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Observation of interaction-induced modulations
of a quantum Hall liquid’s area
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Studies of electronic interferometers, based on edge-channel transport in the quantum Hall

effect regime, have been stimulated by the search for evidence of abelian and non-abelian

anyonic statistics of fractional charges. In particular, the electronic Fabry–Pérot interferometer

has been found to be Coulomb dominated, thus masking coherent Aharonov–Bohm inter-

ference patterns: the flux trapped within the interferometer remains unchanged as the applied

magnetic field is varied, barring unobservable modulations of the interference area. Here we

report on conductance measurements indicative of the interferometer’s area ‘breathing’ with

the variation of the magnetic field, associated with observable (a fraction of a flux quantum)

variations of the trapped flux. This is the result of partial (controlled) screening of Coulomb

interactions. Our results introduce a novel experimental tool for probing anyonic statistics.
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T
he behaviour of electrons and quasi-particles in meso-
scopic systems stems from the combination of their
wave-nature, particle-nature and the effect of Coulomb

interactions. Electronic Fabry–Pérot interferometers (FPIs), and
more generally ring-like geometries, have been utilized for the
investigation of all these three facets1–4 and the rich interplay
among them5–10. In particular, electronic FPIs have possibly been
the most studied candidates for probing belian and non-abelian
anyonic statistics of quasi-particles in the fractional quantum Hall
effect (FQHE) regime11–14. Notwithstanding considerable efforts,
the experimental study of anyonic statistics is still lagging
behind theory, mostly owing to the adverse effect of Coulomb
interactions. Two distinct regimes in the operation of FPIs—
characterized by the conductance oscillation frequencies
with the applied flux—have been reported7,8 and studied theore-
tically15–19. In the coherent AB regime, one period of these
oscillations corresponds to the increase of the threaded flux
through the interferometer’s area by a single flux quantum
f0¼ h/e (e—electron charge and h—Planck’s constant)20. On the
other hand, in the Coulomb-dominated (CD) regime, it is the
mutual capacitance between the device and a modulation gate
that dictates the oscillation periodicities. Interference in the AB
regime is harder to observe7,8, and has not been achieved thus far
in any fractional quantum Hall state. At the same time, the CD
regime has its own disadvantage—it does not and cannot reveal
the anyonic statistics.

The AB phase underlying interference patterns evolves as
2pdfAB/f0¼ 2p(AdBþBdA0)/f0, where dfAB is the variation of
the threaded flux through the FPI, B the applied magnetic field,
A the area enclosed by the interfering edge channel and
dA0¼ a?dVMG is the area variations due to the modulation gate
(but excluding the effect of Coulomb interaction as explained
below). Here a is the edge-channel modulation-gate mutual
capacitance. The AB oscillations with dB and dVMG are hence
characterized by the following frequencies:

1=DB ABð Þ ¼ A=f0; ð1Þ

1=DV ABð Þ
MG ¼ aB=f0: ð2Þ

By contrast, in the CD regime with the outer most edge channel
interfering, there is no B dependence of the conductance,

1=DB CDð Þ ¼ 0; ð3Þ

1=DV CDð Þ
MG ¼ g: ð4Þ

Here, 1/g is the voltage required to remove a single electron from
the FPI3–6, which does not depend upon the magnetic field
(in similitude to the single-electron transistor21).

Seemingly, these two regimes may seem to be of very different
nature: while the AB oscillations are due to coherent interference,
the CD oscillations reflect solely the electron occupancy of the
device and do not contain any information regarding the phase
acquired by the interfering particles. This interpretation turned
out to be too naive. A unified theoretical framework has suggested
that the CD oscillations may, in fact, be AB oscillations modified
by Coulomb interaction15. According to this interpretation7,8,15,
as the magnetic field increases (decreases) so that the AB phase
varies by AdB, the area will shrink (inflate) by dAint to keep a
constant flux AdBþBdAint¼ 0, where the subscript ‘int’ stands
for ‘interactions’. This variation of the area guarantees that the
charge enclosed in the interfering area is kept constant,
minimizing the charging energy of the device. Then, once the
flux variation reaches the value of a whole flux quantum,
AdB¼f0, an electron abruptly ‘jumps’ from the bulk into the
edge and the original area is restored7,15.

According to this description, the area enclosed by the outer
edge channel is ‘breathing’; on increasing the magnetic field it
continuously shrinks and then abruptly inflates, altogether with
periodicity DB¼f0/A. Nonetheless, the breathing in the CD
regime has never been experimentally confirmed. The reason is
that the measured conductance is simply constant, as the
magnetic field is varied. Basically, the area response to
increasing the magnetic field fully compensates the effect
of the latter. The subsequent abrupt addition of an electron leads
to a 2p jump in the interference phase—clearly an unobservable
effect as well. We are thus ‘blind’ to this phenomenon of area
breathing.

