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Flies and other insects use incoherent motion (parallax) to the front and sides
to measure distances and identify obstacles during translation. Although
additional depth information could be drawn from below, there is no exper-
imental proof that they use it. The finding that blowflies encode motion
disparities in their ventral visual fields suggests this may be an important
region for depth information. We used a virtual flight arena to measure fruit
fly responses to optic flow. The stimuli appeared below (n = 51) or above the
fly (n = 44), at different speeds, with or without parallax cues. Dorsal parallax
does not affect responses, and similar motion disparities in rotation have no
effect anywhere in the visual field. But responses to strong ventral sideslip
(206° s−1) change drastically depending on the presence or absence of
parallax. Ventral parallax could help resolve ambiguities in cluttered motion
fields, and enhance corrective responses to nearby objects.
1. Introduction
Flies execute extremely fast andprecise aerialmanoeuvres, requiring robust correc-
tive responses to handle deviations from course. They use coherent motion from
optic flow fields to countersteer against changes in direction and position during
flight [1,2]. For this purpose, backgroundmotion is decomposed into translational
and rotational components that are processed independently by large-field
neurons in the lobula plate in flies [1–6], and arthropods in general [7].

Responding to translational self-motion requires nearby visual features,
because image speed on the retina varies inversely with object distance [8].
Rotational image speeds, by contrast, are unaffected by distance. Some flies
take advantage of this difference by increasing their sensitivity to translation in
the frontolateral and subequatorial regions of their eyes, where perceived objects
are usually closer during natural flight, while displacing the perception of rotation
to the dorsal region [4]. Drosophila, for example, can use celestial cues above for
evaluating changes in direction (reviewed by Warren et al. [9]), while positional
tasks such as groundspeed control or responses to sudden changes in position
are mostly based on optic flow below and near the horizon [10–12].

Translational optic flow additionally provides cues about the three-
dimensional structure of the surroundings, which manifests as image speed
being inversely proportional to object distances [8,13,14]. Flies can process
motion patterns from the frontolateral regions of the visual field and use them to
gaugedistances [15,16], and separate objects frombackground [17–19], both critical
tasks for navigating through cluttered environments. But motion depth cues are
present outside of the frontal or lateral visual field. When flying low over patchy
vegetation, for example, a wealth of information about the spatial distribution of
features is available right underneath. Bees use this for altitude control [20–22],
but flies, for some reason, do not [10,23]. Whether this is because they fail to inte-
grate relative motion beneath, or shift attention to frontal areas during forward
flight [24], remains unknown.
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Figure 1. (a) Rear view of the projection arena showing the placement of the fly. The IR LED above illuminates the wings in motion casting a shadow on the sensor
below the fly. (b) The stimulus projects onto the ventral or dorsal faces of a Perspex cube using mirrors. (c) Steering attempts are inferred from the difference in the
size of shadows of the left and right wings captured by the dual sensor. Mean steering responses of the flies tested can be visualized as time series (solid lines),
along with the standard error of the mean (s.e.m.) (shading). (d ) Motion parallax in the stimuli is simulated by adding relative motion to the dot-field elements.
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The recent finding of a neuron (VT1) in the blowfly
Calliphora vicina, able to encode motion parallax in the for-
ward and sideslip directions below the horizon [25],
provides a partial answer to this question. It demonstrates
that at least some groups of flies encode parallax in ventral
optic flow, and suggests that this trait could be adaptive to
flies traversing habitats with obstacles [26] or foraging for
resources on the ground. This could be the case in Drosophila
melanogaster, a slow flier that searches for fallen fruit.

Despite the abundance of derived traits associatedwith the
lobula plate tangential cells (LPT) across groups of flies [27],
horizontal system cells (HS) responsible for assessing yaw
rotation are relatively conserved between blowflies and fruit
flies [28]. It is therefore possible that they also share the ability
to perceive and encode incoherent motion below during flight.
We set out to test whether parallax affects the optomotor
response of fruit flies during visual perturbations in the ventral
or dorsal region of the flow field.We used a virtual flight arena
to display perturbations, with and without depth cues, and
measure optomotor responses of tethered fruit flies.
2. Material and methods
(a) Experimental subjects
We tested D. melanogaster females within 3–5 days of eclosion,
reared in the laboratory under a 12 L : 12 D cycle, kept at 21°C
and fed standard medium. Flies were cold anaesthetized, then
glued to a fine tungsten rod by the mesonotum. They recovered
in the dark for at least 30 min while holding a small piece of
paper with their legs, preventing them from flapping their
wings. We then removed the paper when suspending each fly
in the centre of the arena (figure 1a). Each fly was tested only
once in an experiment.

