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Interleukin-22 ameliorated renal injury and fibrosis in
diabetic nephropathy through inhibition of NLRP3
inflammasome activation

Shaofei Wang1,4, Yubin Li1,4, Jiajun Fan1, Xuyao Zhang1, Jingyun Luan1, Qi Bian2, Tao Ding2, Yichen Wang1, Ziyu Wang1, Ping Song1,
Daxiang Cui3, Xiaobin Mei*,2 and Dianwen Ju*,1

Diabetic nephropathy (DN) is one of the most lethal complications of diabetes mellitus with metabolic disorders and chronic
inflammation. Although the cytokine IL-22 was initially implicated in the pathogenesis of chronic inflammatory diseases, recent
studies suggested that IL-22 could suppress inflammatory responses and alleviate tissue injury. Herein, we examined the role of
IL-22 in DN. We found that serum levels of IL-22 were significantly downregulated in both patients and mice with DN. The
expression of IL-22 was further decreased with the progression of DN, whereas IL-22 gene therapy significantly ameliorated renal
injury and mesangial matrix expansion in mice with established nephropathy. IL-22 could also markedly reduce high glucose-
induced and TGF-β1-induced overexpression of fibronectin and collagen IV in mouse renal glomerular mesangial cells in a
dose-dependent manner, suggesting the potential role of IL-22 to inhibit the overproduction of ECM in vitro. Simultaneously, IL-22
gene therapy drastically alleviated renal fibrosis and proteinuria excretion in DN. In addition, IL-22 gene therapy markedly
attenuated hyperglycemia and metabolic disorders in streptozotocin-induced experimental diabetic mice. Notably, IL-22 drastically
reversed renal activation of NLRP3, cleavage of caspase-1, and the maturation of IL-1β in DN, suggesting unexpected anti-
inflammatory function of IL-22 via suppressing the activation of NLRP3 inflammasome in vivo. Moreover, IL-22 markedly
downregulated high glucose-induced activation of NLRP3 inflammasome in renal mesangial cells in a dose-dependent manner,
indicating that the effects of IL-22 on NLRP3 inflammasome activation was independent of improved glycemic control. These
results suggested that nephroprotection by IL-22 in DN was most likely associated with reduced activation of NLRP3
inflammasome. In conclusion, our finding demonstrated that IL-22 could exert favorable effects on DN via simultaneously
alleviating systemic metabolic syndrome and downregulating renal NLRP3/caspase-1/IL-1β pathway, suggesting that IL-22 might
have therapeutic potential for the treatment of DN.
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Diabetic nephropathy (DN), characterized clinically by pro-
gressive increase in proteinuria, and pathologically by
excessive deposition of extracellular matrix (ECM) compo-
nents, and subsequent glomerulosclerosis and tubulointer-
stitial fibrosis, is the leading cause of end-stage renal disease
(ESRD) worldwide. It has been generally recognized that the
development and progression of DN are attributed to multiple
interconnected mechanisms, including initial systemic patho-
genesis such as hyperglycemia and metabolic disorders, as
well as subsequent renal pathogenesis such as fibrosis and
inflammation.1–4 Thus, it is crucial to identify a novel therapy
for DN that simultaneously improves the systemic pathogen-
esis and renal pathogenesis to protect against diabetic kidney
complications.5–8

IL-22, a member of IL-10 cytokine superfamily, is dominantly
produced by innate lymphoid cells and CD4+ T helper
subtypes such as Th17 and Th22 cells.9,10 IL-22 could play

either a protective or pathogenic role in the onset and
progression of inflammatory and autoimmune diseases.11–17

