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ABSTRACT

The neuromuscular activity of Micrurus pyrrochryptus venom was studied in chick biventer cervicis (BC) and 
mouse phrenic nerve-diaphragm (PND) preparations. The venom (0.5-50μg/ml) caused irreversible, time- and 
concentration-dependent blockade, with BC being more sensitive than PND (50% blockade with 10μg/ ml 
in 22±3min and 62±4min, respectively; mean±SEM, n=6; p<0.05). In BC preparations, venom (0.5μg/ ml) 
progressively abolished ACh-induced contractures, whereas contractures to exogenous KCl and muscle 
twitches in curarized preparations were unaffected. The venom neither altered creatine kinase release (venom: 
25.8±1.75IU/l vs control: 24.3±2.2IU/l, n=6, after 120min), nor it caused significant muscle damage (50μg of 
venom/ml vs control: 3.5±0.8% vs 1.1±0.7% for PND; 4.3±1.5% vs 1.2±0.5% for BC, n=5). The venom had 
low PLA

2
 activity. Neurotoxicity was effectively neutralized by commercial Micrurus antivenom and specific 

antivenom. These findings indicate that M. pyrrhocryptus venom acts postsynaptically on nicotinic receptors, 
with no significant myotoxicity.
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INTRODUCTION

Coral snakes constitute a large taxonomic group of more 
than 120 species and subspecies divided into three genera, 
Leptomicrurus, Micruroides and Micrurus, with a distribu-
tion ranging from the United States to Argentina (Scrocchi, 
1990; Roze, 1996; da Silva and Sites, 1999; da Silva and 
Sites, 2001).

Micrurus venoms are highly-neurotoxic, with clinical 
manifestations of palpebral ptosis, ophthalmoplegia and 
respiratory paralysis (in severe cases), indicating neuromus-
cular blockade (Vital Brazil and Vieira, 1996; da Silva and 
Bucaretchi, 2003; Warrell, 2004; Bucaretchi et al, 2006; 
Manock et al, 2008). Experimental studies have shown 
that the neuromuscular blockade is caused by pre- and 
postsynaptic neurotoxins from these venoms (Vital Brazil 

et al, 1976; Vital Brazil et al, 1977; Vital Brazil, 1980; Gou-
larte et al, 1995; Vital Brazil et al, 1995; Serafim et al, 2002; 
Abreu et al, 2008). However, only a few of these toxins 
have actually been purified and studied in vivo and in vitro 
(Alapé-Girón et al, 1996b; Francis et al, 1997; Dal Belo  
et al, 2005), primarily because of the difficulty in maintain-
ing these snakes in captivity (Serapicos and Merusse, 2002; 
Oliveira et al, 2005) and their low venom yields (de Roodt 
et al, 1998).

Although bites by Micrurus spp. in South America are 
relatively rare, severe cases of respiratory paralysis can 
be life-threatening if adequate therapeutic interventions 
are not implemented. Antivenom administration is the 
only specific treatment for coral snake bites, although 
ancillary measures, such as, mechanical ventilation and 
the administration of cholinesterase inhibitors (the latter 
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Chick biventer cervicis preparation
Biventer cervicis muscles obtained from chicks previously 
anesthetized with halothane were mounted as previously 
described (Ginsborg and Warriner, 1960). The prepara-
tions were suspended under a resting tension of 1gm in 5ml 
of Krebs solution of the following composition: 136mM 
NaCl, 5mM KCl, 2.5mM CaCl

