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Abstract: Endocannabinoids (eCBs) are lipid-based retrograde messengers with a relatively short half-
life that are produced endogenously and, upon binding to the primary cannabinoid receptors CB1/2,
mediate multiple mechanisms of intercellular communication within the body. Endocannabinoid
signaling is implicated in brain development, memory formation, learning, mood, anxiety, depres-
sion, feeding behavior, analgesia, and drug addiction. It is now recognized that the endocannabinoid
system mediates not only neuronal communications but also governs the crosstalk between neurons,
glia, and immune cells, and thus represents an important player within the neuroimmune interface.
Generation of primary endocannabinoids is accompanied by the production of their congeners, the
N-acylethanolamines (NAEs), which together with N-acylneurotransmitters, lipoamino acids and
primary fatty acid amides comprise expanded endocannabinoid/endovanilloid signaling systems.
Most of these compounds do not bind CB1/2, but signal via several other pathways involving the
transient receptor potential cation channel subfamily V member 1 (TRPV1), peroxisome proliferator-
activated receptor (PPAR)-α and non-cannabinoid G-protein coupled receptors (GPRs) to mediate
anti-inflammatory, immunomodulatory and neuroprotective activities. In vivo generation of the
cannabinoid compounds is triggered by physiological and pathological stimuli and, specifically in
the brain, mediates fine regulation of synaptic strength, neuroprotection, and resolution of neuroin-
flammation. Here, we review the role of the endocannabinoid system in intrinsic neuroprotective
mechanisms and its therapeutic potential for the treatment of neuroinflammation and associated
synaptopathy.

Keywords: endocannabinoids; N-acylethanolamines; neuroinflammation; glutamate-mediated exci-
totoxicity; neurodegenerative diseases; synaptic plasticity

1. Highlights

• Retrograde endocannabinoid signaling provides a mechanism by which neurons can
rapidly regulate the strength of their synaptic inputs.

• Stimulation of postsynaptic neurotransmitter receptors and sustained Ca2+ influx is a
potent trigger for the production of endocannabinoids (eCBs) and their congeners.

• Neuroinflammation and alterations in endocannabinoid signaling is implicated in
multiple neurological disorders.

• The activity-dependent flow of glutamate and eCBs from synapses controls microglial
attraction, secretion of pro-inflammatory and pro-survival factors, and defines the
synapse stability under inflammation and excitotoxicity.

• The pharmacological inhibition of eCB degradation exerts a primary effect in injured
sites, where these mediators are actively produced de novo.

• The endocannabinoid system mediates communication within the tripartite synapse
during the development and resolution of neuroinflammation.
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2. Introduction

Neuroinflammation is widely regarded as inflammation of the central nervous system
(CNS) comprising the brain and spinal cord. The inflammatory process is driven by the
release of pro-inflammatory mediators such as cytokines, prostaglandins, and reactive oxy-
gen and nitrogen species by activated endothelial and glial cells with subsequent infiltration
of peripheral inflammatory cells into the CNS. As a consequence, neuroinflammation can
lead to edema, tissue damage, and loss of neuronal functions as well as accelerate and
cause cognitive impairment and neurodegenerative diseases. Common triggers of chronic
neuroinflammation include toxic metabolites, harmful self-proteins during autoimmunity,
aging, bacterial and viral infections, as well as traumatic brain, and spinal cord injury.

The endocannabinoid system (ECS), consisting of the cannabinoid receptors CB1 and CB2,
their major endogenous ligands 2-arachidonylglycerol (2-AG) and arachidonoylethanolamide
(AEA or anandamide), and their synthesizing and degrading enzymes, plays a crucial role
in the intrinsic response to neuroinflammation, brain injury, and neurodegenerative dis-
eases [1–3]. This system is now being expanded with the ligands that do not show affinity
for CB1/2 but display cannabimimetic activity and are able to modulate the actions of true
eCBs. N-acylethaolamines generated as AEA congeners together with lipoaminoacids and
acyl conjugates of neurotransmitters exert their biological activities through different re-
ceptors such as peroxisome proliferator-activated receptor (PPAR)-α [4], transient receptor
potential cation channel subfamily V member 1 (TRPV1) and non-cannabinoid G-protein
coupled receptors (GPRs). These compounds as well as true eCBs, their molecular targets,
overall interplay, and metabolism comprise the endocannabinoidome having profound
role in homeostatic response to noxious endogenous and exogenous stimuli.

The existence of multiple targets and routes for ligand synthesis and degradation
within the endocannabinoidome enables complex scanning of cellular states and allows a
tightly regulated response to relevant changes. Of particular interest is the involvement of
this system in inherent protective responses against inflammatory and neurodegenerative
processes in the brain as targeted manipulation of this system has high therapeutic potential.
In this review, we provide an overview of the immune-regulatory and neuroprotective
potential of the endocannabinoidome during neuroinflammation.

3. The Endocannabinoid System

The ECS is a complex biological network involved in the maintenance of homeostasis.
It consists of a family of naturally occurring signaling lipids, the endocannabinoids (eCBs),
their synthesizing and degrading enzymes, specific transmembrane eCB transporters, and
receptors. Components of the ECS are found throughout the body: in the CNS, in cells
of the immune system, the liver, the reproductive system, the respiratory system, the
gastrointestinal tract, the cardiovascular system, and in skeletal muscles.

3.1. Metabolism of Endocannabinoids and Related Compounds

Levels of eCBs vary among specific regions of the brain and differ between animal
species. In rat brain, basal 2-AG levels were estimated at 2–10 nmol/g [5], whereas AEA
was detected at the range of 3–30 pmol/g [6] and typically comprises only 1–3% of gen-
erated NAEs [7]. Although both, 2-AG and AEA, are referred to as eCBs their metabolic
pathways are completely different. 2-AG is formed from arachidonic acid-containing
membrane phospholipids via three major pathways: * from diacylglycerol (DAG) via DAG
lipase, ** from 2-acyl lysophosphatidic acid (LPA) via 2-LPA phosphatase, and *** from
2-acyl lysophosphatidylinositol (LPI) via lyso-phospholipase C. Similarly, AEA and re-
lated NAEs are produced on demand in response to certain stimuli [8,9] from membrane
glycerophospholipids via the transacylation–phosphodiesterase pathway comprising two
main enzymes, Ca2+-dependent N-acyltransferase and N-acyl-phosphatidylethanolamine-
hydrolyzing phospholipase D (NAPE-PLD) (Figure 1). Lysophospholipids, generated in
the course of 2-AG synthesis and produced at higher levels under inflammatory conditions
such as neuroinflammation [10], possess biological activity themselves. For instance, LPI
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and its metabolite LPA activate respectively GPR55, GPR119, and LPA receptors to modu-
late cell proliferation, migration, cytokine and chemokine secretion, apoptosis/survival,
and tumorigenesis.
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Figure 1. Main pathways of endocannabinoid (eCB) generation and degradation. Monoacylglycerols, such as
2—arachidonylglycerol (2-AG) and N-acylethanolamines such as arachidonoylethanolamide (AEA) are generated from
membrane phospholipids and provide precursors used in the synthesis of lipoaminoacids and N-acylneurotransmitters.
Production of eCBs is associated with the generation of lysophospholipids, like lysophosphatidylinositol (LPI) and lysophos-
phatidic acid (LPA). ABHD6/12, alpha/beta-hydrolase domain containing 6/12; ADH, alcohol dehydrogenase; 2-AG,
2-arachidonylglycerol; ALDH, aldehyde dehydrogenase; COX, cyclooxygenase; DAG, diacylglycerol; DAGL, diacylglycerol
lipase; FAAH, fatty acid amide hydrolase; HPETE-Gs, glycerol esters of 12- or 15-hydroperoxyeicosatetraenoic acid; IP3R,
inositol trisphosphate receptor; LOXs, lipoxygenases; MAGL, monoacylglycerol lipase; NAAA, NAE-hydrolyzing acid ami-
dase; NAE, N-acylethanolamine, NAPE, N-acyl-phosphatidylethanolamine; NAPE-AT, NAPE forming N-acyltransferase;
PA, phosphatidic acid; PAM, peptidyl-glycine alpha-amidating monooxygenase; PGE2-G, prostaglandin E2–glycerol ester;
PGE2S, prostaglandin E2 synthase; PI, phosphatidylinositol; PIP, phosphatidylinositol 3-phosphate; PIP2, phosphatidyli-
nositol 4,5-bisphosphate; PL, phospholipase; PTPN22, protein tyrosine phosphatase non-receptor type 22; SHIP1, SH-2
containing inositol 5′ polyphosphatase 1.

