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A B S T R A C T   

Background: Severe acute kidney injury (AKI) after total aortic arch replacement (TAAR) is related 
to adverse outcomes in patients with acute type A aortic dissection (ATAAD). However, the early 
prediction of severe AKI remains a challenge. This study aimed to develop a novel model to 
predict severe AKI after TAAR in ATAAD patients using machine learning algorithms. 
Methods: A total of 572 ATAAD patients undergoing TAAR were enrolled in this retrospective 
study, and randomly divided into a training set (70 %) and a validation set (30 %). Lasso 
regression, support vector machine-recursive feature elimination and random forest algorithms 
were used to screen indicators for severe AKI (defined as AKI stage III) in the training set, 
respectively. Then the intersection indicators were selected to construct models through artificial 
neural network (ANN) and logistic regression. The AUC-ROC curve was employed to ascertain the 
prediction efficacy of the ANN and logistic regression models. 
Results: The incidence of severe AKI after TAAR was 22.9 % among ATAAD patients. The inter-
section predictors identified by different machine learning algorithms were baseline serum 
creatinine and ICU admission variables, including serum cystatin C, procalcitonin, aspartate 
transaminase, platelet, lactic dehydrogenase, urine N-acetyl-β-D-glucosidase and Acute Physi-
ology and Chronic Health Evaluation II score. The ANN model showed a higher AUC-ROC than 
logistic regression (0.938 vs 0.908, p < 0.05). Furthermore, the ANN model could predict 89.1 % 
of severe AKI cases beforehand. In the validation set, the superior performance of the ANN model 
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was further confirmed in terms of discrimination ability (AUC = 0.916), calibration curve analysis 
and decision curve analysis. 
Conclusion: This study developed a novel and reliable clinical prediction model for severe AKI 
after TAAR in ATAAD patients using machine learning algorithms. Importantly, the ANN model 
showed a higher predictive ability for severe AKI than logistic regression.   

1. Introduction 

Acute type A aortic dissection (ATAAD) is an emergency and critical cardiovascular condition with a high risk of complications, and 
the mortality rate can reach 25 % after surgery [1]. Based on Stanford classification, ATAAD opens in the ascending aorta and is usually 
torn at the proximal or distal end, requiring emergency surgical repair. When ATAAD involves the aortic arch, patients need a more 
stringent surgical procedure and perioperative nursing. Recent studies have reported that total aortic arch replacement (TAAR) with 
frozen elephant trunk is widely used in complex aortic arch diseases and can decrease organ dysfunction after surgery [2,3]. Hence, 
TAAR has become a routine surgical procedure for ATAAD patients. 

Acute kidney injury (AKI) is a common complication after surgery among ATAAD patients. Past studies reported that the incidence 
of AKI after thoracic aortic surgery ranged from 26.0 % to 77.6 % [4–8]. Postoperative AKI is closely correlated with major adverse 
outcomes [9,10]. Importantly, severe AKI (defined as AKI stage III) is associated with a higher renal replacement therapy (RRT) rate, 
longer ICU stay and increased mortality than nonsevere AKI [11–13]. Studies have recently been performed on renal outcomes after 
the TAAR procedure among ATAAD patients [14–16]. However, few studies have predicted severe AKI after TAAR in ATAAD patients, 
and some classic renal biomarkers have also not been included [17]. A previous study demonstrated that combining classic renal 

Fig. 1. Flowchart of this study. TAAR, total aortic arch replacement; ATAAD, acute type A aortic dissection; CS-ICU, cardiac surgery intensive care 
unit; eGFR, estimated glomerular filtration rate; LASSO, least absolute shrinkage and selection operator; SVM-RFE, support vector machine- 
recursive feature elimination; RF, random forest; AKI, acute kidney injury; ANN, artificial neural network; AUC, area under the curve; ROC, 
receiver operating characteristic; DCA, decision curve analysis. 
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biomarkers of different properties might improve the prediction performance for AKI [18]. In addition, the International Society of 
Nephrology proposed an initiative to achieve zero preventable AKI deaths by 2025 [19]. Therefore, it is essential to develop a novel 
and effective model to identify ATAAD patients at a high risk of severe AKI after TAAR. 

Machine learning (ML) is a subfield of artificial intelligence that may have better prediction performance and higher interpret-
ability than traditional statistical methods for prediction. Studies showed that ML algorithms have been frequently employed to 
improve prediction ability for clinical outcomes [20–22]. For example, some studies on heart diseases demonstrated that ML algo-
rithms were superior to traditional regression methods in predicting outcomes [23,24]. Furthermore, a systematic review indicated 
that the ANN algorithm showed the best prediction performance among different ML methods for cardiovascular complications in 
diabetic patients [25]. However, there is a lack of studies on predicting severe AKI after TAAR in ATAAD patients using ML algorithms, 
especially in combination with classic biomarkers of AKI. Therefore, this study aimed at building a novel clinical prediction model for 
severe AKI after TAAR in ATAAD patients based on ML algorithms to help improve risk stratification for severe AKI in clinical practice. 