(b) Virtual flight arena
We projected visual stimuli onto the lower and upper surfaces of
a 200 mm Perspex cube (figure 1b). Perspective-corrected stimuli
displayed in a 90° diameter disc. Experiments took place in a
dark room to increase contrast, and the sides of the cube pre-
vented flies from getting light from any other direction. Further
details of the arena are described in Cabrera & Theobald [29].

(c) Visual stimuli
Each experiment consisted of open-loop presentations of dot-
fields moving either rightward (clockwise in rotation) or leftward
(anticlockwise) projected to the ventral or dorsal visual region of
the fly (see electronic supplementary material, video S1, for
details). Dot-field motion was either rotational or sideslip, at
one of four different angular speeds, and with or without paral-
lax depth cues (figure 1c). We emulated depth cues by adding
relative motion to a randomly distributed group of dots
moving in the same direction, suggesting increased distance
[12] (figure 1d ). This ensured the number of dots was constant
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Figure 2. (a,b) Mean response of D. melanogaster to unintended sideslip containing only coherent motion (blue), and with relative motion suggesting the presence
of parallax (green). The stimuli were presented at four speeds and two directions on the dorsal and ventral regions of the visual field. Responses were averaged
between 0.2 and 0.4 s after stimulus onset. (c,d ) Time series showing the first 0.4 s of the mean response to the highest speed sideslip (206° s−1) with and without
depth, in the dorsal and ventral visual fields. (e,f ) Mean responses to rotational stimuli with and without relative motion, presented in the dorsal and ventral visual
fields. (g,h) Time series showing the response of the flies to both types of motion at high speed in their dorsal and ventral visual fields. Solid traces represent the
mean responses obtained from n flies, shading represents s.e.m.
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(113 dots/steradian), and allowed us to add differential speeds to
rotational flow fields, which intrinsically have no such feature
(see electronic supplementary material, videos S2–S5, for details
on the stimuli used). The trials were presented in random order,
and interspersed by segments of closed-loop bar fixation to stan-
dardize the behavioural state at the beginning of each test [30,31].

(d) Steering responses
Tethered flies were illuminated from above with an infrared
light, while photodiodes below measured the shadow produced
by each wing beat. Since flies steer by changing the relative ampli-
tudes of left and right wing beats [32], attempts to turn produce a
differential voltage by the sensor pair [33,34], which is reported
as the voltage difference in wing beat amplitude (ΔWBA).
Responses collected include roll and yaw attempts performed by
the fly, as they both result from the same flight mechanics and
are indistinguishable using a wing beat analyser [2].
3. Results
Flies responded to dorsal and ventral stimuli by steering in
the direction of the flow, and increasing amplitude with
flow speed. Coherent sideways flow with angular speeds up
to 138° s−1 elicited responses of similar amplitude when
presented dorsally and ventrally (figure 2a,b, blue lines).
However, high speeds of sideways flow that suggested stron-
ger disturbances with coherent motion (206° s−1) produced
significantly weaker ventral responses (t =−2.365, p = 0.023).

Due to the local optimization of the dorsal region of the
eye for evaluating rotation [4], if flies are sensitive to parallax,
they might respond to it only when it is present in ventral dis-
turbances. Since motion parallax is exclusive to translation,
we expected flies to be unresponsive to it when was added
to rotation. For optic flow including relative motion (simulat-
ing parallax), response to strong ventral sideslip disturbances
increased significantly (t =−2.313, p = 0.023) (figure 2d, green
trace). This was similar in amplitude to the response to a
dorsal stimulus, either in the absence or presence of depth
cues (t =−0.001, p = 0.999 and t =−0.227, p = 0.821, respect-
ively) (figure 2c). Relative motion had no effect on steering
response when added to dorsal sideslip (figure 2a, green)
or rotation (figure 2e,f ). This occurs even at high-speed trans-
lational disturbances presented dorsally (t = 0.23, p = 0.819)
(figure 2a, green), or rotational in both regions of the visual
field (figure 2g,h, green) [35].
4. Discussion
(a) Response to dorsal and ventral sideslip disturbances

without depth cues
In contrast with hawkmothsManduca sexta, that maintain flight
control even with the ventral region of their eyes covered [36],
steering responses to positional changes in fliesmay be strongly
based on flow fields below the horizon, as demonstrated in
blowflies [4]. In fact, flies respond weakly to translational cues
present only in the upper visual hemisphere [12]. However
with the narrower dorsal and ventral visual fields shown
here, low-speed disturbances containing only coherent motion
elicited similar steering responses in both of these regions.
Only high-speed disturbances caused a strong difference in
the weakening of ventral perturbations without parallax.