The major degradation pathway of 2-AG is considered to be the hydrolysis to arachi-
donic acid and glycerol, which can be catalyzed by multiple enzymes, including monoa-
cylglycerol lipase (MAGL), fatty acid amide hydrolase (FAAH), α/β-hydrolase domain
containing (ABHD) 6, and ABHD12 proteins (reviewed in [4,11]). Furthermore, the arachi-
donoyl moiety of 2-AG can be oxygenated by cyclooxygenase (COX)-2 and lipoxyge-
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nases, resulting in the formation of pro-inflammatory glyceryl prostaglandins, such as
prostaglandin E2–glycerol ester (PGE2-G), or hydroperoxy derivatives of 2-AG, respec-
tively [12,13]. Although physiological significance of the oxygenation pathways remains
unclear, biological activities of glyceryl prostaglandins have been reported [12]. The essen-
tial degradation pathway of NAEs is their hydrolysis to free fatty acids and ethanolamine
by FAAH. Alternatively, NAE-hydrolyzing acid amidase (NAAA), a lysosomal enzyme,
that is structurally similar to acid ceramidase and hydrolyzes NAEs at acidic pH, was
described [14]. Both, specific FAAH and NAAA inhibitors, represent promising therapeu-
tic tools for the treatment of neurological and inflammatory disorders as they raise the
endogenous levels of bioactive NAEs [15,16]. In addition to hydrolytic degradation, polyun-
saturated NAEs like AEA, DHEA, and EPEA are oxygenated by COX-2, lipoxygenases and
cytochrome P450s and converted into prostaglandin ethanolamides (prostamides) or ω-3
endocannabinoid epoxides, which exhibit unique biological activities themselves [17,18].
The synthesis and degradation pathways of eCBs are summarized in Figure 1.

Lipoaminoacids and N-acylneurotransmitters are synthesized as a result of the conju-
gation of an amino acid/neurotransmitter with free fatty acids or acyl-CoA. Additionally,
N-arachidonoylglycine can be generated from AEA in sequential steps catalyzed by alcohol
dehydrogenase and aldehyde dehydrogenase. N-arachidonoyldopamine (NADA) biosyn-
thesis in brain occurs through direct conjugation of dopamine with arachidonic acid. In this
process FAAH is either a rate-limiting enzyme that liberates arachidonic acid from AEA, a
conjugation enzyme, or both [19]. N-acylneurotransmitters and lipoaminoacids are degraded
by FAAH or through modification of acyl- or amino acid/neurotransmitter residues.

3.2. Molecular Targets of the Endocannabinoid System

The main eCBs 2-AG and AEA bind to the central and peripheral G protein-coupled
cannabinoid receptors CB1 and CB2. 2-AG behaves as a full agonist at CB1 and CB2,
while AEA is a partial agonist of CB1, but almost inactive at CB2. Both CB1 and CB2
are G protein coupled receptors that have the ability to simultaneously activate multiple
pools of G proteins. First, both receptors were shown to be associated with G proteins of
the Gi/o family, while later additional signaling via Gs and Gq has been reported. Gi/o
subunits inhibit adenylyl cyclase or couple to the mitogen-activated protein kinase (MAPK)
pathway [20,21] Gs stimulates adenylyl cyclase [22], Gq couples to phospholipase C to
promote the release of intracellular calcium [23,24] and Gβγ subunits derived from Gi/o
inhibit voltage-gated calcium channels (VGCC) [25]. Further, coupling of arrestins with
both CB1 and CB2 is implicated in the receptor desensitization, internalization, and G
protein–independent signaling [26–28].

CB1 receptors are expressed predominantly in the nervous system, with enrichment in
GABAergic axon terminals, and are among the most abundant GPCR in the brain, whereas
CB2 receptors are mainly expressed in cells of the immune system and also detected in
microglia. The neuronal expression of CB2 receptors, which for a long time remained contro-
versial, is now shown on brainstem neurons and midbrain dopaminergic neurons [29–31].
The important features of neuronal CB2 are their low basal expression compared to CB1,
and high inducibility under relevant stimuli like inflammation or addiction [32,33]. The
functional contribution of CB1/2 (as receptors of true eCBs, 2-AG and AEA) in different
brain cells is shown in Table 1.
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Table 1. Schematic representation of functional contribution of CB1/2 in neurons, astrocytes and microglia.

Receptor Location/
Cell Type Process Regulated Intracellular

Pathway Involved
Physiological

Relevance

CB1

Neurons

Presynaptic vesicular
neurotransmitter

release
Multiple, including inhibition of

AC and VGCC;
resulting in regulation of [Ca2+]i

Synaptic
plasticity

[Ca2+] influx Neuronal survival

Astrocytes

Glutamate–glutamine
cycle

Upregulation of
glutamine-synthase

Perisynaptic
glutamate scavenging,

prevention of
excitoxicity

Gliotransmission Ca2+ influx

Modulation of synaptic
strength;

role in synaptic
plasticity

Endothelial cells Growth and
proliferation

Coupled to the MAP
kinase cascade

Maintenance of BBB
integrity

and selectivity

CB2

Ventral tegmental area
dopamine neurons Neuronal excitability

Modulation of K+

channels [30]
Long-term neuronal
hyperpolarization;
synaptic plasticityHippocampal CA3/CA2

pyramidal
neurons

Activation of the Na+/Bicarbonate
co-transporter [34]

Microglia Migration
Extracellular signal-regulated

kinase (ERK) 1/2 signal
transduction pathway

Shift between the
pro-inflammatory and

pro-resolving
phenotype

Besides CB1 and CB2, a range of NAEs and monoacylglycerols also interact with
several other receptors (Figure 2). AEA activates the transient receptor potential cation
channel subfamily V member 1 (TRPV1), implicated in synaptic transmission and pain
sensation, and seems to be a partial agonist for the non-CB receptor GPR55 [35]. Moreover,
the interaction of 2-AG and non-CB receptors has emerged recently. Several studies have
suggested that in addition to CB1 and CB2, there are non-CB1 and non-CB2 cannabinoid-
related orphan GPCRs including GPR18, GPR55, and GPR119 [36]. It was demonstrated
that 2-AG binds to GABAA receptors and can modulate the action of neurosteroids at
GABAA receptors [37]. Moreover, endocannabinoids and some of their metabolites bind
and activate peroxisome proliferator-activated receptors (PPARs) [38].
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and TRPV4). 2-AGE, 2-arachidonyl glyeryl ether (nolandin ether); DEA, docosatetraenoylethanola-
mide; DHEA, docosahexaenoylethanolamide; EPEA, eicosapentaenoylethanolamide; HEA, homo-
γ-linolenylethanolamide; LEA, linoleylethanolamide; 2-LG, 2-linoleoylglycerol; LPA5, lysophos-
phatidic acid receptor 5; OEA, oleoylethanolamide; 2-OG, 2-oleoylglycerol, PEA, palmitoylethano-
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M (melastatin) member 8. 

Saturated and monounsaturated NAEs do not show ligand affinity for cannabinoid 
receptors, but rather exert their biological activities through different receptors and path-
ways. PEA (C16:0 N-acylethanolamine) has been shown to promote anti-inflammatory, 
analgesic, anti-oxidative, and neuroprotective actions [39,40]. Most of its effects are medi-
ated by PPAR-α [41]. Moreover, it has been reported that PEA activates TRPV1 [42] and 
GPR55 [43], and enhances 2-AG and AEA levels via inhibition of FAAH expression [44]. 
OEA (C18:1 N-acylethanolamine) is mainly known for its anorexic activity in experimental 

Figure 2. The endocannabinoids(eCBs), related compounds and their molecular targets. Major
eCBs are monoacylglycerols (such as 2-arachidonylglycerol), N-acylethanolamines (such as arachi-
donoylethanolamide), lipoaminoacids, N-acylneurotransmitters or primary fatty acid amides, and
have different affinity for cannabinoid receptors (CB)1/2, non-cannabinoid G-protein coupled recep-
tors (GPRs), and transient receptor potential cation channel subfamily V member 1 and 4 (TRPV1 and
TRPV4). 2-AGE, 2-arachidonyl glyeryl ether (nolandin ether); DEA, docosatetraenoylethanolamide;
DHEA, docosahexaenoylethanolamide; EPEA, eicosapentaenoylethanolamide; HEA, homo-γ-
linolenylethanolamide; LEA, linoleylethanolamide; 2-LG, 2-linoleoylglycerol; LPA5, lysophosphatidic
acid receptor 5; OEA, oleoylethanolamide; 2-OG, 2-oleoylglycerol, PEA, palmitoylethanolamide; SEA,
stearoylethanolamide; TRPM8, transient receptor potential cation channel subfamily M (melastatin)
member 8.

Saturated and monounsaturated NAEs do not show ligand affinity for cannabinoid
receptors, but rather exert their biological activities through different receptors and path-
ways. PEA (C16:0 N-acylethanolamine) has been shown to promote anti-inflammatory,
analgesic, anti-oxidative, and neuroprotective actions [39,40]. Most of its effects are medi-
ated by PPAR-α [41]. Moreover, it has been reported that PEA activates TRPV1 [42] and
GPR55 [43], and enhances 2-AG and AEA levels via inhibition of FAAH expression [44].
OEA (C18:1 N-acylethanolamine) is mainly known for its anorexic activity in experimental
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models, but has also been shown to mediate anti-inflammatory, analgesic, and antioxida-
tive effects. OEA binds with high affinity to PPAR-α [45]) and interacts with TRPV1 [46].
Recent evidence supports the assumption that SEA (C18:0 N-acylethanolamine) medi-
ates anti-inflammatory and neuroprotective activities [47], although there is no direct
data on its molecular targets. In the tetrad of behavioral tests considered to be highly
predictive for cannabimimetic compounds, SEA behaves similarly to AEA. This may
be a result of so-called “entourage” effect of SEA, which potentiates the effects of AEA
by inhibiting its degradation [48]. SEA demonstrated neuroprotective properties, de-
creased the onset of inflammation, and restricted leukocyte infiltration into the brain
parenchyma in a mouse model of systemic inflammation. It seems that there is a cer-
tain therapeutic window for SEA treatment following the onset of inflammation. Mice
treated with SEA had higher levels of 2-AG or its stable isomer 1-AG, in the prefrontal
cortex and hippocampus. This rise of 2-AG/1-AG levels preceded the increase of neu-
ronal CB1/2 expression and suggests the interference of SEA with the eCB system [47].
Moreover, SEA has been shown to protect from oxidative stress and to have analgesic
properties. Similar to AEA, PEA, and OEA, it was demonstrated that SEA, together
with linoleylethanolamide (LEA), eicosapentanoylethanolamide (EPEA), and docosahex-
aenoylethanolamine (DHEA) are activators of PPAR-α [49]. LEA was shown to activate
TRPV1 [50], GPR119, and to inhibit AEA hydrolysis by FAAH. Pretreatment with LEA
prior to ischemia/reperfusion injury significantly reduced cortical infarct volume and
neurological deficit [51]. N-docosahexaenoylethanolamide (DHEA, synaptamide) pro-
motes neurogenesis, neuritogenesis, and synaptogenesis [52] as an endogenous ligand of
GPR110 [53], a member of the adhesion-GPR family which is highly expressed in fetal
brain. Under systemic inflammation, immune-regulatory functions of GPR110 contribute
to the anti-inflammatory action of synaptamide [54]. A summary of the known signaling
pathways and anti-inflammatory actions of the major endogenously produced NAEs is
presented in Figure 3.