2. Methods 

2.1. Study design 

Clinical data of a total of 751 ATAAD patients who undergoing TAAR procedure were retrospectively collected from the intensive 
care unit of cardiac surgery (CS-ICU) at Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern 
Medical University. Patients were consecutively enrolled from January 2018 to December 2021. All patients signed written informed 
consent forms before TAAR. The exclusion criteria included age under 18 years; incomplete clinical data; preexisting AKI or RRT before 
CS-ICU admission; chronic kidney disease (eGFR <60 ml/(min⋅1.732 m2)); previous renal transplantation or nephrectomy; and 
pregnancy. Fig. 1 shows the flowchart of this study. Finally, a total of 572 patients were included in this study, and randomly split 7:3 
into a training set (n = 394) and a validation set (n = 178). Patients were randomized through SPSS version 26.0 software (IBM, 
Armonk, USA). The training set was used to screen out predictors and optimize models using three ML algorithms, and the validation 
set was used to test the prediction performance of models. This study was approved by the Ethics Committee of Guangdong Provincial 
People’s Hospital (approval ID: KY2023-702) and was conducted in accordance with the Declaration of Helsinki of 1975 (as revised in 
1983). 

2.2. Data collection 

All patient data were retrospectively collected from Electronic Medical Record, and all personal information was de-identified to 
protect patient privacy. The following clinical data were recorded: demographics (age, sex, weight), underlying diseases (coronary 
heart disease, diabetes, hyperlipidaemia, hypertension and chronic kidney disease), American Society of Anesthesiologists (ASA) 
classification, preoperative medication (nephrotoxic drugs, radiographic contrast and mannitol), preoperative systolic blood pressure 
and diastolic blood pressure. Laboratory indicators included baseline serum creatinine (sCr), preoperative haemoglobin, postoperative 
sCr and haemoglobin, preoperative echocardiographic features (left ventricular ejection fraction (LVEF), left ventricular end-diastolic 
diameter (LVDd), ascending aorta (AA) diameter and aortic regurgitation area), the state of renal artery involvement, and preoperative 
D-dimer and serum albumin. The level of sCr was also measured after the operation at ICU admission and thereafter at least once per 
day as the routine clinical test during the CS-ICU stay. Some routine indicators were immediately recorded at CS-ICU admission, 
including alanine aminotransferase, aspartate aminotransferase, total bilirubin, conjugated bilirubin, lactic dehydrogenase, uric acid, 
platelets, white blood cells, lactic acid, procalcitonin, serum cystatin C (sCysC), urine N-acetyl-β-D-glucosaminidase (uNAG), urine 
albumin creatinine ratio (uACR), systolic blood pressure, diastolic blood pressure and Acute Physiology and Chronic Health Evaluation 
(APACHE) II score [26]. 

Surgical data were recorded, including emergency operation, surgical procedures, operation time, cardiopulmonary bypass (CPB) 
time, aortic occlusion time, deep hypothermic circulatory arrest time, amount of intraoperative blood loss, intraoperative use of 
mannitol and transfusions (red blood cells, plasma and platelets). The primary outcome was the development of severe AKI (defined as 
AKI stage III). The secondary outcomes were RRT, mechanical ventilation, length of ICU stay, in-hospital mortality and total hospi-
talization expenses. 

2.3. Surgical procedure 

The detailed surgical procedure for TAAR was performed as described previously [27,28]. In short, right axillary artery cannulation 
was employed for CPB, with routine moderate hypothermic circulatory arrest (MHCA, 25–28 ◦C) and selective cerebral perfusion 
(ACP, 5–15 mL/kg/min) during the operation. The operative procedure involves deployment of a stent graft in the true lumen of the 
descending aorta, followed by TAAR with a 4-branched vascular graft. This surgical procedure may also include valvular repair or 
replacement and proximal aortic operation. 

2.4. AKI definition 

AKI stage III after TAAR in ATAAD patients was diagnosed based on the 2012 Kidney Disease: Improving Global Outcomes (KDIGO) 
criteria [29]: an increase ≥ 3-fold in baseline sCr, an increase in sCr to ≥4.0 mg/dL (353.6 μmol/L), or the initiation of RRT within a 
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Table 1 
ATAAD patient characteristics and perioperative variables.  