Similar steering response shifts are seen during forward
flow. Flies shift attention to anterior regions of the ventral
flow field as forward flow speed increases [24]. This may
alleviate motion blur [37] by focusing attention on areas with
slower optic flow, potentially reducing responsiveness to
perturbations below. Fast optic flow can also induce spatial
summation, forcing the fly to spatially pool information in
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lateral regions. This increases the ability to respond to fast
stimuli at the cost of spatial resolution [38]. It is unknown if
sideways perturbations can trigger such neural strategies.

(b) Response to wide-field incoherent motion
As expected, relative motion cues affected steering responses
only in sideslip, and not yaw rotation. Since rotational and
translational components of motion are processed separately
[1,3,4], encoding relative motion may be a property of large-
field neurons, responsible for the translational components of
self-motion only. Further, the similarity in the responses to
translating dot-fields with and without relative motion in
the dorsal region of the eye suggests the presence of a less
specialized system for the perception of translation there, in
contrast with regions near the horizon where translational
cues are more relevant [12]. While incoherent motion is
known to be informative in frontolateral regions [15,16], our
results extend that range to the ventral region, showing that
fruit flies perceive, encode and use depth cues below them.
Due to the conservation of traits inherent to the perception
of rotation between blowflies and fruit flies [28], we believe
elements involved in the integration of depth cues in the ven-
tral flow field in D. melanogaster may be homologous to those
found by Longden et al. [25] in C. vicina. Due to strong selec-
tive pressures acting on LPT cells [27], the ability to perceive
ventral parallax in D. melanogaster is a selective trait, with a
variety of possibly adaptive roles.

(c) Height control
Although the depth cues from the ventral optic flow could be
used for height control when flying over structured environ-
ments (bees are an example [20–22,39,40]), fruit flies seem to
control their height during flight using information from
frontolateral areas of the visual field [10,23], while referring
to ventral optic flow in order to control groundspeed [10,41].
Because the effect of relative motion was notable only during
strong sideslip, ventral parallax is probably not involved in alti-
tude control, but further experiments with different levels of
parallax would be required to rule it out completely.

(d) Dealing with ambiguity
Different types of self-motion can generate identical flow fields
when perceived by small regions of the eye [4,42], and partial
stimulationofwide-field neurons could therefore be ambiguous.
In our experiment, for example,movingdots in the small ventral
visual field could be perceived by the fly as either sideslip or a
roll. However, the presence of parallax in the ventral optic flow
could confirm that an otherwise ambiguous stimulus results
from translation, because incoherent motion is absent from
rotation. However, this is complicated because VS neurons
sensitive to roll branch out laterally instead of ventrally on the
eye in blowflies [43–46], suggesting that lateral motion on a
small region of the ventral field is possibly perceived only as
translational, which could also apply to Drosophila.
(e) Navigating complex environments
Our results suggest thepresence of relativemotionventrally, even
in a narrow cone of vision, is enough to prevent attention from
shifting forward, and keep the fly responsive to potential risks
below during strong perturbations. The sense of nearness pro-
duced by motion parallax induces stronger corrective responses
to sideslip disturbances in fruit flies [29]. The fact that fruit flies
share the ability to encode parallax information from ventral
flow fields with blow flies is not that surprising. The sapropha-
gous nature of both flies forces them to move around in search
of ephemeral resources that can be far apart and usually at
ground level. While C. vicina is a fast flier that moves across
patches of differently structured vegetation [26], D. melanogaster
can forage longer distances and even migrate if necessary in
search of resources [47]. With such a natural history, both species
can certainly benefit from being aware of the dangers below
when traversing unknown structured environments.

We have demonstrated that fruit flies respond to the pres-
ence of parallax during strong sideways disturbances in their
ventral optic flow. The robustness of this response suggests
that it is an adaptive trait, but its full significance is unresolved.
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