2
, 23.8mM NaHCO

3
, 1.2mM 

MgSO
4
, 1.2mM KH

2
PO

4
 and 11mM glucose), maintained 

at 37°C or 22°C (the latter used to verify the involvement of 
venom PLA

2
 activity in neuromuscular blockade) and aer-

ated with a mixture of 95%, v/v, O
2
 + 5%, v/v, CO

2
. The 

preparations were stimulated indirectly with supramaximal 
pulses (6V, 0.2ms and 0.1Hz) delivered by a Grass S4 elec-
tronic stimulator (Grass Instrument Co, Quincy, MA, USA) 
and were allowed to stabilize for at least 15min before the 
addition of drugs, venom or venom:antivenom mixtures. In 
some experiments, the muscle contractures to exogenous 
carbachol (carbamylcholine - CCh, 8μM), acetylcholine 
(ACh, 110μM) and KCl (20mM) were obtained before 
and after incubation of the tissues with venom. In order to 
determine the kinetics of ACh contracture inhibition, prepa-
rations under indirect stimulation and incubated with a sin-
gle venom dose (0.5μg/ml) were assayed in different time 
points (5, 10, 15 and 30min) (n=5-10 preparations per time 
interval).

Mouse phrenic-nerve diaphragm muscle preparation
Whole diaphragms along with the phrenic nerves were 
removed from mice anesthetized with isoflurane and sac-
rificed by exsanguination. The left diaphragm was mounted 
essentially as described for rats (Bülbring, 1946). The prep-
aration was suspended under a constant tension of 5gm in 
a 5ml organ bath containing aerated (95%, v/v, O

2
 + 5%, 

v/v, CO
2
) Tyrode solution (pH 7.4, 37°C) of the following 

composition: 137mM NaCl, 2.7mM KCl, 1.8mM CaCl
2
, 

0.49mM MgCl
2
, 0.42mM NaHPO

4
, 11.9mM NaHCO

3
, 

and 11.1mM glucose. In some experiments, CaCl
2
 was 

replaced by 4mM SrCl
2
 to assess the influence of venom 

PLA
2
 activity on the venom-induced neuromuscular block-

ade. Supramaximal pulses (0.1Hz, 0.2ms, 3-6V) and tetanic 
stimuli (50Hz, 0.2ms) delivered by a Grass S4 stimulator 
were applied by electrodes placed on the motor nerve. Iso-
metric muscle tension was recorded using a Load Cell BG 
50gm force-displacement transducer (Kulite Semiconductor 
Products Inc., Leonia, NJ, USA) coupled to a physiograph 
(Gould RS 3400, Cleveland, OH, USA). The preparations 
were allowed to stabilize for at least 20min before the addi-
tion of drugs or venom.

Reversal of neuromuscular blockade by neostigmine, 
3.4-diaminopyridine and washing
The reversibility of the venom-induced blockade was 
assessed by incubating the preparations with neostigmine 
(10μg/ml) or 3.4-diaminopyridine (10μg/ml), or by exten-
sive washing, after 50% neuromuscular blockade had been 
achieved.

PLA
2
 activity

Venom PLA
2
 activity was assayed in 10mM Tris-HCl, 

pH 8.0, containing 10mM CaCl
2
, essentially as described 

elsewhere (Abreu et al, 2008). The assays were done in 
triplicate, and the activity expressed as the increase in 
absorbance at 425nm measured in a multiwell plate reader 

for postsynaptically-active venoms), can also be use-
ful (Coelho et al, 1992; Vital Brazil and Vieira, 1996; 
Bucaretchi et al, 2006). Experimentally, the neutralizing 
capacity of antivenoms against neurotoxins is frequently 
studied in neuromuscular preparations in vitro, following 
pre-incubation of venom with antivenom (Barfaraz and 
Harvey, 1994; Alapé-Girón et al, 1996a; Alapé-Girón  
et al, 1997; Hodgson and Wickramaratna, 2002; Abreu  
et al, 2008).

M. pyrrhocryptus, which occurs in central Argentina, 
Bolivia, Paraguay and Brazil (in the states of Mato Grosso 
and Mato Grosso do Sul), was originally a subspecies of 
Micrurus frontalis, but was elevated to species status 
based on morphological features that distinguished it from 
M. frontalis (da Silva and Sites, 1999; Ministerio de Salud, 
2007). Little is known about the composition of M.  pyr-
rhocryptus venom (Hoge and Lancini, 1959; de Roodt 
2002; Dokmetjian et al, 2009) and its neutralization by 
antivenom.