Here we report on the realization of a novel device that
combines the advantages of AB interferometers with CD
response. It operates in an intermediate regime—in which the
area response does not fully compensate the variations of the
magnetic field, rendering the area ‘breathing’ observable. In other
words, dAint¼� x � AdB

B , with 0oxo1, leading to a total phase
evolution dftot¼AdBþBdAint¼ 1� xð Þ � AdB. Our main findings
concerning this ‘breathing’ are summarized in equations (8–10)
below. Measurements were performed on three different devices
showing three distinct behaviours: AB dominated, namely, x¼ 0
with no area breathing; CD, namely, x¼ 1 with invisible
breathing of the area; and an intermediate one (x¼ 0.75), with
clear area breathing. We present conductance measurements of
this novel device that incorporates both AB and CD frequencies
(equations (1–4)), hence contain information regarding both
interference and interactions, and the interplay between them.
Moreover, employing detailed analysis based on the system’s
energy, we deduce the device’s charge stability diagram, providing
an insight to its rich physics being ‘hidden’ in the previously
reported AB and CD devices. Furthermore, we provide proposals
for utilizing our device for probing anyonic statistics of quasi-
particles in the FQHE regime.

Results
Experimental set-up. The devices were fabricated on a GaAs-
AlGaAs heterostructure, embedding a two-dimensional (2D)
electron gas with electron density B2� 1011 cm� 2. Electron-
beam and optical lithography were employed in the fabrication
process, and measurements were performed at electron
temperature B30 mK. All FPIs consist of a pair of quantum point
contacts (QPCs), playing the role of semi-transparent mirrors
(Fig. 1). Three different types of devices are shown in Fig. 1. In
Fig. 1a, we show the simplest realization of a FPI; such FPIs have
high charging energy, regardless of their size7,8,22, thus showing
CD behaviour. Tto suppress Coulomb interactions, a small
Ohmic contact (106 nm Au/53 nm Ge/40 nm Ni with surface area
0.5 mm2 alloyed to the heterostructure) is placed at the centre of
the interferometer’s bulk22 (Fig. 1b, gold, false colour; see
Methods for more information regarding the Ohmic contact).
Such devices show AB behaviour22. A third type of device, not
reported previously (to the best of our knowledge), consists of
placing such Ohmic contacts in the vicinity of the FPI, as depicted
in Fig. 1c. Unexpectedly, we have found that in such a device, the
suppression of the Coulomb interactions is less efficient than the
centre Ohmic contact, yet it is still significant, giving rise to a new
regime intermediate between AB and CD. The role of this
Ohmic contact placed in the device’s vicinity is to screen the
Coulomb interactions via its capacitance to the interferometer’s
bulk (increasing Cbulk while maintain Ceb intact, see defini-
tions in Discussion below and more details in Methods),
effectively lowering the device’s charging energy and decreasing
the interaction parameter x. All three devices were fabricated on
the same heterostructure and designed to have the same size
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AE2.5 mm2 so that they differ merely by the presence
and the position of the Ohmic contacts. A fourth type of
device, with the Ohmic contact inside its bulk, and surrounded by
an additional gate was found to operate in the intermediate
regime as well, and is discussed in Supplementary Note 1 and
Supplementary Figs 1–3. All measurements were conducted at
bulk fillings 1onBo2, with the outer most edge-channel
interfering.

Observations. Tuning the magnetic field to the nB¼ 2 plateau
and partitioning the outer edge channel, conductance oscillations
are measured as function of dB and dVMG, with the different FPIs
shown in Fig. 1. For the device shown in Fig. 1b, constant-phase
lines in the B-VMG 2D plane follow a negative slope—a typical
result in the AB regime (Fig. 2a). A fast Fourier transform (FFT)
extracts f0=DB ABð Þ¼2:7 mm2—agreeing well with the litho-
graphically enclosed area, and 1=DV ABð Þ

MG ¼103 V � 1—needed to
remove one flux quantum from the interior of the device

(equations (1 and 2)). For the device shown in Fig. 1a, no
oscillation as function of dB is observed—in agreement with
the prediction for the CD regime (equations (3 and 4))—with
a modulation-gate frequency 1=DV CDð Þ

MG ¼273 V � 1—needed to
remove one electron.

