data and machine learning techniques. First,
the transcription factor binding sites discovered in most ChIP-
seq experiments tend to fall within a set of genomic regions that
are DNase I-hypersensitive (Hesselberth et al. 2009; Neph et al.
2012b; Thurman et al. 2012; He et al. 2014). The union of
DNase-seq (UDHS) peaks across a broad array of human cell types
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can therefore be used to define a superset of transcription factor
binding loci in most cell types. Second, chromatin exists in several
“states” (Barski et al. 2007; Heintzman et al. 2007; Ernst and Kellis
2010; Ernst et al. 2011; Hoffman et al. 2013) with a spectrum of
functional properties that may be identified using ChIP-seq of his-
tone modifications. In particular, transcription factor binding is
associated with DNase I hypersensitivity and can be further char-
acterized using the H3K27ac mark as “poised” or “active.” The ac-
tive state has high levels of H3K27ac and is more strongly
associated with gene expression than the poised one (Creyghton
et al. 2010; Rada-Iglesias et al. 2011). Third, although specific
long-range interactions between enhancers and promoters are
important in the regulation of some genes, three-dimensional
chromatin conformation maps show that the main quantitative
trend in the frequency of chromatin interactions is decreased in-
teraction as a function of genomic distance, as well as the existence
of large topologically associating domains (TADs) that are con-
served over cell lineages and even species (Lieberman-Aiden
et al. 2009; Dixon et al. 2012). Finally, the accumulation of a large
number of ChIP-seq profiles provides extensive information about
the way in which chromatin environments vary across diverse cell
types (Roadmap Epigenomics Consortium 2015).

In this study, we base our analysis on the H3K27ac modifica-
tion, as several studies have found it to be among the most highly
informative about gene regulation (Creyghton et al. 2010; Karlic ́
et al. 2010; Rada-Iglesias et al. 2011), and there is a large and rap-
idly increasing number of published H3K27ac ChIP-seq profiles in
diverse cell types. One way in which H3K27ac is understood to
mediate RNA transcription rates is through its interaction with
the bromodomain and extraterminal domain (BET) protein
BRD4 (Dey et al. 2003). BRD4 facilitates transcriptional elonga-
tion by interacting with the positive transcription elongation fac-
tor b (p-TEFb), which phosphorylates the C-terminal domain of
RNA polymerase II (Pol II), releasing it from negative elongation
factors (Price 2000; Jang et al. 2005). Experiments in a variety of
cell lines have shown that, although the BET-inhibitor JQ1 re-
presses a large number of genes (Ott et al. 2012; Chapuy et al.
2013; Lovén et al. 2013), it does not inhibit all of them, and
even activates some. Previous work has suggested that this incom-
plete inhibitory effect results from the preferential influence of
BET-inhibitors on superenhancers, genomic intervals with excep-
tionally high levels of H3K27ac, BRD4, or MED1 enrichment
(Chapuy et al. 2013; Lovén et al. 2013). This idea is used in the
ROSE method that identifies superenhancers and assigns them
to genes using a distance threshold (Lovén et al. 2013; Whyte
et al. 2013). ROSE, however, frequently fails to identify BET-inhib-
itor suppressed genes, including some with high H3K27ac activi-
ties (Supplemental Fig. S1).

Without a clear understanding of gene regulatory mecha-
nisms, different rules have been used to identify transcription fac-
tor target genes. One common approach is to map each TF ChIP-
seq peak to the nearest TSS and to use a genomic distance thresh-
old to decide whether or not that gene is a target of TF binding.
Othermethods consider the contribution ofmultiple binding sites
weighted by the distance between the binding site and the TSS
(Ouyang et al. 2009; Tang et al. 2011; Wang et al. 2013; Jiang
et al. 2015). These approaches are motivated by the assumption
that most genes are regulated through the integrated activity of
multiple cis-regulatory elements (Hong et al. 2008; Frankel et al.
2010; Montavon et al. 2011; Perry et al. 2011; Ahn et al. 2014;
Bender et al. 2015; Canver et al. 2015; Meyer et al. 2015). The large
number of TF binding sites that are typically detected in mamma-

lian cells (Gerstein et al. 2012) and the tendency of these sites to
occur in clusters in the genome ( Ji et al. 2006) suggest that inte-
grated cis-element activity is likely to be a general regulatory prin-
ciple. The above-mentionedmethods do not take advantage of the
large quantities of public ChIP-seq data derived from various cell
types in consideration of their predictions. ChromImpute (Ernst
and Kellis 2015), an imputation method that does make use of
compendia of chromatin profiling data, does notmake predictions
about the regulation of differentially expressed genes.

To build a system that predicts the cis-regulation of differen-
tial gene expression, we explore the systematic use of H3K27ac
ChIP-seq data in MARGE (model-based analysis of regulation of
gene expression), a statistical modeling and machine learning
framework for gene regulation studies. We use a compendium of
human (Supplemental Table S1) and mouse (Supplemental Table
S2) H3K27ac ChIP-seq profiles and DNase I-hypersensitive regions
to make inferences about the cis-regulation of gene expression.
MARGE defines regulatory potentials based on H3K27ac ChIP-
seq data that serve as measures of the integrated cis-regulatory ac-
tivities that impact gene expression. MARGE demonstrates how
public H3K27ac ChIP-seq profiles can be used to infer differential
gene expression and transcription factor binding in a variety
of systems, not limited to those for which ChIP-seq data are
available.

Results

Method overview

The MARGE framework includes three main functions: MARGE-
potential, MARGE-express, and MARGE-cistrome. The first func-
tion, MARGE-potential, computes the regulatory potential (RP),
a measurement of the cis-regulatory environment surrounding
the transcription start site of a gene. Comparison of regulatory po-
tentials from user-provided H3K27ac ChIP-seq samples with this
compendium can identify genes that have unusually high regula-
tory potentials in these samples. The second MARGE function,
MARGE-express, uses regression to link gene expression perturba-
tions with regulatory potentials derived from a small subset of
H3K27ac ChIP-seq data from the full compendium. In this way,
MARGE determines changes in regulatory potentials that are pre-
dictive of gene expression changes. The H3K27ac patterns identi-
fied by MARGE-express are used in a third function, MARGE-
cistrome, to predict cistromes, the genome-wide binding sites of
trans-acting factors that regulate given gene sets. MARGE-cistrome
identifies patterns of perturbations in the cis-elements that are
consistent with perturbations in the H3K27ac regulatory poten-
tials identified by MARGE-express. Investigators who wish to un-
derstand how particular genes in their gene set are regulated can
useMARGE-cistrome to identify candidate cis-regulatory elements,
even when chromatin profiling data are not available in their
system.