In this work, we studied the effects of M. pyrrhocryptus 
venom on neuromuscular transmission in avian and mam-
malian neuromuscular preparations, and examined the neu-
tralization of neurotoxicity by commercial antivenom and 
specific antiserum.

MATERIAL AND METHODS

Animals
Adult male Swiss white mice (28-35gm) were supplied by 
the Multidisciplinary Center for Biological investigation 
(Cemib) at Unicamp. HY Line chicks (4-10 days old) were 
obtained from Globo Aves (Jaguariúna, SP, Brazil). The 
animals were housed at 24°C with free access to food and 
water. The experiments were done in accordance with the 
guidelines of the Brazilian College for Animal Experimen-
tation (Cobea) and were approved by the institutional Eth-
ics Committee on Animal Use (CEUA/Unicamp, Protocol  
No. 1550-1).

Venom, antivenoms and venom neutralization
M. pyrrhocryptus venom, obtained from snakes captured in 
Santiago del Estero, Argentina, and specific antivenom were 
gifts from Dr Alejandro U Vogt (The Centro Zootoxicológ-
ico de Misiones, Argentina). The specific antivenom (SAV, 
batch 115) was raised in horses by the Instituto Nacional de 
Producción de Biológicos of the Administración Nacional 
de Laboratorios e Institutos de Salud (A.N.L.I.S.) “Dr 
Carlos G. Malbrán”, Ministerio de Salud (Buenos Aires, 
Argentina). The venom of M. pyrrhocryptus is the main 
immunogen of this antivenom. Commercial Micrurus 
antivenom (Batch No. 03.2184), produced by immunizing 
horses with a pool of M. frontalis and M. corallinus venoms, 
was obtained from the Instituto Butantan (São Paulo, SP, 
Brazil). Both antivenoms consisted of F(ab’)

2
 equine immu-

noglobulin fragments.

The neutralizing capacity of the antivenoms was stud-
ied by pre-incubating venom (10μg/ml) with each anti
venom for 30min at 37°C, at a venom:antivenom ratio of  
1.5mg of venom:1.0ml of antivenom, before adding to the  
organ bath.
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(SpectraMax 340, Molecular Devices, Sunnyvale, CA, 
USA). Venom from the South American rattlesnake, Cro-
talus durissus terrificus, was used as a positive control in 
this assay. C. d. terrificus venom was a gift from JC Cogo 
(Universidade do Vale do Paraíba, São José dos Campos, 
SP, Brazil).

Creatine kinase (CK) activity
Samples of organ bath solution (100μl) were collected 
before and after a 120min incubation with venom (5μg/ ml 
in BC preparations; CK release by PND preparations was 
not examined); the initial 100μl aliquot was replaced by 
fresh solution. The samples were stored at 4°C, and CK 
activity was assayed within 4hrs after the experiment, using 
a commercial kit (Sigma Chemical Co, St Louis, MO, 
USA). CK activity was also assayed in control experiments 
without venom. Enzyme activity was expressed in interna-
tional units per liter (IU/l), with one unit of activity corre-
sponding to the phosphorylation of 1nmol of creatine/ min 
at 25°C.

Light microscopy
At the end of the experiments, when complete blockade 
had been achieved at venom concentrations of 5, 10 
and 50μg/ml, chick BC and mouse PND preparations 
were immediately fixed in Bouin’s solution and proc-
essed for embedding in historesin. Sections 3-5 μm thick 

were stained with hematoxylin-eosin and examined by 
light microscopy, using an Olympus microscope (Olym-
pus Optical Co Ltd, Tokyo, Japan) prior to photograph-
ing. Muscle damage was quantified by counting 50 
fibers (normal or damaged) in four randomly chosen, non-
overlapping fields (200 fibers/section) in one section from 
each of five tissues (experiments) per preparation (total 
of 1000 fibers each for BC and PND preparations). Simi-
larly, 1000 fibers were counted from five control experi-
ments for each preparation. The percentage of damaged 
fibers was calculated as (number of damaged fibers ÷ total 
number of fibers) ×100.