N-acylneurotransmitters and lipoaminoacids represent a separate cluster within the
endocannabinoidome, that bears the potential for identification of novel receptor targets
in this system. Among these compounds N-acyldopamines are CB1 and TRPV1 ago-
nists, while N-acylserotonines are TRPV1 antagonists and N-arachidonoyl-γ-aminobutyric
acid (NAGABA) activates GPR92 receptor. Liberation of free neurotransmitter following
degradation of N-acylneurotransmitters makes their action more complex.

3.3. Involvement of Endocannabinoid System in Response to Neuropathology

Endocannabinoids and related NAEs are produced on demand and play a crucial
regulatory role in metabolic processes, behavior, and immunity. Under healthy conditions
these lipid mediators are most abundant in the brain and barely found in circulation and
peripheral tissues [55]. During various pathological conditions of the CNS the profiles
of eCBs and their congeners undergo significant changes, which is associated with the
inflammation-modulating, analgesic, and neuroprotective activity of these compounds
(summarized in Table 2).
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Figure 3. Signaling pathway and anti-inflammatory actions of NAEs. Arachidonoylethanolamide (AEA) signals via the
cannabinoid receptors CB1/2, the non-cannabinoid G protein coupled receptor (GPR)55, the transient receptor potential
cation channel subfamily V member 1 (TRPV1), and the peroxisome proliferator-activated receptor (PPAR)-α and γ.
Palmitoylethanolamide (PEA) has been shown to inhibit the fatty acid amide hydrolase (FAAH) and to signal via GPR55,
TRPV1, and PPAR-α, while CB1/2binding is still controversial. Oleoylethanolamide (OEA) activates TRPV1 and PPAR-α,
while stearoylethanolamide (SEA) inhibits FAAH and activates PPAR-α. Linoleylethanolamide (LEA) was shown to activate
TRPV1, GPR119, and to inhibit FAAH, while docosahexaenoylethanolamide (DHEA) signaling involves the activation
of GPR110.
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Table 2. The profiles and activity of eCBs and their congeners in pathological conditions of the CNS.

Compound Organism Disease/Model Finding References

2-AG

Mouse Closed head injury Increased 2-AG brain levels; neuroprotection [56]
Rat Inflammatory model of pain Antinociceptive effect [57]

Stress-induced analgesia Increased 2-AG and AEA mid-brain levels;
analgesia [58]

AEA
Mouse Experimental autoimmune

encephalomyelitis Increased AEA brain levels [59]

Human Multiple sclerosis Increased AEA levels in cerebrospinal fluid [59]
Rat Focal cerebral ischemia model Increased AEA brain levels [60]

NADA Mouse Acute systemic inflammation Reduces inflammation in vivo;
increases survival in endotoxemic mice [61]

2-AG, AEA, PEA Mouse Transgenic model of Huntington’s
disease

Changed levels of 2-AG, AEA, and PEA in a
disease phase- and brain region-specific way [62]

PEA

Rat Granulomatous inflammation Reduced granuloma-induced hyperalgesia [63]

Mouse

Paw model of hyperalgesia Reduced mechanical hyperalgesia [39]
Model of neuropathic pain Anti-allodynic and anti-hyperalgesic effects [64]

Alzheimer’s disease Rescued cognitive deficit and reduced
neuroinflammation and oxidative stress [40]

Traumatic brain injury model Reduced edema and brain infractions; blocked
infiltration of astrocytes [65]

SEA Mouse LPS-induced
neuroinflammation

Decreased activation of resident microglia and
leukocyte trafficking into the brain; increased CB1/2

expression and 2-AG brain levels
[47]

4. Glutamate Receptor-Mediated Neurotoxicity
4.1. Glutamate as a Major Excitatory Neurotransmitter in Mammals and Potential Neurotoxin

Activation of postsynaptic neurotransmitter receptors and Ca2+ influx into the post-
synaptic terminal induce the synthesis of eCBs and related compounds. This activity-
dependent production of eCBs is essential for the fine regulation of neurotransmission.
In the mammalian brain, glutamate is the main excitatory neurotransmitter implicated
in learning and memory formation. Glutamatergic neurotransmission mediates synaptic
plasticity, whereby ionotropic and metabotropic (mGluRs) glutamate receptors play a
primary role. Between the quantal neurotransmitter releases, the level of glutamate in
the synaptic cleft is estimated to be <1 µM. This low basal level is maintained by rapid
reuptake of glutamate from the extracellular space into the cytosol by high-affinity glu-
tamate transporters EAATs (excitatory amino acid transporters). EAATs are localized on
neurons (primarily EAAT4 and EAAT3 (EAAC1, Excitatory Amino Acid Carrier)) and
astrocytes (primarily glutamate transporter GLT-1 and glutamate-aspartate transporter
GLAST), and co-transport one molecule of L-glutamate (or L-/D-aspartate) with 3Na+ and
1H+ in exchange of 1K+ [66]. The dependence of this transport system on Na+ and K+

gradients across the plasma membrane makes it highly vulnerable to ATP depletion with
subsequent inhibition of glutamate uptake or reversal of transporters [67]. Another factor
affecting the efficiency of glutamate removal from the synaptic cleft is translational control
of EAATs or post-translational modification of the transporter molecules, which affects the
level of active transporters. Glutamate is further accumulated in the synaptic vesicles via
vesicular glutamate transporters VGLUTs using the ∆µH

+ gradient.
Considering the high energy-dependent compartmentalization of glutamate and its

gradient across the synaptic bouton, i.e., from synaptic vesicles (~200 mM [68]) to the
synaptic cleft (<1 µM between release events, around 1 mM during the peak of SV re-
lease [69]), any factors affecting the efficiency of high-affinity glutamate uptake represent a
potential risk of neurotoxic neuronal damage. The pathophysiological conditions underly-
ing the long-term glutamate rise in the synaptic cleft and extrasynaptic glutamate spillover
are traumatic brain injury, ischemia, and other causes of hypoxia, stroke, and oxidative
stress leading to transition of the significant portions of EAATs to the reverse mode, when
glutamate is released from the cytosol to the extracellular space. Glutamate-mediated
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neurotoxicity originates from overstimulation of ionotropic glutamate receptors, primarily
N-methyl-D-aspartate (NMDA) receptors, and massive Ca2+ flux to the postsynaptic termi-
nal. High extracellular concentrations of glutamate lead to the prolonged co-activation of
synaptic and extrasynaptic (localized to non-synaptic sites) NMDA receptors, glutamate-
mediated neurotoxicity [70], and are involved in the pathogenesis of Alzheimer’s disease,
amyotrophic lateral sclerosis (ALS), and Huntington’s disease.

Due to Ca2+ permeability and high affinity for glutamate, NMDA receptors are among
the primary molecular targets implicated in the pathogenesis of excitotoxicity. At resting
membrane potential, the current through channels of NMDA receptors is almost fully
blocked by Mg2+ preventing the conductance between the stimuli. During quantal neu-
rotransmitter release two conditions for Ca2+ influx through NMDA receptors are met:
* glutamate concentrations rise rapidly, and ** the depolarization of synaptic membranes
removes the Mg2+ block from NMDA receptor channels. Therapeutic concentrations
(1–10 µM) of the NMDA receptor antagonist memantine, used for treatment of Alzheimer’s
disease, preferentially block extrasynaptic rather than synaptic currents through NMDA
receptors in the same neuron [71]. The mode of memantine action enables effective pre-
vention of excessive extrasynaptic NMDA receptor stimulation, with much less effect on
NMDA receptor-mediated synaptic activity, when glutamate is elevated for only millisec-
onds [72].

Under prominent rise of intracellular Ca2+ levels, vesicular glutamate release is an-
other factor contributing to elevated extracellular glutamate concentration and excitotoxic
damage. In rats and mice, ischemic conditions, followed by release of axonal vesicular
glutamate into the peri-axonal space under the myelin sheath, trigger activation of myelinic
GluN2C/D-containing NMDA receptors [73], which are generally extrasynaptic [74].

