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Editorial on the Research Topic

Metabolic Regulation in the Development of Cardiovascular Diseases

Metabolic syndromes increase the risk of cardiovascular diseases (CVDs) (North and Sinclair,
2012), and metabolic reprogramming can either reverse or rescue the molecular events that lead
to CVDs (Chen et al., 2020a). However, the metabolic mechanisms underlying CVDs are not fully
understood. We have prepared a special Research Topic. This Research Topic entitled “Metabolic
Regulation in the Development of Cardiovascular Diseases” received 11 original articles, 7 review
articles, and 2 opinion articles. This special issue highlights recent research findings to clarify the
relationship between metabolism and CVD.

Metabolic dysregulation andmetabolic syndromes are independent risk factors for CVDs (Zhou
et al., 2018). Genetic mutations in metabolic enzymes, as well as transcription factors, can cause
CVDs (Austin et al., 2019). In this issue, Zhang et al. identify the occurrence of mutations in
transcription factor EB (TFEB), which controls lysosomal biogenesis and metabolism (Settembre
et al., 2013), as a potential risk factor for acute myocardial infarction. This study detected novel
variants of the metabolic regulator, TFEB, that might contribute to the development of acute
myocardial infarction. Furthermore, pregnancy-related CVDs, such as arterial dissection, are also
affected by metabolic conditions (Wang et al., 2021). Deng et al. emphasized the importance of
glycemic control in pregnant women, which could improve the understanding, prevention, and
treatment of pregnancy-related arterial dissection.

Genetic mutations, or dysregulation of metabolic enzymes and their regulators, directly alter
cell metabolism, intracellular metabolites, and physiological functions of vascular cells such as
endothelial cells (ECs) (Tang et al., 2014). Endothelial metabolic homeostasis and reprogramming
can regulate endothelial functions, including angiogenesis, inflammation, and barrier maintenance
(Tang et al., 2014; Subramanian et al., 2021). Peng et al. provided an overview of the metabolic
pathways in ECs under normal and pathological conditions. Their review highlighted themetabolic
reprogramming of endothelium as a potential therapeutic approach for controlling CVDs.

Glucose metabolism in ECs is critical for cardiovascular homeostasis and
diseases (Dumas et al., 2021). Glucose catabolism is regulated by enzymes such as
6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), whose dysfunction drives
endothelial injury and vascular inflammation (Bartrons et al., 2018). The role of PFKFB3 in
non-EC vascular cells remains unclear. In this regard, Poels et al. show that PFKFB3 expression in
monocytes is positively correlated with the occurrence of coronary arteries with unstable plaque
phenotypes. Inhibition of PFKFB3 reduced the number of late plaques in vulnerable phenotypes
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and resulted in stable plaque phenotypes. This phenomenon was
coupled with a decrease in glycolytic flux in mononuclear cells
within the circulating peripheral blood. The study by Tillie et al.
also examined the role of myeloid PFKFB3 in atherosclerosis
development. Partial knockout of Pfkfb3 in myeloid cells did not
affect the development of atherosclerosis. Thus, further studies
are required to dissect the contribution of PFKFB3 in other
non-EC vascular cells, such as vascular smooth muscle cells,
fibroblasts, and other immune cells, in atherosclerosis.

In addition to metabolic enzymes, their products
(metabolites) are critical for organ homeostasis and injury repair
(Chen et al., 2021b; Dumas et al., 2021). Zhang et al. discussed
the role of endothelium-derived lactate in regulating the
metabolic microenvironment in tissue regeneration and CVD.
Endothelium-lactate interactions affect the microenvironment
via multiple routes. Lactate can be produced by ECs during
glycolysis and exported via its transporters to the extracellular
milieu to regulate cells in the microenvironment. Furthermore,
lactate can be imported from extracellular blood compartments
by ECs to regulate angiogenesis, or transferred transendothelially
to the microenvironment to regulate stromal and immune
cells. These interactions regulate the cell microenvironment,
tissue regeneration, and CVDs. The biochemical mechanisms
underlying lactate function remain unknown, although some
findings revealed the potential involvement of histone lactylation
(Eming et al., 2021).