Characteristics All (n = 572) Training set (n = 394) Validation set (n = 178) p value 

Demographic features 
Male, n (%) 572 (77.6) 302 (76.6) 142 (79.8) 0.406 
Age, years 530 (46.0, 61.0) 53.0 (46.0, 62.0) 53.0 (45.2, 61.0) 0.668 
Weight, kg 68.0 (60.0, 75.0) 68.0 (60.0, 75.0) 67.8 (60.0, 76.0) 0.771 

Underlying diseases 
Hypertension, n (%) 313 (54.7) 221 (56.1) 92 (51.7) 0.327 
Diabetes mellitus, n (%) 21 (3.7) 14 (3.6) 7 (3.9) 0.823 
Hyperlipidaemia, n (%) 6 (1.1) 2 (0.5) 4 (2.2) 0.148 
Coronary artery disease, n (%) 21 (3.7) 14 (3.6) 7 (3.9) 0.823 

Preoperative medication 
Nephrotoxic drugs, n (%) 157 (27.4) 104 (26.4) 53 (29.8) 0.402 
Angiography, n (%) 77 (13.5) 49 (12.5) 28 (15.7) 0.509 

Preoperative variables 
Smoking, n (%) 213 (37.2) 143 (36.3) 70 (39.3) 0.487 
Emergency operation, n (%) 384 (67.1) 266 (67.5) 118 (66.3) 0.774 
SBP, mmHg 126 (116,138) 127 (117, 139) 123 (115, 137) 0.218 
DBP, mmHg 75 (65, 82) 75 (65, 82) 75 (66, 80) 0.471 
Haemoglobin, g/L 126.0 (110.0,139.0) 126.0 (109.0, 138.0) 127.0 (112.2, 141.8) 0.152 
D-dimer, ng/mL 3780 (1322,12712) 4250 (1412, 13970) 2935 (1145, 9820) 0.096 
Albumin, g/L 38.1 (35.3, 40.6) 38.2 (35.3, 40.5) 37.9 (35.3, 40.6) 0.973 
Baseline serum creatinine, μmol/L 75.6 (65.4,89.4) 75.5 (65.4, 90.8) 75.8 (65.8, 87.0) 0.599 
Ascending aorta diameter, mm 42.0 (37.0,48.0) 42.0 (37.0, 47.0) 42.0 (37.0, 49.0) 0.922 
LVDd, mm 48.0 (44.0, 53.0) 48.0 (44.0, 54.0) 47.0 (44.0, 52.0) 0.667 
LVEF, % 64.0 (60.0,67.0) 64.0 (61.0, 68.0) 64.0 (60.0, 66.0) 0.402 
Aortic regurgitation, cm2 1.8 (0, 5.4) 1.7 (0, 5.2) 2.0 (0, 5.5) 0.414 
Renal artery involvement, n (%)    0.432  

Unilateral 221 (38.6) 159 (40.4) 62 (34.8)  
Bilateral 28 (4.9) 18 (4.6) 10 (5.6)  

ASA classification, n (%)    0.197 
2 44 (7.7) 31 (7.9) 13 (7.3)  
3 325 (56.8) 229 (58.1) 96 (53.9)  
4 202 (35.3) 134 (34.0) 68 (38.2)  
5 1 (0.2) 0 (0) 1 (0.6)  

Primary outcomes 
Severe AKI, n (%) 131 (22.9) 93 (23.6) 38 (21.3) 0.552 

Secondary outcomes 
Mechanical ventilation, hours 86.0 (40.0,153.0) 88.0 (41.0, 157.0) 66.0 (39.0, 140.0) 0.197 
ICU stay, hours 160.0 (89.0, 250.8) 160.5 (89.0, 260.0) 160.0 (89.0, 234.5) 0.822 
Renal replacement therapy, n (%) 77 (13.5) 55 (14.0) 22 (12.4) 0.604 
Mortality, n (%) 31 (5.4) 22 (5.6) 9 (5.1) 0.796 
Hospitalization expenses, CNY 2.5 × 105 (2.1 × 105, 3.2 × 105) 2.5 × 105 (2.2 × 105, 3.2 × 105) 2.4 × 105 (2.0 × 105, 3.1 × 105) 0.134 

Surgical procedures 
Wheat procedure, n (%) 51 (8.9) 35 (9.4) 16 (9.0) 0.812 
David procedure, n (%) 14 (2.4) 11 (2.8) 3 (1.7) 0.617 
Bentall procedure, n (%) 158 (27.6) 106 (26.9) 52 (29.2) 0.567 
Cabrol procedure, n (%) 7 (1.2) 6 (1.5) 1 (0.6) 0.577 
Sun’s procedure, n (%) 478 (83.6) 331 (84.0) 147 (82.6) 0.670 
CABG, n (%) 30 (5.2) 18 (4.6) 12 (6.7) 0.280 
AVP, n (%) 151 (26.4) 100 (25.4) 51 (28.7) 0.411 