H3K27ac defined regulatory potentials identify genes

suppressed by BET-inhibitors

We first demonstrate with MARGE-potential how H3K27ac ChIP-
seq profiles, summarized as a regulatory potential for each gene, can
be a useful predictor of gene expression changes. In this analysis,
we focus on systems inwhich gene expression changes are induced
through treatment with BET-inhibitors. It has been proposed that
the genes perturbed by these drugs are primarily those associated
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with superenhancers (Chapuy et al. 2013; Hnisz et al. 2013; Lovén
et al. 2013). We assess this regulatory potentialmetric relative to the
ROSE superenhancer-based method (Chapuy et al. 2013; Hnisz
et al. 2013; Lovén et al. 2013).

ChIP-seq of H3K27ac reveals a complex profile comprised of a
mixture of broad domains and narrow peaks that are likely the re-
sult ofmultiple distinct biological processes (Fig. 1A). Regardless of
the fine-scale pattern of H3K27ac signal, we assume that H3K27ac
ChIP-seq tag counts reflect an activating chromatin environment.
Instead of calling peak regions or domains of enrichment, we
define a regulatory potential, pi, for each gene i that integrates
H3K27ac signal within 100 kb, both upstream and downstream,
from the transcription start site (TSS) (Fig. 1A). pi is the weighted
sum of H3K27ac ChIP-seq reads sk at genomic position k, where
the weight decreases with distance from the TSS of gene i:

pi =
∑

k
wksk. In this definition,wk = 2e−m|k−ti |

1+ e−m|k−ti | , and ti is the geno-

mic position of the TSS of gene i. Throughout this study, the pa-
rameter µ, which determines the decay rate as a function of
distance from the TSS, is set so that a H3K27ac read 10 kb from
the TSS contributes one-half of that at the TSS (Fig. 1A). This pa-
rameter was determined empirically, based on the observed perfor-
mance of predicting BET-inhibitor repressed genes as described
below (Supplemental Fig. S2) and is used consistently throughout
this paper, although MARGE has robust performance over a wide
range of parameter settings.

To test if our definition of regulatory potential could predict
BET-inhibitor repressed genes, we examined five diffuse large B-
cell lymphoma (DLBCL) cell lines (Chapuy et al. 2013), one liver
cancer cell line (HepG2) (Picaud et al. 2013) and onemalignant pe-
ripheral nerve sheath tumor cell line (90-8TL) (De Raedt et al.
2014) in which BET-inhibitor effects were measured using expres-
sion microarrays and H3K27ac ChIP-seq (Chapuy et al. 2013;
Picaud et al. 2013; De Raedt et al. 2014). Using H3K27ac ChIP-

Figure 1. Regulatory potential is predictive of BET-inhibited differential gene expression. (A) The H3K27ac regulatory potential of a gene (in this instance,
CD48) is the sum of H3K27ac ChIP-seq reads weighted by a function (pink) that decreases with distance from the transcription start site. All H3K27ac signal
is included, irrespective of whether the signal falls within annotated exons, introns, or promoters. (B) Receiver-operator characteristic (ROC) curves show
the H3K27ac regulatory potential performs better than the ROSE superenhancer based approach in the identification of genes down-regulated by the BET-
inhibitor JQ1 in the diffuse large B-cell lymphoma (DLBCL) derived cell line LY1. Areas under the ROC curves are shown in parentheses. The relative reg-
ulatory potential, defined as the ratio of the regulatory potential to the median regulatory potential across all compendium samples, performs consistently
better than the other approaches. H3K27ac ChIP-seq read counts in a 2-kb promoter region centered on the transcription start site performs better than
superenhancers but not as well as the regulatory potential based methods. (C) The area under the ROC curve performance summaries of the regulatory
potential, relative regulatory potential, promoter-based approach, and ROSE superenhancers in five DLBCL cell lines, one liver cancer cell line (HepG2), and
one malignant peripheral nerve sheath tumor cell line (90-8TL), are consistent with the result observed in LY1. (D) The distribution of median regulatory
potentials across all H3K27ac ChIP-seq samples varies between JQ1 up-, down-, and nonregulated genes. The median regulatory potential of JQ1 up-
regulated genes is higher than the rest (Wilcoxon rank-sum test P-value < 10−15), indicating that these genes are likely to be constitutively expressed across
a variety of cell types. (E) The median regulatory potential is associated with the CpG/CG ratio of gene promoters. The high CpG genes tend to have the
higher median regulatory potentials (Wilcoxon rank-sum test P-value < 10−15).
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seq data in the pre-treatment condition, we predicted BET-inhibitor
repressed genes in three different ways: (1) calling H3K27ac peaks
using MACS2 (Zhang et al. 2008) and identifying superenhancers
and target genes using ROSE (Lovén et al. 2013); (2) usingH3K27ac
read counts in gene promoters (1 kb upstream of and downstream
from the TSS); and (3) using the regulatory potential defined
above. We used genes down-regulated under BET-inhibitor treat-
ment over control conditions (FDR≤ 0.01, fold-change ≤0.5) to
define the true set of BET-inhibitor suppressed genes. All other
geneswere labeled as nonsuppressed. The receiver operator charac-
teristic (ROC) curves indicate that, while ROSE is better than a ran-
dom prediction, the regulatory potential is far more predictive of
down-regulated genes (Fig. 1B,C; Supplemental Fig. S3) than
both ROSE and the promoter-based prediction.