In addition to pyruvate and lactate, other metabolites also
contribute to cardiovascular homeostasis (Li et al., 2019).
One such metabolite is epoxyeicosatrienoic acids (EETs), a
derivative of arachidonic acid synthesized by cytochrome
P450 (Duflot et al., 2014). EETs are rapidly hydrolyzed into
less bioactive dihydroxyeicosatrienoic acid (DHET) by soluble
epoxide hydrolase (sEH) (Wang et al., 2013). Hamzaoui et al.
show that inhibition of sEH inhibits cardiac remodeling,
as well as diastolic and systolic dysfunction associated with
chronic kidney disease (CKD). Therefore, inhibition of sEH
has therapeutic potential for preventing cardiorenal syndrome,
which may be regulated by intracellular DHET. Furthermore,
metabolites from the gut microbiota are critical regulators
of mammalian metabolism and CVDs (Tang et al., 2019).
Trimethylamine N-oxide (TMAO) is an intestinal microbiome-
derived metabolite synthesized from specific food components,
such as red meat (Tang et al., 2019). It acts as a risk factor
for vascular diseases, such as atherosclerosis (Tang et al.,
2019). However, the role of TMAO in cardiac diseases remains
unclear. Videja et al. demonstrated that high TMAO levels
preserve the production of mitochondrial energy and cardiac
function in an experimental model of right ventricular heart
failure, thereby suggesting that TMAO promotes effects similar
to metabolic preconditioning under specific conditions. This
finding is opposite to all other studies published so far on TMAO
in CVD (Witkowski et al., 2020).

Mitochondria are essential for maintaining normal
cardiomyocyte homeostasis and ensuring healthy heart function
(Bonora et al., 2019). Two review papers in this special
issue discussed the recent advances regarding mitochondrial
biology in CVDs. Xin et al. addressed the function of the

mitochondrial fusion protein, mitofusin-2 (MFN2), in
regulating mitochondrial morphology, metabolism, calcium
homeostasis, and mitochondrial DNA stability in CVDs, and
highlighted MFN2 as a therapeutic target for treating CVDs.
In addition, Liao et al. discussed the pathways that regulate
mitochondrial function in response to mechanical stress during
the development of cardiomyopathy and heart failure. One of
the central regulators is the Hippo pathway, which plays a pivotal
role in heart failure (Wang et al., 2018). The Hippo pathway
targets not only mitochondria but also other organelles and
pathways (Zhao et al., 2021). Mammalian sterile 20-like kinase
1 (MST1) is a crucial component in the Hippo pathway (Zhao
et al., 2021). Feng et al. observed that knockout ofMst1 inhibited
mitochondrial division and reduced left ventricular remodeling
in diabetic cardiomyopathy, thereby highlighting the critical
role of the Hippo pathway in the regulation of mitochondria
and CVDs.

Dysregulation of metabolism can lead to systemic and
vascular inflammation, and vice versa (Tang et al., 2014). Aging-
related chronic inflammation is a hallmark of chronic metabolic
disorders, including obesity and type 2 diabetes, contributing
to CVDs (Nafisa et al., 2018). Immune cells, especially T cells,
accumulate in adipose tissue during aging (Villarroya et al., 2018),
and pre-adipose T cells promote aging-related remodeling of
adipose tissues (Chen et al., 2021a). Pan et al. compared the
differences in adipose tissue morphology and function between
young and aged mice, and reported the “whitening” effect of
brown adipose tissue (BAT) in old mice. The proportion of
T cells in the BAT of old mice was higher, with more aging
markers than in those of young mice. Senescent T cells release
high levels of interferon-gamma, which inhibits preadipocyte-
to-brown adipocyte differentiation. Because BAT is a beneficial
factor against CVD (Ruan et al., 2018), further studies are
needed to test how T cells in BAT participate in CVD, including
cardiac remodeling.

Wu et al. discussed the recent advances regarding the role
of CC chemokine receptor-9 (CCR9)/CC motif chemokine 25
(CCL25) in inflammation and CVD. Targeting the CCR9/CCL25
axis pharmacologically can decrease or modulate inflammation.
High serum phosphate concentrations are associated with
cardiovascular risk in both the general population and patients
with CKD (Vervloet et al., 2017). Another review paper,
contributed by Zhou et al., discussed the advances in the
understanding of phosphate homeostasis in healthy and CKD
conditions. The authors highlighted that fibroblast growth factor
23 plays an important role in controlling serum phosphate levels
to mitigate phosphate-induced CVD.