Intraoperative CPB parameters 
Operation time, mins 435.0 (375.0, 489.0) 435.0 (375.0, 485.0) 437.5 (375.0, 498.8) 0.826 
CPB time, mins 235.0 (202.0, 275.0) 235.5 (203.0, 274.8) 234.0 (198.5, 274.0) 0.658 
ACC time, mins 123.0 (98.0, 155.0) 123.0 (98.0, 154.8) 124.0 (97.2, 154.0) 0.904 
DHCA time, mins 19.0 (14.0, 23.0) 19.0 (14.0, 23.0) 18.0 (14.0, 22.8) 0.347  

Intraoperative transfusion 
Red blood cells, units 4.0 (0, 6.0) 4.0 (0, 6.0) 4.0 (0, 6.0) 0.650 
Platelets, units 1.0 (1.0, 2.0) 1.0 (1.0, 2.0) 1.0 (1.0, 2.0) 0.222 
Plasma, mL 0 (0,400.0) 0 (0, 400.0) 150.0 (0, 400.0) 0.290 
Mannitol, n (%) 457 (79.9) 320 (81.2) 137 (77.0) 0.240 

Other intraoperative variables 
Blood loss, mL 400.0 (300.0, 500.0) 400.0 (300.0, 500.0) 400.0 (312.5, 500.0) 0.767 
Urine output, mL 1000 (600,1600) 1000 (600, 1600) 1000 (600, 1700) 0.165 

Variables at ICU admission 
SBP, mmHg 110 (100,119) 110 (100, 120) 108 (100, 118) 0.303 
DBP, mmHg 60 (52, 65) 60 (52, 66) 60 (52, 65) 0.777 
Neutrophils, × 109/L 10.9 (8.6, 13.5) 10.9 (8.6, 13.6) 10.7 (8.7, 13.2) 0.541 
Platelets, × 109/L 138.0 (109.0, 183.0) 141.0 (110.0, 182.8) 135.5 (103.2, 179.8) 0.500 

(continued on next page) 
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week after surgery. In this study, the primary outcome was severe AKI, which was defined as AKI stage III. We adopted sCr rather than 
urinary output to define AKI since the urinary output was influenced by the body fluid volume of the patient and the use of diuretics 
[30]. Baseline sCr was determined by using the rules as previously described [31]. The duration of mechanical ventilation referred to 
the total time of ventilation using endotracheal intubation. Total hospitalization expenses were calculated by the Electronic Medical 
Record System. The diagnosis of ATAAD was confirmed by a contrast-enhanced CT scan, with the onset of symptoms within 48 h. 

2.5. Statistical analysis 

All participants were divided in severe AKI or nonsevere AKI groups based on KDIGO criteria [29]. Categorical variables are 
expressed with numbers (n) and percentages (%), and the chi-square test was used to analyse the differences between groups. 
Continuous variables are described as the means ± standard deviations (X ± SDs) or interquartile ranges. The Kolmogorov-Smirnov 
test was utilized to assess the normal distribution of variables. If the variables followed a normal distribution, the t-test was uti-
lized to make comparisons between groups. If the variables did not follow a normal distribution, the Wilcoxon rank-sum test was used 
to test for two independent samples. The DeLong test was used to compare the areas under the receiver operating characteristic curves 
(AUCs) among models. A p value < 0.05 was considered statistically significant. R programming language version 4.2.3 (https://www. 
r-project.org) was used for statistical computing and analysis, for example, random forest (RF), support vector machine-recursive 
feature elimination (SVM-RFE), least absolute shrinkage and selection operator (Lasso) regression and artificial neural network 
(ANN) algorithms. Xiantao Project software (https://www.xiantaozi.com) and SPSS 26.0 (IBM, Armonk, USA) were utilized for data 
analysis and research mapping. 

2.6. Selection of predictors 

Firstly, we screened out predictors for severe AKI using three ML methods in the training set, including RF, SVM-RFE and Lasso 
regression. For the RF algorithm, we selected predictors by the combination of bootstrapping and decision trees. For the SVM-RFE 
algorithm, we screened the predictors by combining RFE and ten-fold cross-validation methods to avoid overfitting and increase 
clinical controllability, and a stable model was output when the root mean square error was minimal. The Lasso regression algorithm 
can impose penalties on indicators with high square differences to eliminate the number of indicators and was used to reduce high- 
dimensional indicators and enhance the predictive ability. In short, bootstrapping resampling (1000 times) was conducted to 
randomly select some samples from the training set for primary modelling, and a tenfold cross-validation method was used for 
unsampled data to output stable and reliable models. These methods have advantages and disadvantages in different conditions. 
Therefore, we selected the intersection predictors identified by three ML methods to construct a more stable model and avoid over-
fitting. Then, we performed Pearson correlation analysis on the prescreened intersection predictors to exclude variables with serious 
collinearity. 