It has been indicated that IL-22 pathway is indispensable for
maintaining metabolic homeostasis, and administration of
IL-22 alleviates metabolic disorders including hyperglycemia
and dyslipidemia.18–20 Furthermore, recent studies have
reported that IL-22 effectively ameliorates renal injury and
preserves renal function in acute kidney injury by suppressing
inflammation.21,22 Although these observations implicate the
importance of IL-22 in metabolism modulation and renal
protection, the role of IL-22 in the progression of DN has not
been defined, nor has its underlying molecular mechanism
been determined. Activation of NOD-like receptor family pyrin
domain-containing protein 3 (NLRP3) inflammasome is an
important contributor to renal inflammation and fibrosis in
chronic kidney disease via processing and secretion of the
pro-inflammatory cytokines IL-1β and IL-18.23–28 Notably, it
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has been elucidated by late-breaking studies that activation of
NLRP3 inflammasome participates in the onset and progres-
sion of DN and targeting NLRP3 inflammasome activation
may be a feasible therapeutic approach for DN.29–32 However,
it remains unknown whether IL-22 could exert beneficial
effects on DN via modulation of NLRP3 inflammasome
activation or not. Streptozotocin-induced mouse model of
experimental DN is widely recognized animal model of
diabetic kidney injury with similarities to human diabetic
kidney disease (DKD). Although C57BL/6 mice have been
reported to be somewhat genetically resistant to the develop-
ment of DN, they are susceptible to experimental DN induced
by multiple low-dose STZ injections that has been considered
a reliable protocol to obtain sufficient diabetes to cause renal
injury.33–35 Thus, we employed the commonly used C57BL/6
mice to establish mouse model of DN.
In the present study, we aimed to examine the role of IL-22 in

DN and determine whether IL-22 could exert comprehensive
therapeutic effects via both systemic and local mechanisms.
Investigating the therapeutic effects and deciphering the
underlying mechanisms of IL-22 could lead to the develop-
ment of novel therapies for DN, thus providing scientific basis
for therapeutic strategies for DKDon the basis of simultaneous
regulation of metabolism and NLRP3 inflammasome
activation.

Results

IL-22 expression was abnormally decreased in patients
and mice with DN. To explore the possible association
between the expression of IL-22 and the development of DN,
we quantified the serum levels of IL-22 in patients and mice
with DN, respectively. As shown in Figure 1a, IL-22
expression was significantly decreased in patients with DN
as compared with age-matched healthy controls. Correlation
analysis between IL-22 expression and disease duration
showed that serum levels of IL-22 in patients with DN were
negatively associated with the progression of DKD (r=
−0.284; P= 0.027). Meanwhile, serum levels of IL-22 were
also downregulated in mice with established DN. Moreover,

IL-22 expression was further reduced with the development
of DN (Figure 1b), further suggesting that downregulation of
IL-22 may correlate with the progression of DKD.

IL-22 gene therapy attenuated renal injury and mesangial
matrix expansion in established nephropathy. To deter-
mine the role of IL-22 in DN, we constructed eukaryotic
expression plasmid DNA encoding murine IL-22
(Supplementary Figure 1A). The efficacy of gene delivery
via the recombinant plasmid to cells was determined by
immunoblot analysis. As expected, the intracellular expres-
sion of IL-22 in HEK293T cells transiently transfected with
pVAX1mIL22 was substantially increased as compared to
that of cells transfected with empty vector (Supplementary
Figures 1B and C). Meanwhile, to determine the effective-
ness of pVAX1 plasmid vector-mediated gene transfer of
murine IL-22 in vivo, time-dependent variation of serum IL-22
following intramuscular injection of the recombinant plasmid
was analyzed by ELISA assay (Supplementary Figure 1D).
As shown evidently in Supplementary Figure 1E, a pro-
nounced increase of serum levels of murine IL-22 was
observed in mice after intramuscular gene transfer of IL-22,
which peaked on day 3 after injection and almost completely
subsided by day 10. On the basis of kinetics study,
therapeutic plasmid was administered at weekly intervals in
the subsequent therapeutic intervention to maintain the high
expression of the transgene.
Next, we employed the long-term mouse model of STZ-

induced experimental DN to assess the therapeutic effects of
IL-22 gene therapy on DKD. IL-22 gene therapy was started at
17 weeks after the last STZ injection and continued for
12 weeks to determine the therapeutic effects of IL-22 on the
progression of DKD. As it was clearly elucidated in
Supplementary Figures 2 and 3, IL-22 gene therapy was
initiated in mice with established nephropathy and continued
for 12 weeks to determine the therapeutic effects of IL-22 on
the progression of DKD. After administration of therapeutic
plasmid pVAX1mIL22 via direct intramuscular injection for 12
consecutive weeks, renal pathological alterations, glycogen
deposition, and collagen accumulation were substantially

Figure 1 Downregulation of serum IL-22 in patients and mice with diabetic nephropathy. (a) Serum levels of IL-22 in patients with DN and age-matched healthy controls
measured by ELISA assay. Numbers of human serum samples analyzed in each group were indicated at the top of each bar. (b) Serum levels of IL-22 in mice with established DN
and age-matched normal controls measured by ELISA assay (N= 5). *Po0.05; **Po0.01
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improved inmicewith established nephropathy as indicated by
hematoxylin and eosin (H&E) staining, periodic acid–Schiff
(PAS) staining, and Masson staining, respectively (Figure 2a).