Turning to employing the device in Fig. 1c, we commenced by
measuring the conductance for rather pinched QPCs
(ot4¼ 0.05), shown in Fig. 3a. This lattice-like conductance
plot represents the charge stability diagram of the device and
contains information both on the interference and on the device’s
charging, as we elaborate in Discussion. Although this plot is
rather complex, its 2D FFT, shown in Fig. 3b, is simple; it reveals
a lattice of peaks (as expected from an FFT of a lattice) all being
linear combinations of underlying AB and CD frequencies,
denoted on top of the figure. We find f0=DB ABð Þ¼2:6 mm2 and

1=DV ABð Þ
MG ¼90 V � 1 for the AB frequencies, and 1/DB(CD)¼ 0 and

1=DV CDð Þ
MG ¼222 V � 1 for the CD frequencies. These frequencies

are found relatively close to the ones of the ‘pure AB’ and ‘pure
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Figure 1 | Scanning electron microscopy images and an illustration of the experimental set-up. (a) Bare FPI; such devices show distinct

Coulomb dominated (CD) behaviour. (b) FPI with a grounded Ohmic contact in its centre (gold, false colour) aimed at screening Coulomb interactions;

such devices show Aharonov–Bohm (AB) interference. (c) FPI with a grounded Ohmic contact in its close proximity (gold, false colour), inducing

partial screening of Coulomb interactions; such devices show intermediate behaviour between the CD and AB. Red lines represent edge states

and arrows represent the current’s chirality. Current is injected into the device from the source, partitioned at the two QPCs, and probed at

the drain employing a cold amplifier. Partitioned current is denoted by dashed lines. Modulation gates are marked by blue (false colour) in all

images. (d) An equivalent electric circuit model describing the interferometer system with filling factor 1ovBo2. The system consists of the

lowest Landau level’s edge (denoted as ‘edge’), the bulk (denoted as ‘bulk’) and the modulation gate. The mutual capacitances between all three,

Ceb, Cedge and Cbulk, are marked on top of the circuit. The excess charge on the edge is denoted dQedge¼ dq3� dq1, while the excess charge in

the bulk is dQbulk¼� dq3� dq2. Further details on the capacitive model are provided in analysis, as well as in Supplementary Note 2 and Supple-

mentary Fig. 5.
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CD’ cases extracted from Fig. 2a,b, respectively. Furthermore, we
find 1=DV ABð Þ

MG to be the only frequency that depends on magnetic
field (in the tesla range), as anticipated from equations (1–4)
(Supplementary Fig. 4).

Moreover, by further opening the confining QPCs to
ot4¼ 0.7, the presence of abrupt jumps in the conductance
(phase jumps) becomes more clear (Fig. 4a), which shows good
agreement with the conductance’s model that stems from the
minimization of the system’s energy (Fig. 4b; see Discussion
below; Supplementary Notes 2–3; Supplementary Fig. 5–9).

Analysis. Since the AB and CD types of behaviour are merely two
different regimes of operation of the same device, they may be
analysed within the same theoretical framework15. We address a
set-up, where transport through the outer most edge channel at
1onBo2 gives rise to interference. This case has been studied

experimentally. We denote the charge added to the lowest Landau
level (lowest LL) by Qk , and that added to the upper Landau level
(upper LL) by dQm. Hereafter, we refer to the interfering outer
most edge channel (compressible ring belonging to the lowest LL)
as the ‘edge’, and to the rest of the charge inside the FPI as
‘bulk’23. The charge variations in the edge and bulk are denoted
dQedge and dQbulk, respectively. We note that for any device
without an Ohmic contact within its centre, dQm changes
discretely accounting for the localized charges in the bulk15,16.

We consider a minimal capacitive model for describing the FPI
set-up15,16,24 depicted in Fig. 1d. The model consists of three
capacitances Cedge, Cbulk and Ceb describing the mutual Coulomb
interactions between the system’s three components, dQedge,
dQbulk and dVMG. The total energy of the system can
then be written as the sum of three contributions15,17,25,26,
Etotal¼EebþEedgeþEbulk, where the second and third terms are
the edge and bulk charging energies (depending solely on dQedge
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the reason for their appearance here is elaborated in analysis.
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and dQbulk, respectively), and the first term is due to the
interaction between them. This first term can be presented as
function of their sum dQedgeþ dQbulk. The relation between this
approach and an earlier one (cf. ref. 15), where the variable
dQedge � dQbulk have been employed, is discussed in Supple-
mentary Note 2. The system’s charge state is determined by
minimizing the total energy Etotal.

In the quantum Hall regime, the charge added to the lowest LL,
dQk, follows the total flux, dftot, enclosed by the latter: as the flux
increases (decreases), single-particle states cross in below (cross in
above) the Fermi energy, increasing (decreasing) the number of
occupied states:

dQ# ¼ e � dftot

f0
¼ e � AdBþBdA0þBdAint

f0
: ð5Þ

Here, in the third term on the right hand side, dAint represents
the interaction-induced area response. Thus, the overall variation
of the area dA¼ dA0þ dAint is separated into two components.
The first component is a linear component that is solely a result
of variations of the modulation-gate voltage, dA0¼ aBdVMG, and
stems solely from its mutual capacitance to the interfering edge.
The second component is an oscillating component7,15, dAint,
which is a function of both dB and dVMG, for which we derive the
full expression below (and allowing us to present the total phase
as an explicit function of dB and dVMG, cf. equation (8) below).