2.7. Establishment of models 

To assess the discrimination ability two different algorithms (ANN and logistic regression) of the models, we determined some 
clinical-friendly measures, including AUC, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV). 
We selected the model with the maximum AUC for further analysis, including calibration curve analysis and clinical benefit analysis. 
The calibration curve was used to represent the difference between the predicted results and true results, where the x-axis indicated the 

Table 1 (continued ) 

Haemoglobin, g/L 107.0 (98.0,115.0) 107.0 (98.0, 115.0) 106.0 (98.0, 115.0) 0.691 
ALT, U/L 25.0 (17.0, 39.0) 24.0 (17.0, 38.0) 25.0 (17.0, 41.0) 0.600 
AST, U/L 62.0 (46.0, 81.0) 62.0 (47.0, 79.0) 62.5 (45.2, 81.0) 0.868 
LDH, U/L 539.0 (426.0, 645.0) 539.0 (433.2, 649.5) 540.0 (416.0, 636.0) 0.800 
Total bilirubin, μmol/L 37.6 (24.7, 57.3) 38.0 (25.3, 55.4) 36.5 (23.8, 59.1) 0.785 
Conjugated bilirubin, 

μmol/L 
14.5 (8.1, 26.6) 14.6 (8.2, 26.4) 13.9 (7.9, 27.2) 0.937 

Albumin, g/L 37.8 (34.6, 41.0) 38.2 (34.6, 41.1) 37.4 (34.8, 40.8) 0.463 
Uric acid, μmol/L 367.2 (271.7, 477.2) 365.1 (274.4, 466.1) 382.6 (270.2, 493.5) 0.324 
Procalcitonin, ng/mL 7.5 (2.9, 20.9) 7.4 (3.1, 18.9) 7.6 (2.5, 26.5) 0.610 
sCysC, mg/L 1.1 (0.9, 1.4) 1.2 (0.9, 1.4) 1.1 (0.9, 1.4) 0.446 
uNAG, U/g Cr 18.4 (10.6, 37.2) 18.0 (10.2, 37.9) 22.0 (12.0, 36.9) 0.141 
uACR, mg/g Cr 141.9 (57.7, 417.3) 141.0 (59.8, 419.7) 145.0 (54.3, 371.8) 0.565 
Lactic acid, mmol/L 4.3 (2.8, 6.5) 4.2 (2.9, 6.5) 4.4 (2.6, 6.4) 0.873 
APACHE II score 11.0 (9.0, 14.0) 11.0 (9.0, 14.0) 11.0 (9.0, 13.0) 0.058 

Note: ATAAD, acute type A aortic dissection; P value represents the difference between the training set and validation set. SBP, systolic blood 
pressure; DBP, diastolic blood pressure; LVDd, left ventricular diastolic diameter; LVEF, left ventricular ejection fraction; ASA, American Society of 
Anesthesiologists; AKI, acute kidney injury; ICU, intensive care unit; CABG, coronary artery bypass grafting; AVP, aortic valvuloplasty; CPB, car-
diopulmonary bypass; ACC, aortic clamp closure; DHCA, deep hypothermic circulatory arrest; ALT, glutamic pyruvic transaminase; AST, glutamic 
oxaloacetic transaminase; LDH, lactic dehydrogenase; sCysC, serum cystatin C; uNAG, urine N-acetyl-β-D-glucosidase; uACR, urinary albumin 
creatinine ratio; APACHE II, Acute Physiology and Chronic Health Evaluation II scoring system. 
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probability of the predicted results, and the y-axis showed the actual probability of true results. Decision curve analysis (DCA) was 
conducted to evaluate the clinical utility of the models, where the x-axis of the curve was the threshold probability, and the y-axis 
represented the net benefit value. 

3. Results 

3.1. Baseline characteristics 

A total of 572 patients with ATAAD after TAAR were included in this retrospective study and were randomly divided into a training 
set (394 individuals) and a validation set (178 individuals). Table 1 shows the baseline characteristics and clinical outcomes of the 
patients. Overall, the median age of the 572 patients was 53.0 [46.0, 61.0] years. The percentage of males was 77.6 % (444/572), and 
approximately 54.7 % (313/572) of patients had been diagnosed with hypertension before hospitalization. Additionally, approxi-
mately 3.7 % (21/572) of patients had a history of diabetes mellitus and coronary artery disease. 

The incidence of severe AKI was 22.9 % (131/572) among all patients within 1 week after TAAR, and 13.5 % (77/572) of patients 
needed RRT. The total in-hospital mortality rate was 5.4 % (31/572). The mortality rates of patients with severe AKI and nonsevere 
AKI were 15.3 % (20/131) and 2.5 % (11/441), respectively. All variables and outcomes between the training set and the validation set 
showed no significant difference (Table 1). Hence, the two datasets were homogeneous and comparable for further analysis. 