Notably, apparent glomerular mesangial matrix expansion
was observed in diabetic mice, which was obviously reduced
after IL-22 gene therapy (Figure 2b). In addition, IL-22 gene

Figure 2 Attenuated renal injury and mesangial matrix expansion with established diabetic nephropathy after IL-22 gene therapy. (a) Representative micrographs of H&E
staining, PAS staining, and Masson staining. Original magnification: × 400. (b) Glomerular mesangial matrix expansion quantified from PAS staining. (c) Survival rate of mice after
IL-22 gene therapy. (d–e) Reduced synthesis of high glucose-induced and TGF-β1-induced ECM proteins in renal glomerular mesangial cells after IL-22 treatment.
Representative immunoblots and semi-quantitative analysis of cytosolic expression of fibronectin and collagen IV from three independent experiments was carried out using
ImageJ (National Institutes of Health, Bethesda, MD, USA). Densitometric values of immunoreactive bands were normalized to those of β-actin and the results were expressed as
fold changes. *Po0.05; **Po0.01; NS, no significance
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therapy could prevent death of mice with established nephro-
pathy (Figure 2c). Interestingly, IL-22 markedly reduced high
glucose-induced and TGF-β1-induced overexpression of
ECM proteins such as fibronectin and collagen IV in mouse

renal glomerular mesangial cells and human renal tubular
epithelial cells in a dose-dependent manner, suggesting the
potential role of IL-22 to inhibit the overproduction of ECM
in vitro (Figures 2d, e, Supplementary Figures 4A and B).

Figure 3 Alleviated renal fibrosis in mice with established nephropathy after IL-22 gene therapy. (a) Renal expression of fibronectin, collagen IV, vimentin, and α-SMA by
immunoblot analysis. (b) Quantitative analysis of renal expression of fibronectin, collagen IV, vimentin, and α-SMA from three individual experiments. (c) Deposition of the ECM
proteins including fibronectin and collagen IV in glomeruli by immunohistochemistry analysis. Original magnification: × 400. (d) Qualification of glomerular fibronectin and collagen
IV expression by ImageJ. Densitometric values of immunoreactive bands were normalized to those of β-actin and the results were expressed as fold changes. **Po0.01
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IL-22 gene therapy alleviated renal fibrosis in mice with
established nephropathy. Renal fibrosis, characterized by
excessive accumulation of ECM, plays a central role in the
development of DN. Thus, we next examined whether the
blockage of diabetic kidney injury by IL-22 gene therapy was
mediated by inhibition of renal fibrosis. As shown in
Figure 3a, IL-22 suppressed diabetes-induced glomerular
and interstitial fibrosis as indicated by reduced fibronectin,
collagen IV, vimentin and α-SMA expression in kidney tissue
lysates. In parallel, semi-quantitative immunoblot analysis
also showed significant decreased protein expression of
fibronectin, collagen IV, vimentin, and α-SMA in mice with
established nephropathy after IL-22 gene therapy (Figure 3b).
Immunohistochemical staining of collagen IV and fibronectin
was performed to further clarify the effect of IL-22 on renal
fibrosis (Figure 3c). Although increased fibronectin and
collagen IV were detected in tubulointerstitial compartment,
fibronectin and collagen IV were predominately accumulated
in the mesangial area of glomeruli in diabetic mice,
demonstrating the occurrence of diffuse mesangial expan-
sion and sclerosis. Conversely, both proteins were expressed
at lower levels in the glomeruli of diabetic mice treated with
pVAX1mIL22, compared with the naive group and vector-
treated group (Figure 3d). In brief, our data indicated that
renal fibrosis, especially glomerular fibrosis, was significantly
attenuated after IL-22 gene therapy in established DN.