4.2. Excitotoxicity as a Prerequisite and Consequence of Neuroinflammation and Neurodegeneration

Due to the ability of Ca2+ to activate a range of enzymes, glutamate receptor-mediated
excitotoxicity provokes necrotic and apoptotic neuronal death. Massive influx of Ca2+

overloads the intracellular buffer systems for this ion, provokes mitochondrial dysfunction,
and activation of a range of proteases, including caspases and calpain, leading to the
subsequent degradation of components of the neuronal cytoskeleton and the release of
apoptotic factors.

One example of active involvement of the ECS in mediating cellular communica-
tion is the functional coupling of microglia and synapses during normal synaptic activity
as well as excitotoxic injury. As previously suggested, microglia are a crucial source
of de novo produced AEA and 2-AG under basal conditions and during neuroinflam-
mation [75–77]; however, high glutamate application induces a prominent 2-AG over-
production in neurons [76,78]. Under these conditions the neuronal production of AEA
increases only slightly, while the production of two putative endocannabinoids, homo-
gamma-linolenylethanolamide and docosatetraenylethanolamide remains unchanged [76].
LPS-induced systemic inflammation in mice is accompanied by the increase in basal glu-
tamate levels in the prefrontal cortex [47]. Elevated glutamate may originate from both
inflammation-associated decrease in uptake, and neuronal and non-neuronal (from as-
trocytes and microglia) glutamate release. Glutamate flow favors the spatial cooperation
between dendritic spines and ramified microglial cells and induces microglial process
extension toward neurons (Figure 4). 2-AG induces chemokinesis (random motion in-
creased by a chemical stimulus) and chemotaxis, (directed cell migration along a chemical
gradient) in microglia cells [76,79]. In line with this, activated microglia express CB2 recep-
tors at the leading edge of their motile protrusions [76]. Arachidonylcyclopropylamide
(ACPA)-induced migration of BV-2 microglia could be blocked by the highly selective
CB2 antagonist SR145528 [80]. Similarly, the migratory responses towards 2-AG and the
synthetic cannabinoid CP 55,940 were inhibited by CB2 receptor antagonism [76,79]. We
hypothesize that eCBs released at sites of synaptic activity (or injury) may act as a chemoat-
tractants to recruit microglia in a CB2-dependent manner, toward neuroinflammatory lesion
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sites. Moreover, in organotypic hippocampal slice cultures, 2-AG mediated neuroprotec-
tion against NMDA-induced excitotoxicity by acting explicitly on abnormal-cannabidiol
(abn-CBD)-sensitive receptor, putative GPR18, on microglial cells [81].
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Figure 4. The development of synaptic dysfunction and the involvement of the ECS in neuroprotective responses. En-
docannabinoid produced in the glutamatergic synapse under excitotoxic conditions attract microglial cells into close
proximity to spines. By adopting a pro-inflammatory or pro-survival phenotype microglia largely define the fate of the
injured cells and spines. eCB signaling decrease the presynaptic neurotransmitter release, support the glutamate–glutamine
cycle, and balanced glutamate/GABAergic transmission. AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
receptor; BDNF, brain-derived neurotrophic factor; CB, cannabinoid receptor; EAATs, excitatory amino acid transporters;
eCBs, endocannabinoids; ER, endoplasmic reticulum; GDNF, glial cell line-derived neurotrophic factor; Gln, glutamine;
Glu, glutamic acid; IFNγ, interferon gamma; IL, interleukin; mGluRs, metabotropic glutamate receptors; NGF, nerve
growth factor; NMDA, N-methyl-D-aspartate receptor; NO, nitrogen monoxide; PGD2, prostaglandin D2; QUIN, quinolinic
acid; ROS, reactive oxygen species; TGFβ, transforming growth factor-beta; TNFα, tumor necrosis factor alpha; VGCC,
voltage-gated calcium channels.

There is an activity-dependent modification of microglia–synapse contacts in vivo.
Ischemic brain is characterized by the markedly prolonged contact time between microglial
processes and synaptic structures and wrapping of microglial processes around the synapse,
followed by the disappearance of presynaptic boutons [82].

One of the mechanisms by which microglia eliminate presynaptic boutons and axons is
trogocytosis [83], a process described in the immune system as a non-apoptotic mechanism
for the capture of membrane components that differs from phagocytosis and involves the
engulfment and clearance of cellular structures larger than 1 µm [84]. In a mouse model
of cortical multiple sclerosis in vivo imaging demonstrated that cortical inflammation
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disrupts circuit activity, which coincides with a widespread, but reversible, loss of dendritic
spines. Under these circumstances, spines displaying local calcium accumulations are
eliminated by invading macrophages or resident activated microglia [85].

Acute microglia activation is accompanied by the release of glutamate, quinolinic
acid, proinflammatory cytokines (IL-1β, TNF-α, IL-2, IL-6), chemokines—macrophage
inflammatory protein-1α (MIP-1α) and monocyte chemoattractant protein-1 (MCP-1), and
free arachidonic acid. Quinolinic acid produced exclusively in activated microglia and
macrophages, is a NMDA receptor agonist and mediates excitotoxicity during immune
response. By contributing to destabilization of the cytoskeleton in astrocytes and endothe-
lial cells, quinolinic acid decreases the integrity of the neurovascular unit and increases
the influx of BBB impermeable quinolinic acid from the periphery [86]. Produced exci-
totoxic molecules and proinflammatory cytokines intensify free radical generation and
lipid peroxidation, which provoke mitochondrial dysfunction and further exacerbate the
excitotoxicity.

Microglia largely define the fate of damaged synaptic contacts and cells and promote
the resolution of neuroinflammation and regeneration by releasing brain-derived neu-
rotrophic factor (BDNF) and cytokines with dual (pro- and anti-inflammatory) potential,
like TGF-β and IL-10.

5. The Role of Retrograde Endocannabinoid Signaling in the Tuning of Synaptic
Strength
5.1. Synaptic Plasticity in Glutamatergic Synapses

When glutamate levels reach a certain concentration in the synaptic cleft, it binds to
AMPA receptors and induces Na+ influx, which is registered as excitatory postsynaptic
potentials (EPSP) of certain amplitudes. Due to the presence of the GluR2 subunit the
majority of AMPA receptors in the CNS are impermeable to Ca2+ [87] and postsynaptic
Ca2+ influx triggered by glutamate is mainly mediated by NMDA receptors.

Influx of Ca2+ through NMDA receptor channels activates a range of kinases, primar-
ily Ca2+/calmodulin-dependent protein kinase II (CaMKII) [88,89], which in turn activates
Rho GTPases, Cdc42, and RhoA [90]. This reorganizes the postsynaptic density via * remod-
eling of the actin cytoskeleton and transient (~5 min) enlargement of the spine (Figure 5);
** enhanced trafficking of AMPA receptors to post-synaptic sites as a result of their re-
distribution from recycling endosome to the plasma membrane [91,92], and *** increased
single-channel conductance of AMPA receptors as a result of direct phosphorylation [93].

Synaptic recruitment of Ca2+-permeable AMPA receptors via CaMKI is also suggested
to contribute to signaling pathways that drive the spine enlargement via actin polymer-
ization [94]. Thus, following the repeated cycles of activation, the amplitude of evoked
EPSC increases, i.e., is potentiated (long-term potentiation, LTP). This effect is typical for
excitatory neurotransmission and persists in synapses depending on the stimulus mode.

In contrast, long-term depression (LTD) is a long-lasting drop in the efficiency of
synaptic transmission as a result of a decrease in postsynaptic receptor density and/or
presynaptic neurotransmitter release. While for development of LTP the activation of
certain protein kinases is essential, LTD induction is dependent on protein phosphatase
activity and target dephosphorylation. Prolonged 1 Hz stimulation leads to Ca2+ rise and
calmodulin-dependent activation of calcineurin (protein phosphatase 2B, PP2B) [95], which
via serine/threonine protein phosphatases PP1 or PP2A, results in the dephosphoryla-
tion of AMPA receptors [96], decrease of their channel conductance, and arrest of their
recycling [97]. Dephosphorylation of the transcription factor cAMP response element
binding protein (CREB) in the hippocampal area CA1 in vivo is suggested to be one of
the mechanisms through which these protein phosphatases contribute to the prolonged
maintenance of LTD [98].
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Figure 5. The stimuli involved in the establishment of synaptic plasticity and retrograde eCB signaling in the glutamater-
gic synapse. Glutamate release from the presynaptic terminal activates ionotropic (NMDA, AMPA, and kainate) and
metabotropic glutamate receptors (mGluRs), that together with the Ca2+ influx through VGCC are potent triggers for
eCB production (indicated in green). Ca2+ influx trough NMDA receptors is involved in the regulation of AMPA receptor
trafficking, spine enlargement, and plastic changes in the strength of the synaptic transmission (indicated in purple). AC,
adenylate cyclase; AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; CaM, calmodulin; CaMKII,
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inward-rectifier potassium channel; MAPK, mitogen-activated protein kinase; mGluRs, metabotropic glutamate receptors;
NAT, N-acyltransferase; NMDA, N-methyl-D-aspartate receptor; PI3K, phosphatidylinositol 3-kinase; PL, phospholipase;
RhoA, Ras homolog family member A; VGCC, voltage-gated calcium channels.