We investigated whether filtering out reads that are not in
MACS2 detected H3K27ac ChIP-seq peaks could reduce noise
and improve the performance over the all-inclusive regulatory po-
tential. We found, however, that the peak-calling step has no sig-
nificant impact on performance (Supplemental Fig. S4). Including
information about topologically associating domains also does not
have a significant impact on performance (Supplemental Fig. S3),
so it was excluded from the current model. Althoughmore sophis-
ticated modeling of regulatory potentials using cell-type–specific
Hi-C data might improve performance, we do not investigate
this here, as high resolution Hi-C data are available only in a small
number of cell lines. The regulatory potential that we have defined
without recourse to chromatin interaction data is a useful sum-
mary of the H3K27ac defined cis-regulatory environment sur-
rounding a gene and predicts genes that are responsive to BET-
inhibitor treatment.

Baseline H3K27ac regulatory potential improves prediction

of genes repressed through BET-inhibition

Although most genes are down-regulated in response to BET-in-
hibitor treatment, expression analyses show that a small number
of genes are apparently up-regulated. Computing the median reg-
ulatory potential of 365 human H3K27ac data sets across diverse
cell types, we discovered that BET-inhibitor up-regulated genes
tend to have significantly higher regulatory potentials than
down-regulated genes, which in turn have significantly higher reg-
ulatory potentials thannonregulated genes (Fig. 1D). Furthermore,
the median regulatory potential of a gene across many cell types
can distinguish between different types of response. Genes with
high regulatory potentials over a large number of cell types are
more likely to have universally essential functions and are less like-
ly to be inhibited than those with cell-type–specific regulatory po-
tentials (Supplemental Fig. S5). In fact, genes with high median
regulatory potentials have a greater chance of being up-regulated
by BET-inhibitor treatment and tend to have CpG rich promoters,
suggesting theymaybe controlled through an alternative regulato-
ry mode (Fig. 1E).

We investigated the prediction performance of the relative
regulatory potential of gene i in sample j, p∗ij, defined as the ratio
of the regulatory potential in sample j over the median regulatory
potential of that gene across all H3K27ac compendium samples.
Using this relative regulatory potential, we were able to signifi-
cantly improve our prediction of BET-inhibitor down-regulated
genes in all seven cell types tested (Fig. 1C). A relative promoter
signal, defined as the ratio of the promoter signal over the median
promoter signal across H3K27ac samples, produced slight gains in
performance over the absolute promoter signal (Fig. 1C) but could

not reach the performance of the relative regulatory potential.
Precision-recall analysis shows that the relative regulatory poten-
tial has far higher precision than superenhancers, even at low re-
call rates (Supplemental Fig. S6). Further analyses show that
relative regulatory potential outperforms the absolute regulatory
potentials, mainly in the prediction of the most significantly
down-regulated genes (Supplemental Fig. S7) with the greatest
fold-changes (Supplemental Fig. S8). These results suggest that
the regulatory potential across diverse cell types is a rich source
of information that can be used broadly across cis-regulatory stud-
ies. As a genomics resource, we provide tables of relative regulatory
potentials for RefSeq genes in 365 H3K27ac human and 267
mouse data sets (Supplemental Tables S3, S4; http://cistrome.
org/MARGE/).

Relative regulatory potential identifies

cell-type–specific genes

It has been suggested that superenhancers regulate key tissue-
specific genes (Hnisz et al. 2013). We assessed whether the relative
regulatory potential, p∗, could be used for similar purposes. We
computed p∗ in cells derived from 14 diverse tissues and carried
out Gene Ontology (GO) enrichment analysis based on the 500
genes in each cell type with the highest relative regulatory poten-
tials. Many GO categories pertinent to the specific biological func-
tions of these cell types are enriched among these genes with the
highest p∗ values (Supplemental Fig. S9), such as skeletal system
development genes in skeletal muscle, blood vessel development
in aorta and umbilical vein, and immune response in B-cells. In
a comparison with the same number of ROSE superenhancer tar-
gets from the same data, we found that MARGE-defined high rela-
tive regulatory potential genes showed much better tissue-specific
GO enrichment (in GO categories defined by Hnisz et al. 2013)
than ROSE superenhancer-associated genes (Fig. 2A). The GO cat-
egories that were more highly enriched in superenhancer-associat-
ed genes included categories that are not cell-type specific, such as
regulation of cell proliferation and regulation of transcription.
Therefore, the relative regulatory potential appears to be a better
way of identifying tissue-specific genes than the ROSE superen-
hancer based approach.

We carried out a clustering analysis of regulatory potentials
across 365 human H3K27ac samples. We computed the H3K27ac
ChIP-seq-defined regulatory potential for each gene in every sam-
ple, filtered out uninformative genes with low regulatory poten-
tials across all samples, selected the 2000 genes with the largest
coefficients of variation across samples, and carried out hierarchi-
cal clustering on samples and k-means clustering on genes. From
this clustering (Fig. 2B), we observed the tendency for tissues of
the same type to cluster together. We hypothesized that key regu-
lators of a cell type could be identified accurately by determining
the factors with the highest relative regulatory potentials across
multiple samples of that type. We tested this by determining
the transcription factors, chromatin regulators, and kinases
with the highest median of relative regulatory potentials across
neuronal, lymphoblastoid, and embryonic stem cell types, respec-
tively (Supplemental Table S5). The top neuronal factors, BRD2,
POU3F3, AATYK, SALL1, SOX2, and SOX10, are all known key neu-
ronal regulators. For example, BRD2-deficient neuro-epithelial
cells fail to differentiate into neurons (Tsume et al. 2012) and
AATYK induces neuronal differentiation (Raghunath et al. 2000).
ZIC3, ZIC2, SOX2, NANOG, and SALL1 are the top embryonic
stem (ES) cell factors. ZIC2 (Luo et al. 2015) and ZIC3 (Declercq
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et al. 2013), for example, are required to maintain ES cell pluripo-
tency. Similar observations can bemade for the regulators with the
highest median relative regulatory potentials in lymphoblastoid
cells, PAX5, POU2AF1, MSC, and IKZF1. The relative regulatory
potential is therefore a promising way of determining key tissue-
specific regulators from H3K27ac ChIP-seq data.