IL-22 gene therapy preserved renal function in experi-
mental DN. Serum creatinine and BUN, generally consid-
ered as makers of renal function, were determined to
evaluate the effect of IL-22 on renal dysfunctions in mice
with established experimental DN. Consistent with histo-
pathological analysis, serum levels of creatinine and BUN of

diabetic mice in naive group and vector control group were
significantly elevated. In contrast, administration of therapeu-
tic plasmid pVAX1mIL22 effectively downregulated serum
levels of creatinine and BUN, implying largely improved renal
dysfunctions after IL-22 gene therapy (Figures 4a and b).
Moreover, the development of proteinuria, a clinical predictor
of renal lesions in DN, was also obviously attenuated by IL-22
gene therapy (Figure 4c). In addition, IL-22 gene transfer led
to significant reduction of diabetes-induced increase of
kidney index (Figure 4d). Collectively, these data suggested
that IL-22 gene therapy effectively restored renal function in
experimental DN.

IL-22 gene therapy alleviated hyperglycemia and
improved metabolic disorders of diabetic mice. It has
been universally recognized that systemic pathogenesis such
as hyperglycemia and metabolic disorders contributes to
subsequent renal complications in diabetes. Thus, we
explored whether IL-22 could modulate metabolism in mice
with DN. Interestingly, IL-22 gene transfer in mice with
established nephropathy significantly reduced both blood
glucose and urine glucose levels, suggesting better glycemic
control in diabetic mice by upregulation of IL-22 (Figures 5a
and b). Since liver played a central role in metabolic
hemostasis with numerous functions, we subsequently
evaluated whether liver injury induced by diabetes was
alleviated after IL-22 gene transfer. Diabetes-induced liver
injury such as hepatic vacuolization and necrosis was
markedly attenuated after intramuscular injection of thera-
peutic plasmid pVAX1mIL22 for 12 consecutive weeks, as
was demonstrated by pathological examination (Figure 5c
and Supplementary Figure 5). Meanwhile, hepatomegaly in
diabetic mice, as indicated by increased liver index, was

Figure 4 Improved renal function in mice with experimental diabetic nephropathy after IL-22 gene therapy. (a) Serum creatinine levels, (b) serum BUN levels, (c) proteinuria
and (d) renal index of mice before and after IL-22 gene therapy for 12 weeks. Renal index= renal weight (mg)/body weight (g). N= 5; *Po0.05; **Po0.01. The time point of the
initiation of IL-22 gene therapy was defined as week 0
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Figure 5 Improved glycemic and metabolic control in diabetic mice after IL-22 gene therapy. (a and b) Blood glucose levels and urine glucose levels 0, 4, 8, and 12 weeks
after IL-22 gene therapy. (c) Representative micrographs of H&E staining to detect liver histopathological alterations. Original magnification: × 200. (d and e) Serum levels of ALT
and AST before and after IL-22 gene therapy. (f and g) Serum levels of triglyceride and total cholesterol before and after IL-22 gene therapy. N= 5; *Po0.05; **Po0.01. The time
point of the initiation of IL-22 gene therapy was defined as week 0. NS, no significance
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markedly reduced by IL-22 gene therapy (Supplementary
Figure 6). Congruent with histological analysis, elevated
serum levels of ALT and AST were significantly decreased in
mice with established nephropathy after IL-22 gene therapy
(Figures 5d and e). Furthermore, IL-22 effectively improved
metabolic syndrome in diabetic mice as indicated by serum
levels of triglyceride and total cholesterol that were compar-
able to those of normal mice (Figures 5f and g). These data
suggested that IL-22 gene therapy improved not only
hyperglycemia but also metabolic disorders, which might
have protective effects on renal complications in diabetes.