The development of LTP or LTD depends on whether the frequency of the stimulation
is higher than threshold frequency [99], with the postsynaptic rise of Ca2+ as a main
determinant of the development of LTD or LTP. LTD and LTP are well-characterized
molecular mechanisms underlying learning and memory formation and are induced in
experiments with high- or low-frequency stimulations (repetition of hundreds of pre- or
postsynaptic spikes). In the striatum of rodents, spike-timing-dependent potentiation
(STDP), a phenomenon describing the dependence of strength of synaptic transmission on
the timing between the neuron’s output and input action potentials (spikes), is observed
for 75–100 pairings, disappears for 25–50 pairings and re-emerges for 5–10 pairings. STDP
that is induced by very few pairings is independent from NMDA receptors but mediated
by 2-AG and AEA, acting on both CB1 and TRPV1 [100].

5.2. Endocannabinoid-Mediated Synaptic Plasticity

Stimulation of postsynaptic neurotransmitter receptors and sustained Ca2+ influx is the
potent trigger for the production of eCBs and their congeners [78,101] in a neuronal activity-
dependent manner. The released neurotransmitter activates ionotropic neurotransmitter
receptors, Gq-coupled metabotropic receptors (group I of metabotropic glutamate receptors,
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mGluRs, dopamine receptors D2, M1, and M3 muscarinic acetylcholine receptors, M1/M3
mAChRs), and/or voltage-gated calcium channels. This induces a burst of Ca2+ in the
postsynapse and the production of eCBs, primarily AEA and 2-AG, which via CB1 and
CB2 receptors modulate the presynaptic release of neurotransmitters. Thus, generation
of AEA and 2-AG in the brain shows spatial variations and depends on complement
of neurotransmitter receptors on certain neurons. Endocannabinoid-mediated synaptic
potentiation can be realized in neurons receiving/sending inputs via taken activated
synapses (homosynaptic) or in other neurons that do not directly contact taken activated
synapses (heterosynaptic).

Endocannabinoid-mediated long-term depression (eCB-LTD). CB1 and CB2 are Gi/0 protein-
coupled receptors that, upon ligand binding, inhibit adenylate cyclase activity and cAMP
production, negatively regulate voltage-gated calcium channels (VGCC), and activate
inwardly rectifying potassium (Kir) channels and MAP kinase. This decreases the Ca2+

influx into the presynaptic terminal, lowers the probability of Ca2+-dependent fusion of
synaptic vesicles and attenuates the presynaptic neurotransmitter release. Synaptic vesicle
recycling is a highly dynamic multistep process mediated by SNARE-proteins and other
regulatory proteins, with Ca2+ influx being a key factor for docked and primed synaptic
vesicles to enter the fusion step [102]. Together with the activity-dependent production of
eCBs and activation of CB1, presynaptic activity is essential for this type of plasticity as
it determines the afferents in which eCB-LTD will be induced [103]. Presynaptic activity
dependence is mediated by presynaptic NMDA autoreceptors that detect the release of
glutamate. Thus, timing-dependent-LTD is induced only under coincident activation of
presynaptic NMDA and CB1 receptors [104]. Unlike LTP, which lasts from minutes to
hours, short-term plasticity (STP) is maintained for tens of milliseconds to a few minutes at
a maximum.

Depolarization-induced suppression of inhibition (DSI)/depolarization-induced suppression
of excitation (DSE). DSI/DSE is a form of STP realized in the inhibitory (GABAergic) and
excitatory (glutamatergic) synapses, respectively, and is induced by depolarization of
the postsynaptic terminal and Ca2+ influx through VGCC. Pharmacological experiments
favor a role for 2-AG rather than AEA or noladin ether (2-arachidonyl glyceryl ether) as
the relevant endocannabinoid to elicit DSE [105]. Glutamate spillover may profoundly
affect network excitability by shifting the duration of eCB-mediated inhibition at GABA
synapses. Metabotropic glutamate receptors are involved in the control of the duration
of DSI, most likely through heterologous desensitization of CB1 [106]. Thus, glutamate-
mediated excitotoxicity can significantly modify establishment of various forms of synaptic
plasticity and balance in glutamate-/GABAergic signaling [47].

Synaptically-evoked (or metabotropic-induced) suppression of inhibition/excitation (SSE/SSI).
SSE/SSI is a form of STP, driven by activation of postsynaptic metabotropic (Gq/11-coupled)
neurotransmitter receptors, subsequent activation of phospholipase C (PLC) and DAGL
with generation of 2-AG and suppression of neurotransmitter release via presynaptic CB1
receptors [107]. If the synaptic stimulation is profound, produced eCBs can reach more
distant sites and mediate the plasticity heterosynaptically.

TRPV1-mediated synaptic plasticity. TRPV1-mediated synaptic plasticity demonstrates
the interplay between the eCB and endovanilloid system. This type of synaptic plas-
ticity is mediated by binding of AEA to TRPV1 at the postsynapse and results in Ca2+-
calcineurin and clathrin-dependent internalization of AMPA receptors, which provoke
LTD of excitatory transmission [108,109]. TRPV1 integrates sensation of physical and
chemical stimuli and is activated by temperature greater than 43 ◦C, acidic conditions,
vanilloids like capsaicin, or endocannabinoids such as AEA, N-arachidonoyl dopamine,
and N-oleoyl dopamine. TRPV1 is well known for its role in transmission of neuropathic
(inflammatory) pain. At the same time TRPV1 mediates LTD in the hippocampus and 12-
(S)-hydroperoxyeicosatetraenoic acid (12-(S)-HPETE), an endogenous eicosanoid released
during synaptic stimulation, acts at TRPV1 receptors to trigger LTD [110].
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It is hypothesized that eCB-mediated LTP is induced only when massive Ca2+ rise is
observed and high levels of 2-AG are produced (i.e., following simultaneous activation of
several postsynaptic neurotransmitter receptors, TRPV1, VGCC) [100]. The observations
that2-AG and AEA mediate different forms of plasticity with the involvement of CB1,
TRPV1, and mGluRs receptors depending on the brain region, characterize the eCB system
as a polymodal signal integrator that allows the diversification of synaptic plasticity in a
single neuron [111].

The interference of NAEs and other eCB congeners with enzymatic degradation or
endocannabinoid signaling suggests their role in tuning the activity of primary eCBs.
NAEs, monoacylglycerols, and certain N-acylneurotransmitters compete with AEA or
2-AG for FAAH-mediated degradation, thus extending their lifetimes [112] and their ability
to interact with cannabinoid receptors. This “entourage effect” of the non-cannabinoid
2-acylglycerols and NAEs may serve as an additional fine regulator of cannabinoid activity.
The overall interplay and metabolism of endogenous ligands of CB1/2, TRPV1, GPR55, and
GPR18 is now integrated in the “endocannabinoidome” and demonstrates that this system
is an essential player not only in many aspects of behavior, cognition, and memory, but
also mediates inherent protective mechanisms of the neuro-immune interface.

6. Neuroinflammation-Induced Synaptopathy and Neurodegenerative Diseases

Neuroinflammation is a common feature of acute and chronic neurodegenerative
disorders such as Alzheimer’s and Parkinson’s disease, viral infections of the CNS, stroke,
paraneoplastic disorders, traumatic brain injury, and multiple sclerosis. Neuroinflamma-
tion is typically characterized by activation of immunocompetent glia cells (microglia and
astroglia), release of cytokines, prostaglandins, and reactive oxygen species, the impair-
ment of the blood–brain-barrier (BBB) integrity and resultant infiltration of peripheral
immune cells.

6.1. Microglia

Microglia are residential innate immune cells that perform primary immune surveil-
lance and macrophage-like activities of the CNS. In a non-stimulated state, microglia
contribute to CNS development and maintain tissue homeostasis by supporting neuronal
survival, cell death, and synaptogenesis [113]. However, microglial cells can be activated
by various pathological stimuli during infections, brain trauma, stroke, and neurodegen-
eration [114]. Activated microglia are characterized by increased proliferation and the
production and secretion of a wide spectrum of immune mediators such as cytokines,
chemokines, prostaglandins, and reactive oxygen intermediates [115–118]. The production
of cytokines and chemokines can facilitate the recruitment of peripheral leukocytes into
the brain [119]. During neuroinflammation, activated microglia migrate to the site of injury
or infection and perform pivotal immunological functions such as phagocytosis of invad-
ing microorganisms and removal of dead or damaged cells [120,121]. However, chronic
activation of microglia is generally considered to be detrimental for neuronal health [122].

In response to activation, microglia can polarize to either a pro-inflammatory M1
phenotype or an anti-inflammatory M2 phenotype, although microglial activation states
have been recognized to be more complex [123]. Various stimuli induce the classical
M1 activation state of microglia such as LPS, interferon (IFN)-γ, amyloid β (Aβ), and
α-synuclein [118,124–126]. Toll-like receptor 4 (TLR4), a member of the pattern recognition
receptor family, mediates innate immunity and is abundantly expressed in microglia [127].
In fact, TLR4-dependent microglial activation has been observed in various neurodegen-
erative diseases like Alzheimer’s disease (AD) and Parkinson disease (PD) [128,129]. In
addition, TLR4 is also responsible for chronic neuroinflammation after stroke and spinal
cord injury leading to brain damage [130]. TLR4 can be activated by multiple pathogen-
associated molecular patterns (PAMPs), such as LPS which is a major component of the
outer membrane of Gram-negative bacteria [130]. LPS is one of the most extensively
studied TLR4 ligands to understand the mechanism of microglial activation in neurodegen-
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eration [127]. In addition to the above-mentioned pro-inflammatory response, microglia
can also adopt an anti-inflammatory M2 phenotype. After M1 microglia attack invading
organisms to limit tissue damage, anti-inflammatory M2 microglia are involved in phago-
cytosis of cellular debris and wound healing [123]. Another more immuno-suppressive
phenotype is induced by the cytokines IL-10 and TGF-β, or by apoptotic cells [123].