Statistical analysis
The results were expressed as the mean ±SEM and were 
compared statistically using Student’s unpaired t-test or 
ANOVA for repeated measures. A value of p ≤ 0.05 indi-
cated significance.

RESULTS

Blockade of contractile responses
M. pyrrhocryptus venom produced time- and concen-
tration-dependent blockade of contractile responses in 
BC and PND preparations (Figure 1A and 1B), with the 
former preparations being more sensitive to blockade: At 
venom concentrations of 5μg/ml and 10μg/ml, the time 

Figure 1. Concentration-dependent neuromuscular blockade caused by M. pyrrhocryptus venom in indirectly stimulated chick biv-
enter cervicis (A) and mouse phrenic nerve-diaphragm (B) preparations. Each point represents the mean ±SEM of six experiments.  
C. Contractures of chick muscle to exogenous ACh, CCh and KCl after incubation with venom (1, 5, 10 and 50μg/ml). D. Recording 
of a chick biventer cervicis preparation incubated with M. pyrrhocryptus venom (5μg/ml, arrow, 0min) showing contractures to exog-
enous ACh (□ 110μM), CCh (▲ 8μM) and KCl (● 20mM) before and after incubation with venom. This recording is representative of 
six experiments, the mean values of which are shown in panels A-C. W = wash. *p<0.05 compared with control values.
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for 50% neuromuscular blockade was 52±0.9min and 
22±3min (n=6 each), respectively, in BC preparations; 
while in PND preparations, it was 110±2min and 62±4min  
(n=6 each), respectively. In contrast, there was no dif-
ference in sensitivity at the highest venom concentration 
(50μg/ml: 15.1±1.6min vs 18.8±2.3min for BC and PND 
preparations, respectively). Treatment with neostigmine  
(a cholinesterase inhibitor) and 3-4-diaminopyridine  
(a potassium channel blocker) produced a transient reversal 
after 50% of venom-induced neuromuscular blockade (n=6 
each; data not shown), followed by complete irreversible 
blockade after 60min. This finding suggests that when only 
half of the endplates are affected by venom, some revers-
ibility of blockade is viable.

The venom (1, 5, 10 and 50μg/ml) inhibited muscle contrac-
tures to exogenous acetylcholine (ACh, 110μM) and carba-
chol (CCh, 8μM) in BC preparations, but did not affect the 
responses to KCl (20mM) (Figure 1C and 1D).

Tetanic responses in mouse phrenic-nerve diaphragm 
preparations
In PND preparations exposed to tetanic stimuli (70Hz, 
0.2ms), followed by incubation with venom (10μg/ml, n=6), 
there was a progressive, time-dependent decrease in the 
amplitude of the responses (Figure 2A and 2B) more similar 
to that seen with α-bungarotoxin (a non-depolarizing toxin, 
10μg/ml, n=6) than with succinylcholine (a depolarizing 
agent, 10μg/ml, n=6; data not shown).

Kinetics of inhibition of responses to exogenous 
acetylcholine
The incubation of BC preparations with a low venom con-
centration (0.5μg/ml) for up to 30min resulted in progres-
sive inhibition of the contractile response to exogenous ACh 
(Figure 3). This finding suggested that the venom contained 
components that interacted with postsynaptic nicotinic 
receptors.

Effect of venom on directly stimulated preparations
Incubation with venom (10μg/ml) did not significantly 
affect muscle twitches of curarized (d-tubocurarine, 3μM), 
directly stimulated PND preparations (Figure 4).

PLA
2
 activity

The PLA
2
 activity of M. pyrrhocryptus venom was 

0.09±0.04U/mg, approximately one-third that of C. d. terrifi-
cus (South American rattlesnake) venom (0.30±0.07U/ mg; 
n=6 each, p<0.05). To examine whether this PLA

2
 activ-

ity could contribute to the venom-induced neuromuscular 
blockade, experiments were done at 22°C (BC preparations) 
or Ca2+ (1.8mM) was replaced by Sr2+ (4.0mM) (PND prep-
arations) in order to inhibit PLA

2
 activity. These interven-

tions did not significantly affect the venom potency and time 
for neuromuscular blockade, indicating that PLA

2
 activity 

was not involved or had only a minor role in the venom-
induced blockade.