IL-22 gene therapy suppressed activation of renal NLRP3
inflammasome in mice with established nephropathy.
Mounting evidence have demonstrated that the NLRP3
inflammasome is an important contributor to inflammation
via caspase-1-mediated processing, and secretion of the pro-
inflammatory cytokines and activation of NLRP3 inflamma-
some plays a critical role in the pathogenesis of DN. Thus, we
explored whether IL-22 could modulate NLRP3 inflamma-
some activation in DN. As shown in Figure 6a, serum levels of
human IL-1β were remarkably elevated in patients with DN as

compared with age-matched healthy controls. Meanwhile,
serum levels of murine IL-1β were also significantly increased
in STZ-induced experimental diabetic mice, but drastically
decreased after IL-22 gene therapy (Figure 6b). Interestingly,
caspase-1 activity assay demonstrated that IL-22 intervention
tended to normalize upregulated caspase-1 activity in renal
tissues of mice with DKD (Figure 6c). Consistent with
previous studies, DN could lead to renal activation of NLRP3
inflammasome, cleavage of caspase-1, and secretion of
mature IL-1β as indicated by immunoblot analysis. Conver-
sely, IL-22 gene therapy drastically reversed the activation of
NLRP3, cleavage of caspase-1, and the maturation of IL-1β
in renal tissues, suggesting unexpected anti-inflammatory
function of IL-22 via suppressing the activation of NLRP3
inflammasome in vivo (Figure 6d). In addition, IL-22 markedly
downregulated high glucose-induced activation of NLRP3
inflammasome in mouse renal mesangial cells in a dose-
dependent manner, indicating that the effects of IL-22 on
NLRP3 inflammasome activation was independent of
improved glycemic control (Figure 6e). These data indicated
that IL-22 gene therapy almost abolished activation of
NLRP3 inflammasome, through which IL-22 exerted

Figure 6 Suppression of renal NLRP3 inflammasome activation by IL-22 gene therapy in mice with established nephropathy. (a) Serum levels of human IL-1β in patients with
DN and age-matched healthy controls measured by ELISA. Numbers of human serum samples analyzed in each group were indicated at the top of each bar. (b) Serum levels of
murine IL-1β in mice with DN and age-matched normal controls measured by ELISA (N= 5). (c) Relative renal cytosolic caspase-1 activity (N= 5). (d) Representative
immunoblots and quantitative analysis of renal cytosolic NLRP3, cleaved caspase-1, and IL-1β expression from three individual experiments. Densitometric values of
immunoreactive bands were normalized to those of β-actin and the results were expressed as fold changes. (e) Representative immunoblots and quantitative analysis of NLRP3,
cleaved caspase-1, and IL-1β expression in high glucose-induced renal glomerular mesangial cells from three independent experiments. Densitometric values of immunoreactive
bands were normalized to those of β-actin and the results were expressed as fold changes. *Po0.05; **Po0.01
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anti-inflammatory effects in DN. Collectively, we found that
IL-22 gene therapy could exert favorable effects on estab-
lished DN via simultaneously alleviating systemic metabolic
syndrome and downregulating renal NLRP3 inflammasome
activation (Supplementary Figure 7).

Discussion

This study focused on deciphering the therapeutic effects and
underlying molecular mechanisms of IL-22 for the treatment of
DKD. In the current study, on the basis of identifying the
possible association between the downregulation of IL-22 and
the progression of DN, we provided in vivo evidence for the
first time that IL-22 significantly alleviated renal injury and
fibrosis in established DN. Notably, we reported for the first
time that IL-22 gene therapy not only suppressed the systemic
pathogenesis of DN, including hyperglycemia and metabolic
disorders, but also protected against renal pathogenesis via
suppression of NLRP3 inflammasome activation. These
findings suggested that IL-22 might have therapeutic potential
for the treatment of DN. Regardless of exactly how IL-22
controls metabolic syndrome and regulates NLRP3 inflamma-
some activation, our results have revealed possible molecular
mechanisms responsible for therapeutic effects of IL-22 for
DKD and pointed out a comprehensive therapeutic strategy by
IL-22 for DN, which is of great significance to the control of
diabetic kidney complications.
It has been generally recognized that the characteristic

pathological alteration associated with DN is the accumulation
of ECM components in glomeruli, often resulting in the
development of glomerulosclerosis and loss of renal function.
In this study, we found that IL-22 gene therapy could attenuate
renal fibrosis through inhibition of ECM accumulation and
mesangial matrix expansion in DN, thus largely preserving
renal function of diabetic mice. Although the renoprotective
effects of IL-22 in acute kidney injury have been investigated in
recent years,21,22 studies on the anti-fibrotic effects of IL-22 in
renal diseases are still lacking.36–39 Notably, to our knowledge,
the findings from this study revealed for the first time that IL-22
could exert anti-fibrotic effects in kidney disease. Never-
theless, it should be pointed out that the effects of IL-22 on
different compartments of the kidney, including the epithelium,
mesangium interstitium, and endothelium, still need further
elucidation.
To date, no remedies are available to prevent the renal