Compendium of H3K27ac regulatory profiles predicts

diverse gene expression responses

H3K27ac ChIP-seq profiles are shaped by a combination of biolog-
ical and technical factors, including cell lineage and cell-type–spe-
cific transcription factor activity, immunoprecipitation efficiency,

Figure 2. Regulatory potentials in the identification of key tissue-specific genes. (A) Gene ontology analysis of the genes with the highest relative regu-
latory potential (lower right triangles) in a variety of cell types shows functional enrichment to correspondwith the known function of the different cell types.
The pattern of enrichment of ROSE superenhancer-associated genes (upper left triangles) shows these genes to be less enriched in several tissue-specific
gene categories and more enriched in some more generic categories, for example, “regulation of transcription.” (B) The regulatory potentials in diverse
cell types cluster in a way that is mostly consistent with cell types. Known regulators of several cell types can be clearly identified through regulatory po-
tential analysis.
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and DNA sequencing biases. We hypoth-
esized that a compendium of diverse
H3K27ac ChIP-seq profiles could be
used to model gene expression changes
in a variety of biological contexts. If
true, this compendium would provide
information about gene regulation in
studies where ChIP-seq data are unavail-
able. To assess the possibility of using a
set of 365 H3K27ac human ChIP-seq-de-
fined regulatory potentials tomodel gene
expression perturbations, we adopted a
forward step-wise regression approach
to identify informative samples. Termed
MARGE-express, it defines a logistic re-
gression model: yi � a0 +

∑

j
ajpij. Here,

yi is the indicator of whether a gene be-
longs to a given gene set (yi = 1) or not
(yi = 0), pij is the transformed regulatory
potential of gene i in sample j, and α is
the vector of regression coefficients. At
each step in the step-wise regression,
the sample that maximizes the cross-
validation AUC performance is added to
the model. In preliminary analyses, we
found that cross-validation performance
plateaued before 10 H3K27ac samples,
so we limit the maximum number of
samples in the regression to 10 (Supple-
mental Fig. S10).

We tested MARGE-express on 671
molecular signature-based gene sets
(MSigDB) (Liberzon et al. 2011) with
over 200 genes, most of which were de-
rived from either upward or downward
differential expression between condi-
tions. To rule out overfitting, for each
gene set, we used genes in odd numbered
chromosomes to train MARGE-express,
then used the model to predict which
genes on the even numbered chromosomes belong to the gene
set. The proposed logistic regression model can indeedmake accu-
rate predictions for most gene sets (Fig. 3A), and in many cases the
informative H3K27ac samples are closely related to the gene ex-
pression data set. The single ChIP-seq samples with the strongest
predictive power for gene sets with keywords associated with
breast, blood, liver, lung, prostate, neuron, or colon in their de-
scriptions were most frequently derived from the relevant tissue
type (Fig. 3B). For example, gene sets associated with breast were
most frequently best predicted by breast H3K27ac ChIP-seq sam-
ples. The publicly available H3K27ac profiles therefore are of suffi-
cient quality and variety to enable gene sets to be interpreted in a
wide range of experiments. After the tissue-specific H3K27acChIP-
seq samples that are often selected first in the step-wise regression,
in later iterations MARGE-express frequently selects a diversity of
cell lineages unrelated to the tissue of interest. Further work is
needed to understand the signal in the MARGE-express models,
for example whether information is derived from cell lineage or
cell population, orwhether some samples represent a generic back-
ground H3K27ac profile.

MARGE-express can predict, using data from one gene-ex-
pression-profiling platform, differential gene expression for genes
that are not represented on that platform. Many DNA microarray

platforms, for example, do not include probes for most noncoding
RNAs (ncRNAs). As an application of MARGE-express, we tested
the prediction of noncoding RNAs using DNA microarray data
that were limited to coding genes.Weobtained processedDNAmi-
croarray and RNA-seq data reported by two studies of keratinocyte
development (Kretz et al. 2013; Lopez-Pajares et al. 2015). One
study reported a set of protein coding genes with upward-trending
mRNAs that are transcribed more rapidly over the time-course
(Lopez-Pajares et al. 2015). The other reported ncRNAs that are dif-
ferentially expressed (Kretz et al. 2013), including sets of ncRNAs
that increase or decrease over the time course. We used MARGE-
express to identify a model for increasing transcription using the
upward-trend protein coding gene set and calculated scores for
noncoding RefSeq genes based on this model. Please see Supple-
mental Methods for further details of this analysis. The MARGE-
express prediction scores for the ncRNA set that was observed to
follow an upward-trend are higher than all ncRNAs (P-val < 0.04)
and the same prediction scores for the observed decreasing ncRNA
set are much lower (P-val < 4 × 10−5) (Fig. 3C). TINCR, terminal dif-
ferentiation-induced lncRNA, which plays an important role in
this developmental process and is the focus of the Kretz et al.
(2013) study, is correctly predicted by MARGE-express to be

Figure 3. MARGE-express modeling of differential expression gene sets using H3K27ac regulatory po-
tentials in diverse samples. (A) An analysis of 671 gene sets fromMSigDB shows, using independent train-
ing and testing data, that this approach is highly predictive of most gene sets. (B) Heat map of the
proportion, by tissue type, of H3K27ac samples that are most predictive of the tissue type-associated
gene sets. Gene sets with descriptions that include the keyword liver, for example, aremost often predict-
ed by liver-derived H3K27ac ChIP-seq samples. In this example, the fraction of times that liver-derived
H3K27ac samples are selected first in the step-wise regression analysis is represented in the liver-associ-
ated row of this heat map. (C) MARGE-express prediction of differentially expressed noncoding RNAs
based on coding RNA data. A gene set based on the upward trending protein-coding genes in a time
course of keratinocyte differentiation was used as input data. MARGE-express predicted scores for non-
coding RefSeq genes. These scores are compared between upward and downward trending noncoding
RNAs observed in a separate keratinocyte differentiation experiment. TINCR is a strongly up-regulated
lncRNA in the differentiated state and is especially important to keratinocyte development.
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among the most highly up-regulated ncRNAs in keratinocyte
development.