3.2. Screening out model predictors through ML methods 

The key parameters of RF, SVM-RFE and Lasso regression in R program could be found in Table 2. The track diagrams of different 
ML algorithms were showed in Fig. 2. The predictors screened by the SVM-RFE algorithm were baseline sCr and variables at CS-ICU 
admission, including sCysC, uNAG, APACHE II score, procalcitonin (PCT), platelets, aspartate transaminase and lactate dehydrogenase 
(Fig. 2A). The RF algorithm selected predictors and showed the importance of variables in terms of the mean decrease in the Gini value 
(Fig. 2B-C). Lasso regression revealed that preoperative LVEF, haemoglobin and postoperative platelet levels were protective factors, 
while baseline sCr and CS-ICU admission variables (CysC, uNAG, APACHE II score, PCT, aspartate transaminase, lactate dehydro-
genase, lactic acid and serum albumin) were risk factors (Fig. 2D-E). The intersection predictors from the SVM-RFE, RF and Lasso 
algorithms were baseline sCr, sCysC, uNAG, APACHE II score, PCT, platelets, aspartate transaminase and lactate dehydrogenase 
(Fig. 2F). 

3.3. Development and validation of models through the ANN algorithm 

There was no significant correlation between the prescreened intersection predictors (Fig. 3A). Fig. 3B indicated the network 
relationships of the ANN for predicting severe AKI using intersection predictors. The ANN algorithm defined an AUC of 0.938 (95 % CI: 
0.910–0.963) in the training set (Fig. 3C), and the variables importance to the ANN model was shown in Fig. 3D. Importantly, the ANN 
model could predict 89.1 % of severe AKI cases in advance. However, the AUC-ROC of logistic-regression model was 0.908 (95 % CI: 
0.876–0.939) (Fig. 3E), which was significantly lower than the ANN model (p < 0.05). Besides, the ANN model was superior to logistic- 
regression model in terms of sensitivity, specificity, PPV and NPV (Table 3). Therefore, we selected the ANN model for further 
evaluation and validation. The calibration curve of the model fit the ideal curve (Fig. 3F), and DCA showed good clinical benefit in the 
training set (Fig. 3G). Encouragingly, the ANN model also presented favourable predictive performance with an AUC of 0.916 (95 % CI: 
0.863–0.962) in the validation set (Fig. 4A). The calibration curve analysis and DCA validated the ANN model with good prediction 
accuracy (Fig. 4B-C). 

4. Discussion 

AKI is a common clinical syndrome after TAAR in ATAAD patients, and is closely associated with adverse outcomes [32,33]. In this 

Table 2 
Key parameters of techniques (R-project).  

Machine learning methods R packages Parameter settings 

Support vector machine-recursive feature elimination 
(SVM-RFE) 

Packages (“e1071”) 
Packages (“kernlab”) 
Packages (“caret”) 

Functions = caretFuncs, method = cv, methods =
svmRadial 

Random Forest (RF) Packages (“randomForest”) Seed = 123456, ntrees = 500 
Least absolute shrinkage and selection operator 

regression (Lasso) 
Packages (“glmnet”) Seed = 123, 

Family = binomial, alpha = 1, nfolds = 10 (cross- 
validation) 

Artificial neural network (ANN) Packages (“neuralnet”) Packages 
(“NeuralNetTools”) 

Seed = 12345678, 
Hidden layer = 5, 
Stepmax = 107 

Note: cv, coefficient of variation. 
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study, the incidence rates of AKI and severe AKI among postoperative ATAAD patients were 51.6 % and 22.9 % based on the KDIGO 
criteria, respectively. Correlation analysis showed that severe AKI was closely associated with a higher RRT rate, longer duration of 
mechanical ventilation, higher in-hospital mortality and increased hospitalization costs, which was consistent with previous studies [4, 
5,12,34]. Importantly, this study is the first to report a novel and effective predictive model based on ML algorithms for severe AKI 
after TAAR in ATAAD patients. Besides, this study included as many comprehensive clinical features and laboratory indicators as 
possible and confirmed that classic biomarkers (including sCysC and uNAG) could improve the discrimination ability for severe AKI 
after TAAR. 

Previous studies have reported some risk factors for AKI after surgery in ATAAD patients, including advanced age, hypertension, 
preoperative elevated sCr, and CPB time [4,35,36]. However, there are few researches on the risk factors and predictive models for 
severe AKI, especially in patients who undergo TAAR patients [11,12]. In this study, we mainly focused on severe AKI after TAAR in 
ATAAD patients. First, correlation analysis revealed that severe AKI was likely associated with adverse outcomes, such as long me-
chanical ventilation time, frequent RRT and high in-hospital mortality. Second, the TAAR procedure was relatively complex and 
challenging, and thus causing more frequent postoperative complication. Third, several existing studies lacked an effective predictive 
performance for severe AKI [17,37,38]. In recent years, ML has presented a better performance in clinical prediction than traditional 
logistic regression methods [20,39]. Therefore, it is important to develop a risk prediction model for severe AKI after TAAR in ATAAD 
patients using ML algorithms. 