complications of diabetes except for therapies that may slow
down the progression of DN through intensive control of
glycemia and blood pressure. Recently, it has been reported
that IL-22 pathway is indispensable for alleviating metabolic
disorders and lack of IL-22 signaling contributed to the
development of metabolic syndrome.18–20 Consistent with
these results, our data demonstrated that IL-22 gene therapy
not only strikingly alleviated hyperglycemia, but also markedly
reduced serum levels of triglyceride and total cholesterol in
STZ-induced diabetic mice, further unveiling the biological
function of IL-22 in metabolism regulation. It has been
universally recognized that simply targeting systemic hyper-
glycemia and metabolic disorders is not sufficient to arrest the
progression of DN,8,40–43 indicating that there must be other

molecular mechanism responsible for therapeutic effects of
IL-22 for DN.
In addition to the tight control of hyperglycemia and

metabolic disorders, anti-inflammation has been considered
to be a therapeutic approach to minimize the diabetic
complications. It has been elucidated by late-breaking studies
that activation of NLRP3 inflammasome as a main contributor
to inflammation participates in the onset and progression of
DN and has been recognized as a promising therapeutic
target for the treatment of DN.44–46 In the current study, we
demonstrated that IL-22 was able to reduce systemic and
renal inflammation in diabetic mice, consistent with previous
studies in mouse model of acute kidney injury.21,22 Interest-
ingly, our findings indicated that IL-22 suppressed renal
fibrosis via downregulation of NLRP3 inflammasome activa-
tion and subsequent caspase-1-mediated processing of pro-
IL-1β and secretion of the mature cytokines, therefore
suppressing renal fibrosis. It is noteworthy that activation of
NLRP3 inflammasome occurred at an early stage of DN as
demonstrated by previous studies30 and IL-22 gene therapy
reversed the activation of NLRP3 inflammasome as indicated
by this study. Meanwhile, therapeutic effects of IL-22 gene
therapy were apparent despite initiation of treatment 17 weeks
after persistent hyperglycemia and nephropathy onset, reflect-
ing at least partial disease reversal by targeting renal NLRP3
inflammasome. It has been reported that IL-22 could promote
the activity of NLRC4 for sustained production of the IL-1
receptor antagonist IL-1Ra, thereby restraining NLRP3
activity.17 However, we have to point out that so far there is
no conclusive evidence that revealed the interrelationship
between IL-22 signaling pathway and NLRP3/caspase-1/
IL-1β pathway and our understanding toward the exact role
of IL-22 signaling pathway in the progression of renal fibrosis
and DN was still far from complete.36,47 Therefore, to identify
IL-22 as a novel therapy for DN that simultaneously inhibits the
systemic and renal pathogeneses, future studies should
explore in-depth the relationship between IL-22 signaling
and NLRP3 inflammasome pathway in DKD.
In summary, this study provided new evidence for a better

understanding of the biological activities of IL-22 in DN in
terms of protection against renal fibrosis and NLRP3
inflammasome activation. Further investigation into multiple
biological functions of IL-22, including glycemic control,
metabolic regulation, anti-inflammation, and anti-fibrosis,
may ultimately help us to identify IL-22 as a novel therapeutic
agent for the treatment of DN.

Materials and Methods
Reagents and antibodies. Streptozocin, D-glucose, and D-mannitol were
purchased from Sigma (St Louis, MO, USA). Recombinant human TGF-β1 and
IL-22 were both from Peprotech (Rocky Hill, NJ, USA) and recombinant mouse
IL-22 was from Novoprotein (Shanghai, China). See Supplementary Materials for
details of antibodies used for immunoblot and immunohistochemical analysis.