Semisupervised learning approach accurately infers cis-regulatory
regions from genome-wide H3K27ac profiles

Understanding the cis-regulatorymechanismsunderlying gene ex-
pression patterns is one of the key questions in modern biology.
Although ChIP-seq, DNase-seq, and other chromatin profiling
technologies can be highly informative, scarce or low-quality bio-
logical material from many systems is unsuitable for such ex-
periments. To address this problem, we propose to determine
cistromes associated with perturbed gene expression patterns us-
ing a compendium of H3K27ac ChIP-seq data. We hypothesize
that the same H3K27ac ChIP-seq data that define regulatory po-
tentials (Fig. 4, circle 1) predictive of gene expression perturbations
can also predict the cistrome of regulating cis-elements. In our con-
ceptual model, the perturbations in regulatory potentials that pro-
duce gene expression perturbations are in turn produced by
correlated shifts in activity at individual cis-elements. MARGE as-
sumes that the cis-elements are a subset of a union of DNase-seq
peaks that serve to define the full repertoire of cis-elements in

the genome (Fig. 4, circle 3). These sets of DNase I-hypersensitive
regions are derived from 458 human and 116 mouse DNase-seq
profiles. The unions of DNase I hypersensitive regions from these
public DNase-seq profiles (Neph et al. 2012a; Thurman et al. 2012;
Stergachis et al. 2014) include approximately 2.7 million and
1.5 million regions in human and mouse, respectively (more de-
tails can be found in the Supplemental Methods section). The
H3K27ac ChIP-seq read counts across 1-kb genomic intervals cen-
tered on each UDHS region are summarized (Fig. 4, circle 3). Then,
MARGE-cistrome (Fig. 4, circle 4) predicts cis-elements by compar-
ing these H3K27ac signals at the UDHS level with H3K27ac sum-
marized as regulatory potentials, without using DNA sequence
information for predictions.

If the relevant TF binding data were available to define the cis-
elements, we could directly use logistic regression to determine co-
efficients in a linear model that predicts cis-elements from
H3K27ac ChIP-seq data. However, we are proposing to infer cis-el-
ements without such TF binding data, and regression cannot be
used to directly estimate the coefficients. Instead, we assume
that a linear model that optimally classifies cis-elements using
H3K27ac signal in UDHS regions will be similar to the one deter-
mined byMARGE-express to classify a gene set using H3K27ac reg-

ulatory potentials. Although changes in
H3K27ac levels at enhancer sites produce
changes in H3K27ac regulatory poten-
tials, the two are not equivalent, as regu-
latory potentials are based on aggregates
of regions of which only a fraction is like-
ly to include enhancers with dynamic
H3K27ac levels. In addition, the normal-
ization of regulatory potentials is differ-
ent from normalization at the level of
individual cis-elements.

To infer cis-elements, MARGE-
cistrome starts with the set of informa-
tive H3K27ac ChIP-seq data sets identi-
fied using MARGE-express (Fig. 4, circle
2). MARGE-cistrome (Fig. 4, circle 4)
then generates a matrix of square-root
H3K27ac signals, U′, in UDHS regions.
The rows in this matrix correspond to
all UDHS genomic loci and the columns
correspond to the 10 regression-selected
H3K27ac samples. Matrix U′ is normal-
ized to U by row and column centering
(details in Supplemental Methods). In a
similar way, MARGE-cistrome generates
amatrix of transformednormalized regu-
latory potentials, P, with columns corre-
sponding to the same samples as in U,
in the same order. A naiveway of predict-
ing TF binding is to transfer the parame-
ters, α, estimated by logistic regression
in MARGE-express (Fig. 5A, top left),
directly to the TF binding inference
problem, using α as coefficients of the
H3K27ac signal at UDHS regions (Fig.
5A, top right). In this approach, the pre-
dictive score, ŝi, for a cis-element, i, is
calculated as ŝi = a · ui , where ui∈R10

is row i of matrix U. Instead, MARGE-
cistrome uses an alternative novel

Figure 4. Schematic of MARGE framework. (1) MARGE-potential computes regulatory potentials from
a compendium of H3K27acChIP-seq profiles. (2)MARGE-express uses stepwise regression to select a sub-
set of informative H3K27ac ChIP-seq samples for the prediction of a user-provided input gene set. This
regression selects columns (samples) from the matrix of normalized and centered regulatory potentials,
represented as a blue-red heat map. MARGE produces a prediction of regulated genes that may include
information on transcripts not included in the original gene expression study. (3) H3K27ac read counts in
1-kb regions centered on a list of DNase I-hypersensitive sites are extracted from the selected samples and
assembled as a matrix of normalized and centered values, represented as a blue-yellow heat map. (4)
MARGE-cistrome uses a semisupervised method to infer transcription factor binding sites from
H3K27ac read counts at DNase I-hypersensitive sites (blue-yellow heat map), regulatory potentials
(blue-red heat map), and the input gene set. MARGE-cistrome produces predictions of the cistrome of
TFs that are responsible for the regulation of the gene set.
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semisupervised learning method (Chapelle and Schölkopf 2006).
Thismethod assumes that the cis-elements associatedwith the reg-
ulation of the gene expression perturbation constitute a subset of

the overall genome-wide cis-element repertoire and exhibit corre-
lated H3K27ac signal patterns across the informative samples.
The dominant H3K27ac signal patterns in the cis-elements are