To develop a high-efficiency assessment tool, this study employed ML algorithms to screen out predictors and construct models for 
severe AKI after TAAR in ATAAD patients. ML is a subfield of artificial intelligence that may have better prediction performance and 
higher interpretability than traditional statistical methods for prediction [20,39]. It is probably because ML algorithms makes de-
cisions in a yes or no manner regardless of whether the variables are linear or not and helps explore the nonlinear and high-order 
relationships between variables, and thus improving clinical decision-making abilities [40,41]. In recent years, Li et al. [42] 

Fig. 2. Identification of feature variables for the model using three machine learning methods. A, Predictors for the model were screened out with 
the SVM-RFE method, and the model with the minimal root mean square error (RMSE) was selected. B, The predictors for the model were selected 
using random forest. D shows the importance of the variables in the model. D and E, Screening out the predictors and variable coefficients for the 
model using the Lasso regression method after 10-fold cross-validation. F, The intersection variables screened by three machine learning methods 
were selected, including sCysC, APACHE II, Post_PCT, Post_AST, Post_LDH, uNAG, Pre_Cr and Post_PLT. sCysC, serum cystatin C; APACHE II, Acute 
Physiology and Chronic Health Evaluation II; Pre_, preoperative; Post_, postoperative; PCT, procalcitonin; LDH, lactic dehydrogenase; PLT, platelet; 
ALB, albumin; uACR, urine albumin creatinine ratio; CPB, cardiopulmonary bypass; Neu, neutrophils; Lac, lactic acid; Bun, blood urea nitrogen; 
HGB, haemoglobin; Cr, creatinine; AA, ascending aorta; ACC, aortic clamp closure; uNAG, urine N-acetyl-β-D-glucosaminidase; Lasso, least absolute 
shrinkage and selection operator; SVM-RFE, support vector machine-recursive feature elimination; RF, random forest. 
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reported that the AUC of the model for severe AKI after surgery in ATAAD patients was only 0.734, because this study might lacked 
efficient algorithms and some classic biomarkers of AKI (e.g., sCysC and uNAG). Hence, sCysC and uNAG were included in this study, 
and the ANN algorithm was used for modelling. 

We compared the discrimination ability of the ANN model with the reference logistic regression-based model. Discrimination 
ability refers to the ability to distinguish patients who have experienced an event from patients who have not experienced an event, 

Fig. 3. Comparison between artificial neural network (ANN) and logistic regression analysis in the training set. A shows the correlation heatmap of 
intersection variables. B indicates the network relationships of the ANN for predicting severe AKI. C shows the area under the curve (AUC) of the 
receiver operating characteristic (ROC) curve using the ANN algorithm, AUC = 0.938 (95 % CI: 0.910–0.963). D shows the variable importance in 
the ANN algorithm. E shows the AUC of the ROC using the logistic regression method, AUC = 0.908 (95 % CI: 0.876–0.939). F shows the calibration 
curve of the model. G shows the decision curve analysis of the model. Pre_, preoperative; Post_, postoperative; LDH, lactic dehydrogenase; PLT, 
platelet; PCT, procalcitonin; sCysC, serum cystatin C; uNAG, urine N-acetyl-β-D-glucosaminidase; APACHE II, Acute Physiology and Chronic Health 
Evaluation II; nonsAKI, nonsevere acute kidney injury; sAKI, severe acute kidney injury; DCA, decision curve analysis. 
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which is evaluated with the AUC [43]. The ANN algorithm defined an AUC of 0.938, which was significantly higher than the traditional 
logistic regression-based model (AUC = 0.908). Encouragingly, the discrimination ability of our model was significantly better than 
logistic regression-based model (AUC = 0.739) in previous study [37]. The reliability of the ANN model was evaluated in terms of 
discrimination ability, calibration curve analysis and DCA in the validation set. First, we used the parameters of the ANN model in the 
training set to predict severe AKI. The AUC of the ANN model for severe AKI in the validation set was 0.916, which was within the 95 % 
confidence interval of the AUC in the training set. Second, there was good correlation between the calibration curve analysis and the 
DCA with the training set. To elaborate, these findings revealed that a ML-based clinical prediction model was successfully established 
for severe AKI after TAAR in ATAAD patients. 