The upregulation of endothelin 1 (ET1), a vasoconstrictor
factor, contributes to hypertension and organ fibrosis (Tang
et al., 2020); however, the mechanism underlying ET1 regulation
remains unclear. Xu et al. reported that glycogen synthase
kinase 3 (GSK3) and serum response factor (SRF) contributed
to angiotensin II-induced ET1 overexpression in ECs. This
study highlighted a previously unrecognized mechanism that
contributes to the transcriptional regulation of endothelin and
could lead to new approaches for CVD interventions targeting
the GSK3-SRF axis.
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In addition to local inflammation, systemic and local
accessibility and bioavailability of gas molecules also regulate cell
metabolism (Das et al., 2018). For instance, chronic hypoxia is an
essential factor in many CVDs. Themain energy fuels of heart are
fatty acids. However, under chronic hypoxia, glucose oxidation
is downregulated and glycolysis is upregulated (Tang et al.,
2017). The mechanisms underlying adaptive cardiac metabolism
remain unclear. Su et al. provided a thorough discussion on
this topic. They concluded that the heart initiated transcriptional
programs to increase the utilization of carbohydrates, rather than
fatty acids, to produce ATP. This involves altered mitochondrial
structure and function, improved metabolic efficiency, and
reduced reactive oxygen species production in hypoxic cardiac
tissues. The core participants in hypoxia are hypoxia inducible
factors (HIFs) and their modulators, including the HIF-prolyl
hydroxylase (PHD) isotypes PDH1, PDH2, and PDH3 (DeBerge
et al., 2021). PHD pan-inhibitors have been used to treat
anemia in patients with CKD. Similarly, systemic Phd1 or Phd2
knockout was found to improve atherosclerosis (Marsch et al.,
2016; Rahtu-Korpela et al., 2016). In this issue, Demandt et al.
analyzed the roles of PHD3 in hypercholesterolemia using low-
density lipoprotein receptor (Ldlr) and Phd3 double knockout
mice. The authors found that systemic Phd3-deficiency induced
adverse lipid profiles and increased hepatocellular volume
without altering the development of atherosclerotic plaques,
compared to other PHD isotypes. Interestingly, the effect of
PHD3 on hypercholesterolemia is opposite to that of PHD1 and
2 (Marsch et al., 2016; Rahtu-Korpela et al., 2016), and to the
detrimental effect of PDH3 overexpression on the progression of
atherosclerosis inApoE−/− mice (Liu et al., 2016). Further studies
are needed to systematically investigate the multi-dimensional
roles of PHDs in hypercholesterolemia and related CVDs such
as atherosclerosis.

In addition to HIFs and PHDs, there are other types
of hypoxia regulators, such as hypoxia-induced mitogenic
factor (HIMF), a member of the resistin-like molecule protein
family expressed in mammals (Lin and Johns, 2020). HIMF is
involved in numerous physiological processes including mitosis,
angiogenesis, inflammation, and vasoconstriction (Lin and
Johns, 2020). In addition, HIMF responds to several pathological
conditions involving the lungs and the cardiovascular system. In
this issue, Lv and Liu discuss the molecular characteristics and
pathophysiological effects of HIMF, and highlight the potential
clinical implications in CVDs and other diseases. Taken together,
there has been remarkable progress in understanding the biology
of hypoxia in CVDs. However, currently available drug strategies
are still limited and have not been tested in patients with chronic
hypoxia-related CVDs.

Considering that CVDs are critically controlled by
metabolism and their regulators, metabolism-targeted
drugs/interventions are promising strategies for the treatment
of CVDs (Tang et al., 2017; Chen et al., 2020b). One drug with
such potential is metformin (Kulkarni et al., 2020), a clinical
anti-diabetic drug that targets mitochondria and regulates cell
metabolism (Foretz et al., 2014). Metformin has the potential
to repress cardiovascular aging and diseases (Nafisa et al.,
2018); however, the sex-related effects of metformin remain
unknown. Zhu et al. investigated the protective effects of

metformin on cardiac metabolism and longevity in female mice;
however, they found that metformin did not improve cardiac
function or longevity in elderly female mice. Although multiple
beneficial effects of metformin have been reported in age-related
diseases, further systematic evaluation of the sex-related roles of
metformin in heart conditions and longevity of older patients
should be considered. Additional study of the synergistic effects
of metformin with other drugs would also be interesting. Jia et al.
investigated the synergistic effects of metformin and atorvastatin
on diabetic cardiomyopathy and found the combination to
provide better protection against diabetic cardiomyopathy than
monotherapy, indicating that drug combinations may achieve
greater clinical benefits than the use of a single drug.

In conclusion, the papers published on this Research Topic
can potentially improve our understanding of genetic risk factors,
metabolic enzymes and metabolites, metabolic inflammation,
mitochondrial dynamics, the biology of hypoxia in CVD, and the
treatment of cardiovascular diseases.
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