Figure 5. MARGE-cistrome prediction of cis-regulatory regions from gene sets and H3K27ac ChIP-seq data. (A) Schematic of cis-regulatory region pre-
diction through the direct transfer ofMARGE-express coefficients from the H3K27ac regulatory potential domain to the domain of H3K27ac signal at UDHS
regions (top). In this illustration, we represent a hypothetical case in which two samples are selected to predict gene sets and cis-regulatory regions. Using a
supervised classificationmethod (top left), such as logistic regression, we can identify the normal (red arrow) of a hyperplane that best separates genes in the
gene set (red dots) from the rest (gray dots). Applied to the union of DNase-seq peaks (top right), this normal may not be the optimal classifier to separate
transcription factor binding sites from the remainder of the candidate regions. Schematic of semisupervised learning for cis-regulatory element identifica-
tion (bottom). Using k-means clustering (bottom right), using only two clusters for illustrative purposes, we can identify the centroids (orange and cyan
arrows) of sets of putative cis-regulatory regions that have similar H3K27ac read count patterns across samples. Using gene sets (bottom left), we determine
which of the centroid-derived normal vectors (orange arrow) is most predictive of the gene set. The optimal centroid derived vector (orange arrow) is then
used to classify TF binding sites associated with the gene set (bottom right). (B) Applied to systems that are regulated chiefly by the respective transcription
factors: the androgen receptor, the estrogen receptor, the glucocorticoid receptor, NOTCH, PPARG, and POU5F1, we find the centroids of the k-means
clusters (left), predict gene sets (AUCGX ,middle) with AUC performance that is highly correlated with AUC performance for the prediction of transcription
factor binding sites (AUCTF , right). In these examples, 10 selected samples, S1 … S10, were clustered into seven clusters, C1 … C7. In each system, the sam-
ples with the greatest absolute positive and negative regression coefficients are as follows. AR: (S1) dihydrotestosterone-stimulated LNCaP cells, (S2) unsti-
mulated LNCaP cells; ESR1: (S7) estradiol-stimulated MCF-7 cells, (S8) unstimulated MCF-7 cells; GR: (S1) dexamethasone-stimulated A549 cells, (S2)
unstimulated A549 cells; NOTCH: (S1) CUTLL1 cells, (S2) γ secretase-inhibited CUTLL1 cells; PPARG: (S1) adipocytes, (S2) expanded memory T-cells;
POU5F1: (S1) embryonic stem cells, (S2) embryonic stem cell-derived foregut. (C) In the prediction of TF binding sites from gene sets, the classifiers derived
through semisupervised analysis perform better than those derived using the naive direct coefficient transfer approach in four examples, and almost as well
as classifiers based on the direct application of logistic regression to transcription factor binding data.
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identified using k-means (K = 7) to cluster genomic loci by normal-
ized H3K27ac signal, U, obtaining centroids λ1, …, λK (Fig. 5A,
bottom right) for each cluster. In preliminary analysis, we tested
alternative cluster numbers and did not find the algorithm to be
sensitive to this choice, so we set this number as 7. Since we are
clustering the same small number of samples (10), we do not
expect the number of clusters to vary broadly.Moreover, themeth-
od does not rely on an optimal partitioning of UDHS sites into
clusters; clustering merely serves as a guide to the distribution of
the data.

MARGE-cistrome then assesses which of these centroids is the
most associated with the gene expression perturbation using a
score skj = lk · pj for each gene j and cluster k, where pj is the jth
row ofmatrix P. The AUCperformance of sk in predicting the input
gene set is then evaluated for each cluster k∈ {1, …, K} (Fig. 5A,
bottom left) to determine the cluster centroid λ∗ that best predicts
the gene set. The MARGE-cistrome prediction score s̃i for cis-ele-
ment i is calculated using this centroid: s̃i = l∗ · ui. MARGE-cis-
trome therefore predicts regulatory cis-elements by combining
unsupervised and supervisedmethods to generate linear combina-
tions of normalized H3K27ac read counts in each 1-kb cis-element
ascribed region.

We tested MARGE-cistrome on six systems where gene ex-
pression changes are regulated by known transcription factors:
the estrogen receptor ESR1 (Carroll et al. 2006); the androgen re-
ceptor AR (Wang et al. 2007); the glucocorticoid receptor NR3C1
(Muzikar et al. 2009); the peroxisome proliferator-activated recep-
tor gamma (PPARG) (Mikkelsen et al. 2010); NOTCH1 (Wang et al.
2011); and POU5F1 (Kunarso et al. 2010). Details of the samples
selected by MARGE-express in each case are described in
Supplemental Table S6 (Supplemental Table S7 forMARGE-express
predictions). As a gold standard for TF binding sites, we used ChIP-
seq peaks for the TFs derived from relevant cellular contexts. In
these test systems, we first checked the assumption that centroids
that predicted gene expression well would also be good at predict-
ingTFbinding (Fig. 5B). Thiswas indeed the case; the centroids that
performed well in predicting gene sets (Fig. 5B, AUCGX) also per-
formed well in predicting TF binding (Fig. 5B, AUCTF). We then
compared the performance of the naive approach and the
MARGE semisupervised method to an estimate of the attainable
best performance in TF binding inference from H3K27ac ChIP-
seq. The attainable performancewas determinedby applying logis-
tic regression directly in the UDHS space on TF ChIP-seq data. We
found that in all six cases the semisupervised approachwas nearly as
good as the attainable performance (Fig. 5C; Supplemental Table
S8), whereas the direct approach performed worse in four cases.
The semisupervised approach effectively up-weighs sample-specif-
ic H3K27ac signal that is associated with specific TF binding and
down-weighs unrelated H3K27ac signal (Supplemental Fig. S11).
These results show that MARGE-cistrome is a promising approach
for predicting transcription factor binding sites associated with
the cis-elements that regulate a user-provided gene set.

Integration of public H3K27ac data to enhance in-house

data on cis-element prediction

At times, to gain insight into cis-regulatorymechanisms, investiga-
tors conducting differential expression analyses augment the gene
expression data with matching H3K27ac ChIP-seq profiles. We
next investigated whether MARGE could utilize public H3K27ac
data to enhance the analysis of matched H3K27ac ChIP-seq data.
In the prostate cancer cell line LNCaP-abl, we conducted siRNA si-

lencing of the transcription factors AR, E2F1, FOXA1, and FOXM1,
lncRNA MALAT1, chromatin modifiers EZH2, KDM1A, and UTX,
and the cohesin subunit RAD21. We then generated RNA-seq ex-
pression profiling and H3K27ac ChIP-seq data under control and
the nine different knockdown conditions. Using public data alone,
MARGE-express can retrieve the relevantH3K27ac profiles tomod-
el the down-regulated genes in each of the knockdown conditions
with ROC AUC performances between 0.65 and 0.75 (Fig. 6A).
Augmenting our 10 in-house LNCaP-abl H3K27ac data sets with
the public H3K27ac ChIP-seq data, we only obtained subtle im-
provements in performance (Fig. 6A; Supplemental Table S10).
Details of the samples selected in these analyses are described
in Supplemental Table S9. This result indicates that having
H3K27ac ChIP-seq data for the exact conditions is helpful but
may not be required for studying the cis-regulation of gene expres-
sion in a cell system; public data alone may approach similar
performance.