Creatine kinase (CK) release
Incubation with M. pyrrhocryptus venom (5μg/ml) for up 
to 120min did not significantly alter the release of CK by 
BC preparations when comparing with the corresponding 
controls (Figure 5).

Light microscopy
Histological analysis of control BC and PND preparations 
showed normal muscle morphology with little fiber damage 
(1.2±0.5% in BC and 1.1±0.7% in PND). Incubation with 
the venom (50μg/ml) did not significantly alter this basal 
damage (4.3±1.5% and 3.5±0.8% for BC and PND prepara-
tions, respectively; n=5 each in all cases).

Neutralization by commercial Micrurus antivenom and 
specific antivenom
Pre-incubation (30min at 37°C) of M. pyrrhocryptus venom 
(10μg/ml) with commercial Micrurus antivenom in the pro-
portion recommended by the manufacturer, or with specific 

Figure 2. Comparison of the responses of mouse phrenic nerve-diaphragm preparations to indirect tetanic stimulation (T
1
, T

2
 and 

T
3
; 70Hz, 0.2ms) in the presence of (A) α-bungarotoxin and (B) M. pyrrhocryptus venom (V). Note that the tetanic response after 

incubation with M. pyrrhocryptus venom was similar to that seen after exposure to α-bungarotoxin (n=6 each).
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antivenom at a venom:antivenom ratio of 1.5mg of venom 
to 1.0ml of antivenom, totally abolished the venom-induced 
neuromuscular blockade in both preparations (Figure 6).

DISCUSSION

M. pyrrhocryptus venom caused irreversible, time- and 
concentration-dependent neuromuscular blockade of mus-
cle twitches in BC and PND preparations, with the former 
preparations being more sensitive than the latter. The greater 
sensitivity of BC preparations was probably related to dif-
ferences in the innervation of these two preparations, with 
avian muscle having both focally- and multiply-innervated 
fibers that can respond to electrical stimulation or exogenous 
nicotinic agonists (Vital Brazil, 1980; Hodgson and Wickra-
maratna, 2002). These findings agree with reports for other 
Micrurus venoms, such as M. altirostris (Abreu et al, 2008), 
M. dumerilii carinicauda (Serafim et al, 2002), M. frontalis 
(Vital Brazil et al, 1976; Vital Brazil et al, 1977; Vital Brazil 
and Vieira, 1996), M. lemniscatus carvalhoi (Cecchini et al, 
2005), M. nigrocinctus (Goularte et al, 1995) and M. spixii 
(Vital Brazil et al, 1995).

The venom inhibited contractures to exogenous ACh and 
CCh, indicating a predominantly postsynaptic action 
through the blockade of cholinergic nicotinic receptors, 

as also suggested for other Micrurus venoms (Goularte 
et al, 1995; Serafim et al, 2002, Abreu et al, 2008). The time-
dependent blockade of the responses to exogenous ACh 
shown in Figure 3 can only be properly understood when 
compared with Figure 1A, which shows venom-induced 
neuromuscular blockade in chick BC preparations. In  
Figure 3, a venom concentration of 0.5μg/ml produced 
complete blockade of the responses to exogenous ACh 
within 30min. In contrast, within a similar time frame of 
30min, there was <10% blockade in indirectly stimulated 
preparations incubated with the double venom concentra-
tion (1μg/ ml). These findings agree with the well-known 
existence of two populations of nicotinic receptors in BC 
preparations (Chang et al, 1977; Hodgson and Wickrama-
ratna, 2002), i.e., one population that is extrajunctional and 
responds well to exogenous ACh but is rapidly blocked by 
venom neurotoxins, and another located in the motor end-
plate that responds to nerve stimulation and is less suscep-
tible to rapid blockade by neurotoxins (possibly because of 
difficulties related to toxin diffusion into the synaptic cleft). 
They also agree with studies for other neurotoxins that dis-
criminate between these two populations (Chang et al, 1973; 
Chang and Su, 1975). The ability of toxins to distinguish 
between these two receptor populations could be exploited 
to provide a simple, sensitive assay for screening neurotox-
ins and nicotinic cholinergic agonists.