Magnetic field variations. As the magnetic field increases and the
filling factor decreases, charge is removed from the upper Landau
level into the lowest Landau level. More precisely, with every flux
quantum added, the degeneracy each Landau level increases by
one; resulting in a transfer of a single electron from the upper
LL (hence dQm¼±1) to the lowest LL (hence dQk¼±1),
while keeping the total charge in the system constant. The
corresponding variation of energy can be expressed in terms of

dQm and dQk
15,27:

dEtotal dBð Þ ¼ KEB

2
� dQtotð Þ2

þ KE

2
� dQ# � e � AdB

f0

� �2

þ KB

2
� dQ" þ e � AdB

f0

� �2

;

ð6Þ

where dQtot¼ dQkþ dQm, dQedge¼ðdQ# � e � AdB
f0
Þ,

dQbulk¼ðdQ" þ e � AdB
f0
Þ and all three coefficients are related to

the relevant different capacitances15: KEB¼ Ceb
D ;KE¼ Cbulk

D ;KB¼ Cedge

D
are system specific, with D¼ (CedgeþCeb)(CbulkþCeb)�C2

eb.
Equation (6) implies that the energy is minimized if

dQ#¼e � AdB
f0

and dQ"¼� e � AdB
f0

, leading to dQtot¼ 0 at all times.
This continuous charging of the edge, dQk, should result in the
periodicity DB¼f0/A. The latter coincides with the behaviour in
the AB regime, as seen in Fig. 2a, measured with the device shown
in Fig. 1b. In this device, while dQk is continuously charged from
the leads, dQm is discharged into the centre Ohmic contact.

Previous measurements have also reported the observations of
AB oscillations even without the centre Ohmic contact, but rather
with a top gate covering the device7,8. In that case, the upper LL’s
charge dQm cannot vary continuously (as in the case with an
Ohmic contact at the centre of the device), but rather discretely,
because the upper LL is isolated by an incompressible strip15,23.
Thus, as the magnetic field increases such that AdBof0, the

lowest LL is continuously charged by dQ ABð Þ
# dBð Þ¼e � AdB

f0
, leading

to an increase of the total charge dQ ABð Þ
tot dBð Þ¼dQ ABð Þ

# dBð Þ¼e � AdB
f0

with dQm¼ 0 due to the upper LL’s charge quantization. This of
course will increase the charging energy (which favors dQtot¼ 0;
first term in equation (6)), which is possible since the top gate
effectively decreases KEB (and thus Ceb), such that KEBooKE
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Figure 4 | 2D conductance plot with clear phase jump lines. (a) Conductance is measured with the same device as Fig. 3, but with substantially higher

transmission (ot4E0.7). Phase jump lines are marked by solid descending lines and the frequency defined by their slope is marked by DV
PJð Þ

MG and DB(PJ).

In between adjacent phase jump lines, we have continuous conductance oscillations. By extrapolating these continuous oscillations (dashed ascending

lines), we may attribute them periodicities denoted DV
mð Þ

MG and DB(m). More details are provided in analysis. (b) Theoretical plot, simulated according to the

conductance G expressed in Discussion. (c) Constant dVMG line taken from a, showing clear phase accumulation followed by abrupt phase jump of
Dy
2p¼0:75, which is also equal to the value of x (equation (11)). (d) The area response dAint inferred from the conductance’ phase (c). The relation between

the area response and the phase is obtained by inverting the relation between dAint and the conductance G, provided in the caption of Fig. 5. Note that

indeed (c,d) are highly similar (as anticipated by the theoretical plots, cf. yellow curves in Fig. 5d,b), but they are not identical. Naturally, for small values of

the phase, the conductance is nearly proportional to it.
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(and CebooCbulk)7,8,15. Then, once a whole flux quantum is
added AdB¼f0, the energy can again be minimized by
discharging the upper LL abruptly dQm¼ � e. This AB
behaviour is summarized in Fig. 5a–c (blue), leading to a
conductance depicted in Fig. 5d (blue).