Patient selection and volunteer recruitment. A total of 61 DN patients
(45 males and 16 females) with an average age of 63.31± 1.33 years were
included in this study. The criteria for inclusion were as follows: diagnosis of type 1
or type 2 DM; disease duration 410 years; and presence of both persistent
albuminuria and diabetic retinopathy. The criteria for exclusion were as follows:
history of non-diabetic kidney disease; severe hepatic, cardiac or other organ
impairment; infection and malignancy. The serum samples of patients with DN were
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obtained from Changhai Hospital upon informed consent and the study protocol was
granted by the Ethics Committee of Changhai Hospital. Serum samples of the
non-diabetic control group were obtained from 21 healthy volunteers (14 males and
7 females) with an average age of 63.62± 2.42 years and there was no statistical
significance in age (t= 0.115, P= 0.909) and gender (χ2= 0.391, P= 0.532)
distributions between patients with DN and healthy volunteers. See Supplementary
Materials for qualification of serum IL-22 and IL-1β in mice and patients.

Mouse model of experimental DN and in vivo intervention
study. Male C57BL/6 mice were obtained from the SLAC Laboratory Animal
Co. Ltd (Shanghai, China) and maintained under specific-pathogen-free conditions
(20 ~ 24 °C, 12/12 h light–dark cycle) with free access to food and water. All animal
experiments were conducted in accordance with the standards and procedures
approved by Animal Ethical Committee of School of Pharmacy at Fudan University.
See Supplementary Materials for the establishment of experimental DN and the
construction of therapeutic plasmid encoding murine IL-22. Intervention with the
recombinant eukaryotic expression plasmid pVAX1mIL22 (100 μg/dose, once a
week) was initiated in mice with established DN by bilateral intramuscular injection
at 17 weeks after the last STZ injection and continued for 12 weeks to determine
the therapeutic effects of IL-22 on the progression of DN. All intramuscular
injections were carried out under sodium pentobarbital anesthesia (50 mg/kg body
weight, intraperitoneally) to minimize the sufferings of the mice. At the end of the
experiment, 6 h urinary samples were collected using metabolic cages and non-
fasting serum samples were obtained for the assessment of biochemical
parameters.

Histopathological and immunohistochemical analysis. After the
mice were killed under anesthesia, kidney tissues were immediately collected,
weighted, cross-sectioned, fixed with 4% formaldehyde, and then processed for
histopathological and immunohistochemical analysis. For assessment of kidney
injury, renal sections were then stained with H&E for general morphological
examination, PAS for glomerulosclerosis evaluation, and Masson for collagen
deposition and interstitial expansion assessment, respectively. Mesangial index,
presented as the percentage of PAS-positive area in glomerulus, was used to
quantify mesangial ECM. Immunohistochemical staining of fibronectin and collagen
IV, counterstained with hematoxylin for the nuclei, was performed to clarify the effect
of IL-22 gene therapy on renal fibrosis. Positive staining area was quantified using
ImageJ software 1.49v (National Institutes of Health, Bethesda, MD, USA) and
expressed as a percentage of the total glomerular area. Briefly, 20 glomeruli were
randomly selected from each group and positive signals within each glomerulus
were highlighted, outlined, and measured by ImageJ. Liver tissues fixed in 4%
paraformaldehyde were processed and then stained with H&E for histopathological
analysis, as previously described.48 Ten fields were randomly selected and the
vacuolized hepatic cells were counted manually using the ImageJ plugins cell
counter. The percentage of vacuolized hepatic cells was calculated to quantify liver
pathological alteration. Histopathological and immunohistochemical analysis were
evaluated in a blinded manner by two independent investigators. See
Supplementary Materials for biochemical parameters analysis and caspase-1
activity assay.

Immunoblot analysis. See Supplementary Materials for glomerular mesan-
gial cell and renal tubular epithelial cell culture and treatment. Equivalent amounts of
cytosolic proteins extracted from renal tissues or cultured cells were subjected to
immunoblot analysis as described previously.49 Densitometric values of immunor-
eactive bands were quantified using ImageJ.

Statistical analysis. The data were presented as the mean± S.E.M.
Statistical analysis was performed with Student’s t-test or one-way ANOVA analysis
of variance using GraphPad Prism 6.0 Software (GraphPad Software Inc., San
Diego, CA, USA). Spearman’s correlation coefficient was used to evaluate the
significance of the association between expression of IL-22 and progression of DKD
in patients with DN.
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