The postsynaptic action of M. pyrrhocryptus venom was also 
indicated by the absence of fade in the tetanic response to indi-
rect stimulation at 70Hz. This tetanic pattern was more simi-
lar to that produced by α-bungarotoxin (a non-depolarizing 
toxin) than by succinylcholine (a depolarizing agent) (Gal-
lacci and Oliveira, 1994; Serra and Oliveira, 2006).

Micrurus venoms are rich in PLA
2
 (Aird and da Silva, 

1991; da Silva and Aird, 2001; Cecchini et al, 2005; Tanaka 
et al, 2010) that may contribute to the biological activities 
of these venoms (Alapé-Girón et al, 1996b; Francis et al, 
1997; Oliveira et al, 2008). As shown here, M. pyrrhoc-
ryptus venom had low activity when compared with that of 
C. d. terrificus. The finding that reducing the temperature 
of the experiment from 37°C to 22°C (Goularte et al, 1995; 
Rodrigues-Simioni et al, 2004) or the substitution of Ca2+ 
by Sr2+ (Rodrigues-Simioni et al, 1995; Ponce-Soto et al, 
2009) to attenuate PLA

2
 activity did not significantly alter 

the neuromuscular blockade indicated that this enzymatic 
activity was not a major contributor to venom-induced 
blockade.

Figure 3. Kinetics of the blockade of contractures to exogenous 
ACh in the presence of M. pyrrhocryptus venom (0.5μg/ml) 
in chick biventer cervicis preparations. Note the progressive 
decrease in the responses over time. Each bar represents the mean 
±SEM of six experiments. *p<0.05 compared with the response 
before venom addition (0min) (n=5 for each interval).

Figure 4. Myographic recording of mouse phrenic nerve-diaphragm contractions in response to M. pyrrhocryptus venom 
(V, 10μg/ml) under direct (D) and indirect (I) stimulations. The preparation was previously treated with 3μM d-tubocurarine 
(d-Tc) to inhibit any response of presynaptic origin (W = wash, n=6).
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stimulation in curarized preparations, the unaltered CK 
release, and the absence of tissue damage seen in histo-
logical analysis. In contrast, the intramuscular injection of 
Micrurus venoms in mice and rats results in myotoxicity, 
seen morphologically and through an increase in serum CK 
levels (de Roodt AR, 2002). Myonecrosis has been also 
reported for several coral species (Gutiérrez et al, 1983; 
Gutiérrez et al, 1986, Gutiérrez et al, 1992; Goularte et al, 
1995). These discrepant results may be related to the dif-
ferent animal models (in vitro vs in vivo) and the venom 
concentrations used.

Commercial Brazilian Micrurus antivenom raised against 
M. corallinus and M. frontalis venoms and specific 
antivenom effectively neutralized the neurotoxicity of  
M. pyrrhocryptus venom in vitro. This finding suggests that 
it is not necessary to include M. pyrrhocryptus venom in 
the pool of Micrurus venoms used for antivenom produc-
tion. This conclusion differs from findings for M. altiros-
tris, another species originally classified as a subspecies 
of M. frontalis, for which commercial Brazilian antivenom 
showed little neutralization of the lethality (Moraes et al, 
2003) and neuromuscular activity (Abreu et al, 2008) of the 
venom. In fact, various studies have suggested the need to 
include additional Micrurus species in the pool of venoms 
used in immunization protocols in order to improve the 
neutralization capacity of commercial antivenoms (Higashi 
et al, 1995; de Roodt et al, 2004; Tanaka et al, 2010).

CONCLUSIONS

M. pyrrhocryptus venom produced neuromuscular blockade 
through a predominantly postsynaptic action that was effec-
tively neutralized by commercial and specific antivenoms. 
The neutralization of neurotoxicity observed here suggests 
that these antivenoms may be useful in treating humans 
envenomed by this species.
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