Microglia are a crucial source of AEA and 2-AG under basal conditions and during
neuroinflammation [75–77]. When stimulated with ATP (released from damaged tissue)
microglia produce 2-AG themselves [77]. CB2 receptor expression is upregulated in mi-
croglia stimulated with pro-inflammatory cytokines [131], indicating a significant role of
CB2 in the regulation of neuroinflammatory states. Further, it was demonstrated that 2-AG
and PEA affect microglial cells and lead to a decrease in the number of damaged neurons
after excitotoxical lesion in organotypic hippocampal slice cultures. 2-AG activated the
abnormal cannabidiol (abn-CBD) receptor and PEA was shown to mediate neuroprotection
via PPAR-α [132]. The CB2 agonist AM1241 has also been shown to attenuate microglia
activation by reducing the expression of the inducible nitric oxide synthase and shifting
their phenotype from M1 to M2 [133].

Microglia constantly scan their environment and due to the long processes directed
towards synapses can monitor and respond to the functional status of synapses. Microglia
contribute to neuronal circuit maturation and are involved in both synapse induction and
elimination. During neuroinflammation, prolonged activation of microglial cells attracted
to lesion sites can exacerbate neuronal damage. It is anticipated that 2-AG, produced by
overstimulated neurons, induces microglial migration [76] and proliferation [134].

6.2. Astrocytes

Astrocytes are the largest and most abundant group of glial cells in the CNS and
play a vital role in regulating CNS homeostasis, synaptic transmission and plasticity,
and neuroprotective effects. Glia respond to neuronal activity with the elevation of their
internal Ca2+ concentration, which triggers the release of mediators of glial origin. The
term ‘tripartite synapse’ describes the bidirectional communication between astrocytes and
neurons, where nearby astrocytes respond to synaptic activity and, vice versa, regulate
synaptic transmission and plasticity [135]. Perisynaptic Schwann cells and synaptically
associated astrocytes are viewed as integral modulatory elements of tripartite synapses.

CB1 activation in astrocytes amplifies Ca2+ influx and promotes the release of glio-
transmitters, like glutamate (gliotransmission), which modulate the target response at pre-
and postsynaptic sites [24]. Impairment of spatial working memory and in vivo long-term
depression (LTD) of synaptic strength at hippocampal CA3-CA1 synapses, induced by an
acute exposure of exogenous cannabinoids, is due to the activation of astroglial CB1 and is
associated with astroglia-dependent hippocampal LTD [136].

Due to their proximity to blood vessels and other resident cells within the CNS such as
neurons, microglia, and oligodendrocytes, astrocytes play a crucial role in BBB maintenance
and permeability. In addition, astrocytes are involved in modulating the innate immune
response by regulating inflammatory factors, such as cytokines, chemokines, complement
fragments, reactive oxygen, or reactive nitrogen species. However, dysfunctional astrocytes
seem to play an important role in the onset of neurodegenerative diseases such as AD and
ALS (reviewed in [137]).

Astrocytes become activated or reactivated during various pathological conditions
such as stroke, trauma, tumor growth, and neurodegenerative diseases. Following the
M1/M2 phenotype classification of microglia and macrophages, neuroinflammation can
induce two types of reactive astrocytes, termed A1 and A2 [138]. In A1 reactive astrocytes
the pro-inflammatory NF-κB pathway is upregulated leading to the release of comple-
ment factors [139] that are destructive to synapses and to the secretion of neurotoxins and
pro- and anti-inflammatory mediators such as PGD2, IFN-γ, TNF-α, IL-1-β, and TGF-β,
respectively [140–142]. In A2 reactive astrocytes enhanced STAT3 activity has been ob-
served [143]. Moreover, A2 reactive astrocytes can upregulate many neurotrophic factors
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such as thrombospondins [144] and brain-derived neurotrophic factor (BDNF) [145,146],
which promote either survival and growth of neurons or synaptic repair.

Accumulating evidence supports the role of astrocytes as a source of eCBs. It has
been shown that astrocytes have the potential to produce 2-AG in response to ATP [147],
endothelin [148], and CB1 receptor activation [75,149]. Furthermore, the secretion of AEA,
homo-gamma-linolenylethanolamide (HEA), and docosatetraenoylethanolamide (DEA) by
activated mouse astrocytes has been confirmed [75].

Of note, not only microglial cannabinoid receptors but also astroglial CB1 and CB2 re-
ceptors play critical roles in the response to neuroinflammation [33]. Activation of astroglial
CB1 receptors protects against ceramide-induced oxidative stress and apoptosis [150,151]
and activation of both CB1 and CB2 receptors seems to prevent LPS-induced nitric oxide
(NO) release by cultured astrocytes [152]. Accordingly, 2-AG has been shown to maintain
glutamine synthase expression in astrocytes in a MAPK-dependent manner and thus to
protect astrocytes from LPS exposure [153]. 2-AG also seems to reduce the astrocytic
production of chondroitin sulfate proteoglycan, that accumulates in MS lesions and is
thought to be linked to the failure to regenerate, impeding oligodendrocyte precursor
cell differentiation, and neuronal growth [154]. Moreover, 2-AG protects astrocytes ex-
posed to oxygen-glucose deprivation through a blockade of NDRG2 signaling and STAT3
phosphorylation [155]. 2-AG and PEA have been shown to attenuate amyloid β-induced
astrocyte activation and PEA increased 2-AG production in astrocytes [156–158]. PEA is
also suggested to improve neuronal survival by possibly counteracting reactive astroglio-
sis [159,160]. PEA- and OEA-mediated inhibition of astrocyte activation seems to involve
PPAR-α [161,162]. Furthermore, AEA has been shown to elicit glutamate release through
astrocytic CB1 receptor activation in the core of nucleus accumbens in rats [163].

Astrocytes isolated from mice with acute experimental autoimmune encephalomyelitis
(EAE) exhibited reductions in all endocannabinoid metabolism-associated genes, with the
exception of Faah, which persisted in chronic disease and was associated with reduced
Cnr1 transcript levels both at acute and recovery phases [164]. Astrocytic- together with
neuronal MAGL seems to be responsible for converting 2-AG to prostaglandins and thus
protects the nervous system from excessive CB1 receptor activation [165].

6.3. Cytokines Involved in Neuroinflammation

Besides microglia and astrocytes, endothelial cells and other glial cells, may produce
cytokines and chemokines. Common cytokines which are produced in response to brain
injury or during neurodegenerative diseases able to induce neuronal cytotoxicity are IL-6,
IL-1β, and TNF-α [166]. Moreover, sustained release of these cytokines leads to a compro-
mised BBB [167]. Subsequently, peripheral immune cells such as macrophages, neutrophils,
monocytes, T cells, and B cells are able to migrate into the brain. This process exacerbates
and contributes to chronic neuroinflammation and neurodegeneration. For instance, follow-
ing traumatic brain injury, IL-1β induces neuronal apoptosis, BBB breakdown, recruitment
of immune cells, as well as the production of pro-inflammatory mediators [168]. Moreover,
during spinal cord injury, the secretion of pro-inflammatory mediators including IL-1β,
inducible nitric oxide synthase (iNOS), IFN-γ, IL-6, IL-23, and TNF-α is followed by the acti-
vation of local microglia and attraction of various immune cells such as naive bone-marrow
derived macrophages [169]. Upon infiltration of the injured site, macrophages undergo
phenotype switching from M2 phenotype to M1-like phenotype. Noteworthy, normal aging
is often associated with an increased number of activated microglia in the brain which are
involved in altered synaptic plasticity mechanisms in the hippocampus, including LTP
and thereby reduce memory performance [170]. Moreover, aged brains show homeostatic
imbalance between anti-inflammatory and pro-inflammatory cytokines increasing the risk
for neurodegenerative diseases such as AD. Although the pro-inflammatory cytokines
may cause cell death and tissue damage, they are also involved in tissue repair [171]. For
example, TNF-α causes neurotoxicity at early stage, but contributes to tissue growth at
later stages of neuroinflammation.
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Several studies have highlighted the regulatory effects of the ECS on neuroinflam-
matory conditions by modulating the production of cytokines. For instance, 2-AG was
shown to prevent the overexpression of TNF-α, IL-1β, and iNOS in a murine model of
SO2-induced brain inflammation [172]. MAGL-deficiency leading to increased 2-AG levels
also reduced brain PGE2 and pro-inflammatory cytokine levels following peripheral LPS
administration in mice [173]. Selective pharmacologic inhibition of ABHD6 diminished
cytokine and chemokine production in a murine model of neuropathic pain [174], and the
MAGL inhibitor CPD-4645 significantly reduced IL-1β and IL-6 brain levels after systemic
LPS challenge [175]. The FAAH inhibitor URB597 attenuated increased TNF-α and IL-1β
levels in the hippocampi of aged mice [176] and decreased Iba-1, TNF-α, IL-6, and mono-
cyte chemoattractant protein-1 (MCP-1) levels in the hippocampus of ethanol-exposed
rats [177]. The FAAH inhibitor PF3845 increased levels of AEA, OEA, and PEA in the
frontal cortex and hippocampus of rats [178]. Furthermore, this increase in FAAH substrate
levels was associated with a robust attenuation in TNF-α, IL-6, and IL-1β levels in the
prefrontal cortex. PEA has been shown to reduce pro-inflammatory cytokines after trau-
matic spinal cord [179] and brain injury [180,181], in a model of sciatic nerve crush [182],
in Parkinson’s disease models [183,184] and in MS patients [185]. Further, OEA administra-
tion significantly reduced plasma and brain TNF-α levels after LPS application [186] and
SEA was recently shown to suppress increased TNF-α and TGF-β1 levels in the prefrontal
cortex of LPS challenged mice [47].