On the other hand, as alluded above in the CD regime,
the total charge must be constant dQtot¼0ð Þat all times due

to the large charging energy KEBcKE, thus CebcCbulk

(in the absence of an Ohmic contact or top gate). As a
result, when the applied magnetic field is increased, the
area shrinks to prevent the enclosed flux from increasing.
This means dQ CDð Þ

tot dBð Þ¼dQ CDð Þ
" dBð Þ¼e � AdBþBdAintð Þ=f0¼0,

with dQk¼ 0 due to the bulk’s quantization, leading to
dAint¼ �AdB/B. In that case, as the interferometer’s area
shrinks, a dipole is created: a depleted region (positively charged)
is created just outside the boundary of the shrinking inter-
ferometer, while an excess negative charge accumulates inside.
The energy increase due to this dipole is reflected by the second
and third terms in equation (6). Once a whole flux quantum is
added AdB¼f0, the energy can again be minimized by abruptly
moving an electron from the upper LL to the lowest LL, described
by the simultaneous variation dQm¼ � e and dQk¼ þ e. At this

point, the area response dAint should abruptly vanish from
B810 nm2 (a flux quantum’s area at 5 T) to 0 mm2. Such an
abrupt response cannot be inferred from the measured con-
ductance (Fig. 2b), since it should result in a 2p variation of the
Aharonov–Bohm phase. This leaves the conductance constant as
function of dB. This CD behaviour is summarized in Fig. 5a–c
(purple), leading to a conductance depicted in Fig. 5d (purple).

To summarize, for any device without an Ohmic contact
within its centre (implying a quantization condition on dQm), the
system ‘decides’ whether it shrinks or not, and by how
much, according to the values of KEB and KE. Taking the
derivative of the total energy with respect to dAint, we obtain
dAint¼ � x �AdB/B, with x¼ KEB

KE þKEB
. The AB regime corresponds

to the limit KEcKEB, leading to x¼ 0 and dAint¼ 0; the
CD corresponds to the limit KEooKEB, leading to x¼ 1 and
dAint¼ �AdB/B. The behaviour in the intermediate regime is
summarized in Fig. 5a–c (red and yellow for x¼ 0.25 and
x¼ 0.75, respectively), resulting in the conductance depicted in
Fig. 5d.

The theoretical prediction (x¼ 0.75; Fig. 5d, yellow) is
consistent with the measured conductance shown in Fig. 4c,
from which we have retrieved both the area¼ 2.6 mm2 (from the
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open QPCs (t2¼0.85), taking the straightforward form G¼f0þ f1 cos 2p � AdBþ BdAint
f0

� �
(further details are provided in Supplementary Note 3). All four

graphs (a–d) are plotted versus variations of the magnetic field. (e–h) Similar graphs as a–d, as a function of modulation-gate voltage dVMG. The plots are

given for the simple case of nB¼ 2. For simplicity, we plot e–h in the case Cbulk¼Cedge at bulk filling factor nB¼ 2, leading to a CD frequency that is twice of

the AB frequency. The choice of these values does not change the qualitative picture, and we note that we find Cbulk¼ 1.45?Cedge in the experiment,

deduced from the measured frequencies.
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main periodicity) and the interaction parameter x¼ 0.75
(from the amplitude of the phase jumps). The possibility to
extract these two parameters from a single magnetic field scan
demonstrates the versatile information contained in the inter-
mediate regime—it incorporates both interactions (quantified by
x) and interference (related to A). Furthermore, from the
conductance (Fig. 4c), we infer the evolution of the area response,
dAint, as function of dB, shown in Fig. 4d. We find a maximal area
response of dAint¼ 500 nm2, which is in good agreement with our
expectation dAint¼� x � f0

B ¼0:75 � 585 nm2 � 440 nm2.

Modulation-gate variations. The two handles we have, varying
the magnetic field dB and varying the modulation-gate voltage
dVMG, are substantially different from each other. While in both
AB and CD regimes, the total charge must be conserved for dB
variations on the scale of several flux quanta, AdBcf0, dVMG

induces charge on the device through its capacitance g: applying
dVMG requires charging the device by dQtot¼ gdVMG that divides
into each Landau levels15,16: dQ#¼e � BdA0

f0
and dQ"¼gdVMG�

e � BdA0
f0

. Thus, the energy variation of the system (equation (6))
can be reformulated as:

dEtotal ¼ KEB
2 � dQtot� gdVMGð Þ2þ KE

2 � dQ# � e � dfAB
f0

� �2

þ KB
2 � dQ" � gdVMG� e � dfAB

f0

� �� �2
:

ð7Þ
Although equation (7) is valid for any variation of dB and dVMG,
only modulation-gate variations, dVMG, are considered in this
section.