We then assessed the performance of MARGE-cistrome in
the prediction of functional cis-regulatory regions in the siRNA
knockdown experiments. Based on the assumption that the
knockdown of a TF should have a direct effect on its genomic bind-
ing sites to dysregulate the target genes, we conducted ChIP-seq
experiments to identify the binding sites of AR, E2F1, and
FOXA1 to assess the performance of the prediction of cis-regulato-
ry regions. We selected these factors as they interact directly with
DNA and have high quality antibodies for ChIP. We compared
the prediction performance of these binding sites (Fig. 6B;
Supplemental Table S11) using the following methods: absolute
H3K27ac read counts in UDHS regions; the normalized difference
of square-root scaled H3K27ac read counts; MARGE-cistrome
based on public H3K27ac data alone; and MARGE-cistrome based
on public data and in-house LNCaP-abl-specific H3K27ac data. In
the prediction of FOXA1 sites, MARGE-cistrome with public data
alone has a similar performance as using the in-house data alone,
and the integration of public and in-house data enabled MARGE-
cistrome to improve performance from 0.70 to 0.77. In the case of
AR,MARGE-cistromeonpublic data alone already outperforms the
in-house data, and including the in-house data can further im-
prove binding prediction. For E2F1, MARGE-cistrome with a com-
bination of public and in-house data predicts E2F1 binding slightly
less accurately than in-house H3K27ac data alone. Unlike AR and
FOXA1, E2F1 tends to bind in promoter regions, suggesting that
public data are more informative in predicting distal TF binding
sites. The specific examples in Figure 6C illustrate how a linear
combination of H3K27ac signal tracks, with MARGE-cistrome de-
fined coefficients, can help to emphasize FOXA1 binding sites rel-
ative to other genomic regions. MARGE can therefore greatly
enhance the analysis of investigator-generated H3K27ac ChIP-
seq data by making use of a compendium of published data to
improve the accuracy of target gene and distal cis-regulatory site
prediction.

Discussion

We have shown that MARGE-potential is more accurate than the
ROSE superenhancer approach at predicting genes that respond
to BET-inhibition and in the identification of key tissue-specific
genes. While the emergence of superenhancer-like cis-regulatory
regions through cooperation between cis-regulatory elements
may be important in gene regulation, our proposed statistical
framework does not make “superenhancer” calls or even peak
calls. Our results support the idea that genes are typically
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regulated by multiple cis-regulatory elements. Quantitative mod-
eling combined with chromatin profiling and high-throughput
cis-regulatory knockout experiments will be required to under-
stand how TFs act synergistically to create phenomena such as
superenhancers. We used the H3K27ac signal within 100 kb (up-
stream and downstream) of the TSS to calculate the regulatory
potential. This is consistent with the average size of topological as-
sociating domains in the chromatin measured by Hi-C. Explicit
inclusion of TAD domain information does not have a significant
impact on performance. Due to the exponential decay nature of
the distance weighting factors, it makes little difference in the
actual regulatory potential value between slightly different boun-
dary locations. We observed that the relative regulatory potential
is more predictive of genes down-regulated by BET-inhibition
than the absolute regulatory potential and that genes with high
median regulatory potentials tend to have CpG-rich promoters.
This is consistent with previous work that describes the tendency
for genes with CpG-rich promoters to be broadly expressed across
cell types and those with CpG-poor promoters to be more cell-
type specific (Natarajan et al. 2012) and expressed at a lower level
(Karlic ́ et al. 2010).

We demonstrated the power of published H3K27ac ChIP-seq
data in predicting the cis-regulation of gene expression. The 365
collected H3K27ac ChIP-seq data sets covered a large variety of hu-
man tissues and cell types, whichmade our predictive model com-
prehensive and robust. We found that the compendium of
H3K27ac regulatory potentials could be used to define predictive
models for the majority of 671 gene expression perturbations in
MSigDB. The striking ability of MARGE-express to predict the re-
sponse of ∼20,000 genes using regulatory potentials from 10 out
of 365 samples cannot be attributed to model overspecification.
The existence of parsimonious models that explain some of these
changes shows that even a limited cohort of cis-regulatory profiles
can provide useful insights onmany gene expression perturbation
studies.While inmany cases the informative H3K27ac samples are
directly relevant to the gene expression perturbations, in some cas-
es they are not. One explanation for the inclusion of unexpected
H3K27ac data sets is that the samples fromwhich the gene expres-
sion data are derived are composed of heterogeneous populations
of cell types. The metadata for the informative H3K27ac profiles
determined byMARGE-express might prove useful in determining
the nature of these cell populations. Alternatively, the inclusion of

Figure 6. MARGE-cistrome prediction of cis-regulatory regions from knockdown gene expression and H3K27ac ChIP-seq data. (A) Down-regulated
genes in LNCaP-abl prostate cancer cells on siRNA silencing of nine factors can be predicted from the compendium of H3K27ac ChIP-seq profiles.
Augmentation of public data with H3K27ac ChIP-seq generated in LNCaP-abl samples improves prediction performance slightly. (B) Prediction of AR,
E2F1, and FOXA1 binding sites using fourmethods: sample-specific H3K27ac ChIP-seq read count; difference of square root H3K27ac read counts between
wild-type and knockdown samples; MARGE-cistrome based on public H3K27ac ChIP-seq data only; MARGE-cistrome based on public data augmented
with H3K27ac ChIP-seq data in LNCaP-abl. (C ) Example of predicted cis-regulatory loci with FOXA1 binding sites. The MARGE reweighted track is a linear
combination of H3K27ac signal tracks with coefficients defined by MARGE-cistrome.
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some H3K27ac samples is to compensate for technical sources of
bias. Further work is needed to interpret the biological or technical
nature of this predictive power. While we have focused on
H3K27ac in this study, as this mark has been extensively profiled
and is also indicative of active enhancers, using appropriate meth-
ods complementary chromatin profiles might be incorporated to
improve prediction performance. Further research will be needed
to determine how other chromatin data types can be effectively
used in combination with this mark to improve prediction
performance.