CB2 receptor agonism has been shown to decrease brain levels of pro-inflammatory cy-
tokines induced by LPS application [187], intracerebral hemorrhages [188], or surgery [189]
as well as in a model of PD [190]. At the same time the CB1 receptor inverse agonist
SR141716A (rimonabant) and the CB2 receptor antagonist SR144528 significantly reduced
LPS-induced IL-1β production in the brain [191] whereas SR141716A was also shown to
increase pro-inflammatory cytokines in an EAE model [192]. Neuroprotective effect of
SR141716A was shown in the retinal degeneration model [193] and in permanent pho-
tothrombotic cerebral ischemia [194]. These findings indicate that manipulation of CB1
or CB2 receptors may have therapeutic value in neuroinflammation; however, due to the
complexity of the ECS, this concept remains to be carefully considered.

6.4. Effects of Endocannabinoids and Related Compounds on Neurodegenerative Diseases

Not only inflammatory disorders or tissue injury, but also neurodegenerative diseases
are accompanied or caused by neuroinflammation. Neurodegeneration also refers to
chronic and progressive loss of neuronal functions in the brain and spinal cord. Particularly,
AD is characterized by amyloid β plaques and neurofibrillary tangles that cause a decline in
memory and cognitive abilities. In addition to neuroinflammation, systemic infection and
inflammation, characterized by a substantial amount of proinflammatory mediators in the
circulation, have also been correlated to increased risks of developing AD [195]. Chronic
inflammation is also a hallmark of PD, which is characterized by the loss of dopaminergic
neurons and the presence of α-synuclein-containing aggregates in the substantia nigra pars
compacta [196]. Huntington’s disease (HD) is a devastating neurodegenerative genetic
disorder associated with progressive loss of a specific type of neurons found in the striatum
and cortex [197]. Unfortunately, the relationship between neuroinflammation markers and
the disease pathology is still poorly understood [198]. Amyotrophic lateral sclerosis (ALS)
is indicated by the degeneration of motor neurons [199] and characterized by the occurrence
of a neuroinflammatory reaction consisting of activated glial cells, mainly microglia and
astrocytes, and T cells [200]. Of the neurodegenerative diseases, multiple sclerosis (MS) is
an exception because neuronal death in MS is considered to be secondary to the initiating
activity of autoreactive T cells that target myelin [201]. While neuroinflammation in MS
involves infiltration of peripheral immune cells, breakdown of the BBB, and activation of
CNS-resident glial cells, neuroinflammation in the other neurodegenerative diseases is
more restricted to glial cell activation and inflammatory reactions in the parenchyma [201].
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Several animal models and human studies have demonstrated that the ECS signif-
icantly influences the development of neuroinflammation and the progression of brain
injury and neurodegenerative diseases [1–3]. Using a model of cerebral focal ischemia,
it was shown that exogenously administered AEA and 2-AG in combination reduced
infarct size in rats, but with no facilitatory effects beyond AEA or 2-AG alone [202]. Other
studies reported neuroprotective effects of exogenous AEA [203] and 2-AG [56] under
traumatic brain injury (TBI). Several studies documented the positive effects of PEA in
experimental and clinical studies of TBI, spinal cord injuries, pain, cerebral ischemia, PD,
and AD [179–181,183–185,204–208]. Moreover, the stimulation of CB1 and CB2 has been
shown to be beneficial in neurodegenerative disorders such as AD and PD (reviewed
in [209,210]). In contrast, the CB1 inverse agonist SR141716A (rimonabant) showed promis-
ing results in PD preclinical studies [211,212]; however, clinical studies with SR141716A
failed to improve motor disability in PD patients [213]. Importantly, SR141716A, which
has also been approved as an effective anti-obesity drug, shows a serious psychiatric side
effect profile, and thus has been withdrawn from the pharmaceutical market worldwide.
These contradictory data, indicate the interference of CB1 inverse agonists/antagonists
with a basal ECS tone, prevailing in healthy conditions and essentially involved in the
homeostatic regulation of brain function.

It has been observed that CB2 receptors and FAAH are selectively overexpressed in
neuritic plaque-associated glia in AD [214], especially in reactive astrocytes and activated
microglial cells [215]. In this regard, the use of hydrolase inhibitors has been mentioned as
a promising therapeutic option for neuroinflammatory and neurodegenerative diseases.
Treatment with MAGL and FAAH inhibitors, which have the capacity to increase the level
of eCBs indirectly, leads to anxiolytic, antidepressant, and anti-inflammatory effects, and
reduces amyloid β deposition and inhibition of the death of dopaminergic neurons, which
are associated with the pathogenesis of AD and PD, respectively (reviewed in [216,217]).
An overview of in vivo studies reviewing the effects of MAGL and FAAH inhibitors in
neuroinflammation and neurodegenerative diseases, is given in Table 3. Several FAAH
and MAGL inhibitors entered clinical phase I and II studies for neurological disorders
such as pain, anxiety, Tourette syndrome, and cannabis withdrawal. Moreover, dual
FAAH/cholinesterase inhibitors which might be beneficial for neurodegenerative diseases
are currently under development [218]. In addition, an increasing number of studies have
characterized the beneficial effects of NAAA inhibitors, which prevent the degradation
of NAEs, in preclinical studies of pain and (neuro-) inflammation [219–221] (Table 3).
However, in a phase I study, the FAAH inhibitor BIA 10-2474 resulted in severe adverse
events such as lethal toxic cerebral syndrome [222], leading to the discontinuation of
several clinical studies employing FAAH inhibitors. Thus, there is an urgent need of
further research to develop highly specific, short-acting, indirect cannabinoid therapies
with better safety profiles.
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Table 3. FAAH, MAGL, and NAAA inhibitors and their effects in neuroinflammation and neurodegenerative diseases.

Inhibitor Compound Disease/Model Finding References

FAAH
inhibitors

PF-3845 Chronic mouse model of PD decreased CB2 expression [223]

TBI mouse model

Enhanced AEA brain levels; reduced
neurodegeneration in the dentate gyrus;

suppressed production of amyloid
precursor protein; suppressed expression

of iNOS and COX-2

[224]

URB597 Mouse model of PD

Increased AEA, PEA, and OEA levels;
reduced L-DOPA-induced side effects

Inhibition of dopaminergic neuronal death;
decreased microglial immunoreactivity;

improved motor capacity

[225]
[226]

URB597
JNJ1661010

TCF2
Chronic mouse model of PD Anti-cataleptic effects [227]

URB597
CAY100400
CAY100402

Experimental autoimmune
encephalomyelitis (EAE) in mice Anti-spastic effects [228]

MAGL
inhibitors

JZL184

LPS-induced neuroinflammation in
rats

Decreased peripheral and central cytokine
production [229]

EAE in mice Anti-spastic effects [228]

Mouse model of AD

Improvements in spatial learning and
memory

decreased proinflammatory reactions of
microglia and reduced amyloid β burden

[230]
[231]

TBI rat model
Improved neurobehavioral recovery;

reduce astrocyte activation;
less glutamate dyshomeostasis

[232]

CPD-4645

LPS-induced
neuroinflammation and focal

photothrombotic ischemic insult in
mice

Restored functional homeostasis
of the brain vasculature [175]

KML29
chronic MPTP/probenecid

mouse model of PD
Attenuated striatal dopamine depletion;

increase in Gdnf expression [223]

Ulcerative colitis in humans
back pain in humans

Increased PEA levels in colon
enhanced PEA blood levels

after therapeutic manipulation
[233]

ABX-1431 Formalin pain model in rats Increased brain 2-AG concentrations;
suppressed pain behavior [234]

dual MAGL
FAAH

inhibitors
JZL195 Traumatic brain injury in rats Attenuated neuronal dysfunction [235]

NAAA
inhibitors

AM9053 Neuropathy in mice Reversed and prevented peripheral
neuropathy via PPAR-α [236]

Compound 8 EAE in mice

Delayed disease onset; attenuated
symptom intensity; normalized body

weight; reduced leukocyte infiltration and
microglia activation

[237]

oxazolidin-2-one (F96) Ear edema model in mice Prevented allodynia via PPAR-α [238]

EPT4900 Carrageenan-induced pain in rats Inhibited inflammation as well as
hyperalgesia [239]

ARN077 Rodent models of hyperalgesia and
allodynia

Prevented heat hyperalgesia and
mechanical allodynia via PPAR-α [240]

7. The Role of the Blood–Brain Barrier Integrity in Restriction of Systemic
Inflammation

CNS dysfunction associated with systemic infection is common and includes symp-
toms such as sickness behavior and delirium. In the context of sepsis, CNS dysfunction is
known as septic encephalopathy. A key step in the pathogenesis is the systemic production
of pro-inflammatory cytokines such as TNF-α and IL-1β, which then act on the brain.
Cytokine transport systems of the BBB are likely to play a role in permitting the passage
of these signals [241]. Moreover, AD, MS, and CNS dysfunction in systemic infection are
examples of conditions which are primarily neurodegenerative, neuroinflammatory, or
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systemic. In many cases it is not clear whether BBB changes are the cause or consequence
of neuropathology, and it is possible that BBB changes and neuropathology drive each
other in a self-perpetuating manner, contributing to disease progression.