In the AB regime, as the modulation-gate voltage increases by
dVMG such that dfAB dVMGð Þ¼BdA0¼aBdVMG, the lowest LL is
continuously charged by dQ ABð Þ

# dVMGð Þ¼e � aBdVMG
f0

allowing us to
observe Aharonov–Bohm interference with a period DV ABð Þ

MG ¼
f0
aB

(cf. Fig. 2a). Note that a is independent to the magnetic field
(Supplementary Fig. 4). Simultaneously, we expect the upper LL
to be continuously charged from the centre Ohmic contact,
satisfying dQ ABð Þ

" dVMGð Þ¼gdVMG� e � aBdVMG
f0

. Alternatively, with
top-gated devices (KEBooKE), the upper LL acquires an
additional electron discretely only once this last expression
(which can be regarded as the induced charge in the bulk)
amounts to an increase by a whole-electron charge
gdVMG� e � aBdVMG

f0
¼e. This AB behaviour is summarized in

Fig. 5e–g (blue) and results in a conductance depicted in Fig. 5h
(blue).

By contrast, in the CD regime, the high charging energy
KEBooKE requires dQðCDÞ

tot dVMGð Þ¼gdVMG for all values of
dVMG. As dQm¼ 0 due to charge quantization in the upper LL, it
follows that dQðCDÞ

# dVMGð Þ¼gdVMG. According to equation (5),
this necessitates an area response BdAint

f0
¼ gdVMG

e � aBdVMG
f0

, (which is

always larger than zero since g
e 4

aB
f0

; see Supplementary Figs 2 and 4).
Namely, while in the AB regime the area dilations are dictated
solely by the mutual capacitance between the edge and the
modulation gate, a, here, in the CD regime, the area dilations
overshoots to satisfy the capacitance of the device (including both
the edge and the bulk) to the modulation gate, g. This overshoot
will cost an energy proportional to KE (equation (7)). Then again,
once this overshoot is equivalent to a whole electron, the area will
retract back minimizing the total energy. This CD behaviour is
summarized in Fig. 5e–g (purple) and results in a conductance
depicted in Fig. 5h (purple).

Similarly to the analysis of magnetic field variations, we can
express the area response to variations of dVMG for any value of
the interaction parameter x: we obtain BdAint

f0
¼xðgdVMG

e � aBdVMG
f0
Þ

resulting in a total area variation BdA
f0
¼ aBdVMG

f0
þ

xðgdVMG
e � aBdVMG

f0
Þ. This is summarized in Fig. 5e–h (red and

yellow for x¼ 0.25 and x¼ 0.75, respectively).

Analysis of the entire B�VMG plane. So far, we have analysed
the area response to variations of either dB or dVMG. We now
turn our attention to concomitant variations of both. This will
allow us to analyse the data shown in Figs 3a and 4a. Notably, the
interference pattern in Figs 3a and 4a may be decomposed into
two ingredients. First, descending lines along which phase jumps
take place (cf. solid lines in Fig. 4a). The respective periodicities
are denoted DV PJð Þ

MG and DB(PJ) (marked on top of Fig. 4a, with
the superscript ‘PJ’ for ‘phase jump’). Second, continuous
conductance oscillations with respect to modulation-gate voltage
and magnetic field in between two adjacent phase jump lines.
The corresponding periodicities are then DV mð Þ

MG and DB(m),
respectively (marked on top of Fig. 4a as well, with the superscript
‘m’ for ‘modified’). These continuous oscillations reflect the
interference of electrons at the edge. Crossing a maximal
conductance line (for example, following arrow a2 in Fig. 3a)
corresponds to an incremental variation of dQk by ±e. Here,
‘modified’ alludes to the fact that these continuous oscillations
are in fact coherent AB oscillations modified by the Coulomb
interaction. Likewise, crossing a phase jump line (for example,
following arrow a1 in Fig. 3a) implies a change of the upper LL’s
charge dQm by ±e. Naturally, the combination of these two types
of processes gives rise to the system’s charge stability diagram in
the B�VMG plane.

To express the modified periodicities DB(m) and DV mð Þ
MG

(in between abrupt changes of the charge), we need to determine
an expression for the interference phase (equation (5)) for a
fixed number of electrons in the upper LL. We first generalize
the dependence of the area response on dB and dVMG by
combining the results obtained in the previous sections:
BdAint
f0
¼xðgdVMG

e � dfAB
f0
Þþ x � dQbulk

e , where the last term represents
phase jumps that accompany variations of dQm¼±e (for further
details see Supplementary Notes 2–3). This result is then plugged
into the expression for the total phase (equation (5))15:

2p
dftot

f0
¼2p 1� xð Þ � dfAB

f0
þ x � gdVMG

e
þ x � dQ"

e

� �
: ð8Þ

Note that the last term of the of the equation accounts for abrupt
phase jumps. The respective modified periodicities are:

1=DB mð Þ¼ 1� xð Þ � 1=DB ABð Þ: ð9Þ

1=DV mð Þ
MG ¼ 1� xð Þ � 1=DV ABð Þ

MG þ x � 1=DV CDð Þ
MG : ð10Þ

These two frequencies are notably a linear combination of the AB
and CD frequencies (cf. equations (1–4)): 1=DV ABð Þ

MG o1=DV mð Þ
MG

o1=DV CDð Þ
MG and 1=DB CDð Þo1=DB mð Þo1=DB ABð Þ. Constant flux

lines of dftot follow a negative slope in the B�VMG plane, similar
to the pure AB case. We extract DB(m)¼ 65.9 G and
DV mð Þ

MG¼5:3 mV from our data; each of these periodicities leads
to an interaction parameter x¼ 0.75±0.01. The periodicities
associated with phase jumps are found to be 1=DB PJð Þ¼A=f0 and
1=DV PJð Þ

MG¼g� aB=f0 (cf. equations (1–4); see Supplementary
Note 3 for details). We find this relation to be in agreement with
the measured values. Note that these periodicities do not depend
on the value of x.

Combining the modified periodicities (equations (9 and 10))
with the phase jump periodicities allows us to construct the
charge stability diagram. Naturally, vectors connecting different
cells in the diagram (Fig. 3a) represent different discrete charge
variations (dQk,dQm)¼ (n,m) (cf. Supplementary Note 2). It is
convenient to select the following basis (Fig. 3a): a1¼ DB ABð Þ; 0

� 	
and a2 ¼ ðDB ABð Þð1� DVCD

DVAB
Þ;DV CDð Þ

MG Þ. Here, a1 represents the
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process of moving one electron from the upper to the lowest LL
(namely, n¼ 1 and m¼ � 1, as explained in ‘magnetic field
variations’), while a2 represents adding one electron to the lowest
LL and keeping the upper LL’s charge constant (namely, n¼ 1
and m¼ 0). Evidently, their sum a1þ a2 refers to adding one
electron to the upper LL, while keeping the lowest LL’s charge
constant. The reciprocal lattice is spanned by the pure AB

and CD frequencies, b1¼2p � ð1=DB ABð Þ; 1=DV ABð Þ
MG Þ and b2¼2p �

ð0; 1=DV CDð Þ
MG Þ respectively (cf. Fig. 3b).

Phase jumps and proposed experiments. Finally, we study
qualitatively the phase jump taking place when a phase jump line
is crossed, following an infinitesimal variation of either dB or
dVMG. The acquired phase is given by15:

Dy ¼ � 2p � x: ð11Þ
Evidently, in the extreme AB and CD cases this phase jump is
zero (x¼ 0) or unobservable (x¼ 1), respectively. Experimentally,
the value of x (0oxo1) can be deduced from directly measuring
the phase jump (seen in Fig. 4c). We find xE0.75 (similar to the
value we obtained independently by comparing the measured
frequencies with equations (9 and 10) of the previous section).
This value of x corresponds to an area jump of 440 nm2

(cf. Fig. 4d).
A possible extension of our analysis to the FQHE regime is

straightforward and results in a phase jump given by:

Dy ¼ ystat � 1� xð Þ: ð12Þ
where ystat is the quasi-particles’ statistical braiding phase (for
example, ystat¼ 2p

3 for anyons at nB¼ 1/3). While the difference
between equation (11) and equation (12) is seemingly minute, its
impact might be significant. It is apparent that, by probing Dy in
a fractional filling factor, the requirement for probing ystat is
0rxo1. This requirement is to be compared with previous
measurements that focused on a pure AB, x¼ 0 and pure CD,
x¼ 1 (anyonic statistics cannot be probed). Breaking this
dichotomy between the pure AB and pure CD regimes thus
provides us with a toolbox to probe anyonic statistics.

We stress that the protocol to probe fractional statistics
requires the study of the conductance as function of the magnetic
field and the modulation-gate voltage (similarly to Figs 3a and 4a).
This is needed to identify the regime of operation (the parameter x)
with no ambiguity. Previous reports28,29 presenting conductance
oscillations in fractional filling factors have failed to show such
2D scans of the conductance in a 2D parameter space, and were
thus criticized for not excluding a CD behaviour, or for being
otherwise inconclusive8,19,30. Other works, which did identify the
regime of operation, simply failed to obtain an AB behaviour in
fractional filling factors. These attempts utilized both large area
and small area devices. For the former, Coulomb effects are
expected to be negligible if a top gate is placed on top of the
sample7,8 or an Ohmic contact is placed at the centre of the
device22, rendering the regime of operation AB. Yet an AB
interference pattern (observable in the integer quantum Hall
effect regime) has not been observed for fractional filling factors.
This might be attributed to a short coherence length of anyons in
such relatively large devices. One may then resort to smaller FPIs.
Unfortunately, reducing the device’s size leads to the undesired
CD regime in the case of top-gated devices7,8, and, in the case of
devices with Ohmic contacts at the centre, further miniaturization
is limited. The device reported here, having an Ohmic contact
placed outside its circumference, operates in a regime
intermediate between AB and CD. Given the possibility to
make the device’s size small in such a design, yet maintaining
xo1 with a clear signature of coherent Aharonov–Bohm

oscillations, presents us with an intriguing prospects:
notwithstanding a short quasi-particle coherence length,
coherency may still be maintained over the size of the
interferometer. Interference signal, a smoking gun evidence for
anyonic statistics, is then potentially observable.