In this study, we screened out some important predictors through SVM-RFE, Lasso regression and RF, including baseline sCr and CS- 
ICU admission variables (sCysC, uNAG, PCT, APACHE II score, platelets, aspartate transaminase and lactate dehydrogenase). This 
study showed elevated baseline sCr was a key risk factor postoperative AKI, which was consistent with previous studies [44,45]. 
Low-level platelet is correlated with the occurrence of AKI and a severe stage of the disease, this might contribute to platelet depletion 
after the activation of platelets and coagulation systems [46]. Similarly, this study also found that the level of platelets significantly 
decreased in postoperative patients with severe AKI, which might be related to the activation of the platelet coagulation pathway and 
renal glomerular artery microthrombosis induced by the TAAR procedure. In short, both elevated sCr and decreased platelet levels are 
related to the dominant mechanisms of AKI after surgery in patients with ATAAD, including ischaemia-reperfusion injury, inflam-
matory responses and oxidative stress [47,48]. 

Other clinical laboratory indicators have also been discussed in some studies. Some studies found that PCT could be an independent 
risk factor for AKI and was not affected by infectious factors [49–52]. This study indicated that PCT was positively associated with 
severe AKI, and this attributed to the sterile inflammatory response induced by surgery (called systemic inflammatory response 
syndrome) and the decrease of renal excretion [53–55]. This evidence indicates that PCT may facilitate the early diagnosis of severe 
AKI after TAAR in ATAAD patients. Both of aspartate transaminase and lactate dehydrogenase are the biomarkers of cardiac injury. 
Our study revealed that lactate dehydrogenase was a good biomarker for predicting AKI in critically ill patients, which is consistent 
with in previous study [18]. Besides, APACHE II scoring system is a useful predictor of model for severe AKI in this study, which is 
widely used to assess the prognosis of critically ill patients [26]. A previous study indicated that the sCysC level plus APACHE II score 
could significantly improve the predictive performance for AKI or severe AKI in critically ill patients [18]. This study further confirmed 
that the APACHE II score could improve the prediction efficacy of model for severe AKI. 

Some classic renal biomarkers were useful to identify AKI in advance in previous clinical studies, e.g., sCysC and uNAG [56]. 
Therefore, we focused on prediction of these biomarkers for severe AKI after TAAR in ATAAD patients. AKI is a heterogeneous 

Table 3 
Comparison of ANN algorithm and logistic regression in terms of AUC, sensitivity, specificity, PPV and NPV.  

Mathematical algorithms AUC-ROC (95%CI) Sensitivity Specificity PPV NPV p-value* 

ANN 0.938 (0.910–0.963) 94.0 % 81.0 % 79.8 % 94.0 % 0.045 
Logistic regression 0.908 (0.876–0.939) 86.0 % 79.7 % 56.3 % 94.8 %  

Note:AUC-ROC, area under the receiver operating characteristic curve; CI, confidence interval; ANN, artificial neural network; *ANN versus logistic 
regression. 

Fig. 4. The predictive ability of the ANN model in the validation set. A shows the area under the curve (AUC) of the receiver operating characteristic 
(ROC) curve in the validation set, AUC = 0.916 (95 % CI: 0.863–0.962). B shows the calibration curve of the model in the validation set. C shows the 
decision curve analysis of the model in the validation set. DCA, decision curve analysis. 
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syndrome, and a single biomarker cannot fully reflect multiple pathophysiological mechanisms. The Acute Dialysis Quality Initiative 
(ADQI) advises clinicians to combine biomarkers of renal glomerular injury and tubular injury to improve the predictive efficacy of AKI 
[57]. sCysC is considered as a biomarker of renal glomerular injury, while uNAG represents renal tubular injury [58]. sCysC and uNAG 
represent two different pathophysiological conditions of AKI. In our previous studies, sCysC plus uNAG achieved satisfactory pre-
dictive efficacy for AKI in critically ill patients [56,59,60]. In this study, the combination of sCysC and uNAG presents better diagnostic 
performance for severe AKI after TAAR in ATAAD patients, which is more conducive to early disease diagnosis and clinical 
decision-making. 

4.1. Limitations 

We should acknowledge several potential limitations in this study. First, this was a retrospective observational study with a 
relatively small sample size, and the data distribution of this study might differ from those of studies with large sample sizes. Second, 
we used KDIGO as the diagnostic criteria for AKI, while some previous studies were based on the RIFLE or AKIN classifications [4,61]. 
It may be difficult to compare this study with some previous studies. Finally, this model was validated from single-centre data not 
including data from other centers. Therefore, these findings need external validation in a multicenter prospective study in the future. 

5. Conclusion 

In this study, we successfully constructed and validated a novel clinical prediction model for severe AKI after TAAR in ATAAD 
patients using different ML algorithms. The ANN algorithm presented a higher discrimination ability for severe AKI than logistic 
regression, which may help improve risk stratification for severe AKI after TAAR. 
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