MARGE-cistrome makes use of the H3K27ac mark both as an
indicator of the general cis-regulatory environment influencing a
gene as well as an indicator of localized histone acetyltransferase
activity associated with the binding of specific transcription fac-
tors. To use information derived from the regulatory potential
domain to infer transcription factor binding, we developed a semi-
supervised learning algorithm. This approach is based on the as-
sumption that H3K27ac at the regulatory set of TF binding sites
tends to produce a pattern across the selected samples that forms
a cluster of UDHS regions. In this way, MARGE-cistrome provides
a useful strategy for identifying the cis-regulatory loci that regulate
a differentially expressed set of genes. The success of this approach
depends on the level at which the gene expression changes occur
relative to the resolution of the H3K27ac compendium in terms of
samples that represent the treatment and control conditions in the
gene expression experiment. The predictive performance of
MARGE-express and MARGE-cistrome will continue to improve
as more H3K27ac ChIP-seq data become available in a greater vari-
ety of cell types and conditions.

Methods

MARGE-potential

MARGE-potential calculates the regulatory potential of each gene:

pi =
∑105

k=−105

wksk, wherewk = 2e−m|k−ti |

1+ e−m|k−ti | , ti is the genomic position

of the TSS of gene i, and sk is the MACS2 summary of H3K27ac
ChIP signal at this position. The parameter µ, which determines
the decay rate as a function of distance from the TSS, is set so
that a H3K27ac read 10 kb from the TSS contributes one-half of
that at the TSS. MARGE-potential also calculates the relative regu-
latory potential p∗ij defined as the ratio of the regulatory potential
in sample j to the median regulatory potential for that gene across

all samples in the H3K27ac compendium: p∗ij =
pij

median(pi).

MARGE-express

MARGE-express generates a gene set prediction model from the
H3K27ac ChIP-seq compendium. MARGE-express analyzes an in-
put list of genes that are differentially expressed in a uniformdirec-
tion as a result of some perturbation (e.g., gene knockdown, gene
overexpression, differentiation, chemical or genetic perturba-
tions). MARGE-express employs forward step-wise logistic regres-
sion to identify the 10 most informative samples from the
H3K27ac ChIP-seq compendium. MARGE-express solves the re-
gression model: yi � a0 +

∑

j
ajp′ij, where yi is the indicator of

whether a gene belongs to the given gene set (yi = 1) or not and
(yi = 0) and p′ij =

����
pij

√ − ��������������
median(pj)

√
. In each step of the forward

step-wise regression, the sample that produces the highest average
ROC-AUC value in fivefold cross-validation is selected. By default,

MARGE selects 10H3K27ac samples from the compendium. In the
examples we used in this paper, DHT in LNCaP, E2 in MCF7, Dex
in A549, GSI in CUTLL, adipose differentiation status, and POU5F1
(also known as OCT4) knockdown, the gene sets were defined set-
ting FDR≤ 0.01 and fold-change≥ 2 as thresholds.

MARGE-cistrome

MARGE-cistrome infers cis-regulatory regions that are indicative of
a pattern of transcription factor binding that induces either an in-
crease or a decrease in gene expression for all genes in a gene set.
The MARGE-cistrome procedure is as follows:

1. Use MARGE-express to identify 10 H3K27ac samples that best
model the gene set.

2. Generate a matrix of square-root H3K27ac signals, U′, in UDHS
regions. The rows in this matrix correspond to UDHS regions
and the columns correspond to the 10 samples selected by
MARGE-express.

3. NormalizematrixU′. For each column, subtract the columnme-
dian from all elements in this column. For each row, subtract
the row mean from each row element. The normalized matrix
is U.

4. Generate a matrix P′ of the square root of regulatory potentials
where each columnof P′ is derived from the sample used to gen-
erate the corresponding column of U′ and the rows of P corre-
spond to all nonredundant genes.

5. Normalize P′ using the sameprocedure that is used to normalize
U′. Denote the normalized matrix P. Note that, although the
matrices U and P are normalized using the same procedure,
the column medians are, in general, not the same for both
matrices.

6. Identify the dominant H3K27ac signal patterns in the cis-
element matrix U using k-means (K = 7) to cluster genomic
loci by normalized H3K27ac signal, obtaining cluster centroids
λ1,…, λK, (lk [ R10) for clusters 1, …, K.

7. Assess which of these centroids is most highly associated with
the gene expression perturbation. Calculate a score skj = lk · pj
for each gene j and cluster k, where pj is the jth row of
matrix P. Measure the performance of this score in predicting
the input gene set by evaluating the AUC for each cluster k∈
{1, …, K}. Determine the cluster centroid λ∗ that produces the
largest AUC.

8. Calculate a prediction score s̃i for cis-element i using this cen-
troid: s̃i = l∗ · ui. The higher s̃i is, the more likely UDHS region
i is to be bound by the factors that regulate the input gene set.

The workflow engine, Snakemake (Köster and Rahmann 2012), is
used to link together subprocesses in the MARGE pipeline.

Gene expression microarray analysis

Affymetrix microarray gene expression data were normalized us-
ing the standard multichip average (RMA) package in R (Irizarry
et al. 2003); differential expression analyses were performed with
the linear model for microarray (LIMMA) (Smyth 2004). Please
see Supplemental Methods for details.

Superenhancer and superenhancer-associated gene detection

Superenhancer analysis was carried out using ROSE (Lovén
et al. 2013; Whyte et al. 2013) (https://bitbucket.org/young_
computation/rose.git). Please see Supplemental Methods for
details.
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Performance evaluation

ROC and precision recall curves were generated using the R pack-
age ROCR (Sing et al. 2005).

Figures were plotted using R (R Core Team 2016).

ChIP-seq and DNase-seq analysis

MACS2was used forDNase-seqpeak calling. Signal summarization
for H3K27ac ChIP-seq and DNase-seq was carried out using
MACS2 (Zhang et al. 2008). Please see Supplemental Methods for
details.

Data access

MARGE code is available in the Supplemental Material and at
http://cistrome.org/MARGE/. LNCaP-abl ChIP-seq and RNA-seq
data from this study have been submitted to the NCBI Gene
Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/)
under accession numbers GSE72467 and GSE72534, respectively.
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