Discussion
We provide here an experimental evidence of area modulations of
a FPI implemented in the quantum Hall effect regime. These
modulations stem from the minimization of the system’s energy,
as the applied magnetic field and the modulation-gate voltage are
varied. Our analysis does not rely on the coherent operation of
the device. The measurement of the area modulations, though,
could be realized through the observation of coherent interference
oscillations. The area evolution consists of a continuous shrinking
when increasing magnetic field, followed by an abrupt dilation.

We have employed a theoretical framework that accounts for
both the AB and the CD, and a novel intermediate regime. The
latter enables us to construct the system’s charge stability diagram
as well, showing good agreement with a minimal theoretical
model. Both the area breathing and the charge stability diagram
are used towards a complete characterization of the device, the
latter being hidden in the pure AB or CD limits.

Utilizing a similar interferometer operating in the intermediate
regime in the domain of the FQHE regime is called for. The
novelty of our device lies within the possibility to explore a wide
range of the interaction parameter x, in which the quasi-particles’
braiding statistics is observable. In other words, our findings
reported here pave a new path for probing anyonic statistics in
the FQHE regime.

Methods
Ohmic contacts. As explained in the text, the ‘pure’ CD regime can be avoided
through undermining the effect of Coulomb interactions. This can be achieved
utilizing two different methods:

First: we place a grounded Ohmic contact inside the interferometer’s bulk, thus
avoiding its charge quantization (cf. the device in Fig. 1b). The Ohmic contact
consists of 106 nm Au/53 nm Ge/40 nm Ni alloyed to the heterostructure having a
resistance of 500O at zero magnetic field. This Ohmic contact is not resistively
coupled to the edge (the observed coherent phase oscillations are evidence to that).
This important point has been verified in a previous work (cf. Supplementary Fig. 9
in ref. 22), employing a more complex set-up. The latter consisted of a FPI with a
centre contact and an additional QPC placed along the interferometer’s edge,
allowing to reflect edge channels selectively into the centre Ohmic contact. Then,
by measuring the current at the centre contact, we have verified that it is non-
vanishing only once the chiral channel corresponding to the LLL is physically
reflected into this contact.

Second: this consists of lowering the device’s charging energy, KEB. For this
purpose, two schemes are available. One scheme consists of covering the whole
area of the FPI by a metallic top gate, increasing its capacitance, thus lowering its
charging energy7,8. This scheme has not been utilized in our measurements, but has
been reported to work well for relatively large FPIs (areas 412 mm2)7,8, resulting in
a ‘pure’ AB behaviour. On the other hand, devices of area o4 mm2 have been found
to operate in the CD regime, even if covered by top gate7,8. This was attributed to
the different scaling of the capacitances Ceb and Cbulk with area15. The other
scheme relies on placing an Ohmic contact in the vicinity of the interferometer.
The role of the Ohmic contact here can be understood through a mutual
capacitance Cob between the Ohmic contact and the bulk, similar to the effect of
top gates7,8; we find, though, that this placement of an Ohmic contact is
substantially more effective than a top gate. The mutual capacitance effectively
increases the capacitance of the bulk (Cbulk-CbulkþCob), accounting for the
partial screening by the Ohmic contact, while keeping the capacitance between the
edge and the bulk unchanged (Ceb-Ceb). This leads to a decrease of the interaction
parameter, x (x¼ 0.75 in the results reported here, compared with x¼ 1 with
top-gated devices of the same size 4 mm2). As is discussed in the main text, this new
design gives rise to the intermediate regime.

Measurement techniques. Our electronic set-up for conductance measurements
is depicted in the Fig. 1c. We note that two amplifiers were used in the course of
our measurements; the first, a homemade voltage preamplifier at T¼ 1 K having a
gain factor B10 and a commercial amplifier (NF SA-220F5) at room temperature
having a voltage gain B200.
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All experiments are performed within 3He–4He dilution fridges. Electron
temperatures are measured via shot-noise measurements by driving a variable d.c.
source current at a centre frequency of 800 kHz and bandwidth of 10 kHz.

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.
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