7.1. Structure of the Blood–Brain Barrier

Histologically the BBB is a specialized multi-layered unit composed of a thick con-
tinuous glycocalyx, non-fenestrated endothelial cells with reduced vesicular activity and
linked by tight junctions, two basement membranes (vascular basement membrane and
glia limitans), and astrocytic end-feet. All elements of this ‘neurovascular unit’ contribute
to the functional BBB. At the molecular level, there are ectoenzymes, receptors and trans-
porters which regulate or reverse traffic across the BBB. Together, these components enable
a stable CNS environment to minimize traffic of inflammatory cells and molecules, local
inflammation, and prevent potential neuronal damage.

7.2. The BBB in Systemic Inflammation

Systemic inflammation, as induced by LPS, can lead to disruptive and non-disruptive
BBB changes. Disruptive BBB change is accompanied by endothelial cell damage or
tight junctional modifications, while non-disruptive change occurs at a molecular level.
Identified mechanisms of LPS-induced disruptive BBB change include modification of
tight junctions, endothelial damage and apoptosis, degradation of glycocalyx, breakdown
of glia limitans, and astrocyte alteration (reviewed in [242]). Moreover, several reports
demonstrate that systemic inflammation upregulates several endothelial cell receptors
and transporters, induces cytokine production by endothelial cells, modulates astrocyte
function, and enhances pathogen neuroinvasion without any visible changes in the BBB
architecture [242].

7.3. The Role of the ECS in the Maintenance of the Blood Brain Barrier

2-AG is the most abundant endocannabinoid in the CNS and is elevated after brain
injury and during neuroinflammation. Because of its rapid hydrolysis, however, the
compensatory and neuroprotective effect of 2-AG is short-term. It has been shown pre-
viously that 2-AG decreases BBB permeability and inhibits the acute expression of the
main proinflammatory cytokines TNF-α, IL-1β, and IL-6 [243]. Moreover, several reports
demonstrated that inhibition of 2-AG and AEA degradation supports the BBB integrity
in experimental traumatic brain injury [244,245] and ischemic insults [175]. Accordingly,
CB2 agonists prevents BBB damage in several experimental models of brain injury and
neurodegenerative disease [188,246–257]. Previously, Hind and colleagues suggested that
AEA, OEA, and PEA may play an important modulatory role in normal BBB physiology,
and afford protection to the BBB during ischemic stroke [258]. In addition, it has been
shown that PPAR-α is involved in the protective effects of OEA and OEA analogues against
ischemic brain injury, particularly in terms of BBB disruption [259,260]. A study from
Mestre and colleagues suggested that CB1 receptor dependent inhibition of vascular cell
adhesion molecule (VCAM) 1 is a novel mechanism for AEA-induced leukocyte trans-
migration trough the BBB [261]. Moreover, CB1 receptor blockade reduced leukocyte
adhesion to intestinal microvasculature in a mouse model of systemic sepsis [213], po-
tentially also affecting immune cell transmigration at the BBB. The major endogenously
produced NAE and one of the most stable among these compounds, SEA prevents leuko-
cyte, especially neutrophil, infiltration into the brain in a murine model of LPS-induced
systemic inflammation [47].

7.4. Leukocyte Recruitment

Leukocytes entering the brain from peripheral circulation must pass through the
BBB, the choroid plexus that forms the blood–cerebrospinal fluid barrier, and through
post-capillary venules at the pial surface into subarachnoid and Virchow-Robin perivas-
cular spaces [262,263]. These routes typically operate together and both the paracellular
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(junctional) and transcellular (non-junctional) mechanisms can be involved in leukocyte
trafficking across the neurovascular unit [264]. Although cellular influx into the CNS is
physiologically non-disruptive, it may result in disruptive BBB change. Leukocyte re-
cruitment across the BBB in response to systemic inflammation has been demonstrated
for lymphocytes [265], neutrophils [266], and monocytes [267]. Mechanistically, systemic
inflammation can promote leukocyte transmigration at various points during the two-step
passage through the endothelium and glia limitans.

On circulatory immune cells, CB1 and CB2 receptors are expressed at low levels in
healthy human donors. Highest expression levels of CB2 were observed on NK-cell, B-cells
and monocytes, while low levels could be found in T cells and neutrophils isolated from
peripheral blood of healthy donors [268]. Stimulation with pro-inflammatory cytokines,
such as IL-6 and TNF-α, enhanced transcription of both CB receptors, while the effect was
more pronounced for CB2 [269]. In line with this, pro-inflammatory cytokine stimulation
of murine bone marrow-derived macrophages increased CB2 expression [270], rendering
inflammatory macrophages more susceptible to CB signaling. A detailed overview of the
reported effects of CB1 and CB2 receptor activation in leukocytes is given in Table 4.

Table 4. Effects of CB1/CB2 receptor activation on leukocyte function.

CB receptor Compound Cell Type Effect References

CB1
AEA

ACEA
Monocytes

Macrophages Promotes ROS and cytokine production [271]

CB2

JWH-015 Macrophages Inhibits ROS production [271]

2-AG Neutrophils Inhibits migration [272]
Promotes migration [273]

JWH-133 Neutrophils Inhibits adhesion to
cerebral endothelial cells [274]

T cells Inhibits migration [275,276]
2-AG T cells Inhibits migration [276]

CB1/CB2
independent 2-AG Neutrophils

Stimulates myeloperoxidase and leukotriene
release, kinase activation, and calcium

mobilization
[277]

Release antimicrobial effectors [278]

8. Conclusions

Neuroinflammation is caused and/or accompanied by the infiltration of immune cells
through the BBB and secretion of a range of pro-inflammatory cytokines and other molecules
with neurotoxic potential. These changes together with glutamate receptor-mediated neurotox-
icity and neurodegenerative processes underlie the pathogenesis of several neuropathologies,
among them are Alzheimer’s disease, amyotrophic lateral sclerosis, stroke, multiple sclerosis,
and Parkinson’s disease. Bacterial and viral infection, traumatic injury, and autoimmune
disease compromise the integrity of BBB and favor the transition of systemic inflammation to
neuroinflammation. Maintenance or restauration of the selective permeability of the blood–
brain barrier is one of the therapeutic strategies under systemic inflammation to prevent
systemic inflammation from spreading to the CNS.

The interplay of true eCB and ligands that now belong to expanded ECS allow taking
into the consideration all relevant molecular targets for therapy of neuroinflammation-
associated neuropathologies. The interference of eCB congeners with enzymatic degra-
dation or endocannabinoid signaling suggests their role in tuning the activity of primary
eCBs. The ‘entourage effect’ of the produced non-cannabinoid 2-acylglycerols, NAEs and
N-acylneurotransmitters may serve as an additional fine regulator of cannabinoid activity.

Resident microglia and astrocytes are tightly coupled to functions of active synaptic
contacts and are highly involved in inflammatory progression, pro-survival changes and
resolution of neuroinflammation. These cells promote neuronal survival, synaptogenesis,
spine induction, and illumination and protect neurons from toxic metabolites. The contri-
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bution of eCB signaling into the functional coupling of neurons, astrocytes, and microglia,
suggests that in line with conception of tripartite synapses, microglial cells are equal partic-
ipants in such communication. Being activated during the immune response, microglial
cells contribute to the resolution of neuroinflammation; however, chronic activation of
microglia is detrimental to neurons and contributes to the development of synaptopathy
in various neurodegenerative diseases. Components of ECS play an active role in the
reactivity of these cells during inflammation, attenuate the production of pro-inflammatory
cytokines, and mediate neuroprotection against glutamate-receptor mediated excitotoxicity,
ischemia, and oxidative stress.

Normal synaptic activity as well as pathological overstimulation of postsynaptic neu-
rotransmitter receptors is a potent trigger for the production of eCBs and non-cannabinoid
NAEs. Glutamate-induced endocannabinoids [78] flown from active synapses and injured
sites might attract resident microglial cells [76,79]. Tight structural and functional cooper-
ation of synaptic contacts, astrocytes, and microglia enables highly dynamic response to
synaptic events.

Retrograde endocannabinoid signaling is implicated in several forms of short- and
long-term synaptic plasticity. These lipid mediators reach the presynaptic sites of the
same or other synaptic contacts and by binding to CB1/2 inhibit the synaptic vesicle fusion
and neurotransmitter release. This is how synaptic contacts dynamically tune their own
strength and can potentiate/depress the response depending on present inputs.

Released eCBs have a restricted area of action due to short half-lives and differences in
CB receptor expression on cells in close vicinity. Thus, the concentration gradient of eCBs
is formed on the site of their synthesis. This makes the pharmacological inhibition of eCB
degradation primarily effective in injured sites, where they are actively produced. Novel,
highly selective inhibitors of FAAH and MAGL with a good safety profile may become
prospective agents with anti-nociceptive, anxiolytic, and anti-inflammatory activity and
targeted action.

The overall interplay and metabolism of endogenous ligands of CB1/2, TRPV1, GPR55,
and GPR18 is now integrated in the “endocannabinoidome”, which is actively involved in
the intrinsic response to inflammation and neuroinflammation. The polymodality of this
system provides a wide field for development of highly efficient neuroprotective agents for
the therapy of inflammation-associated synaptopathy.
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