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Abstract: Obstructive sleep apnea (OSA) is a prevalent disorder characterized by recurrent upper
airway obstruction during sleep resulting in intermittent hypoxemia and sleep fragmentation.
Research has recently increasingly focused on the impact of OSA on the brain’s structure and function,
in particular as this relates to neurodegenerative diseases. This article reviews the links between OSA
and neurodegenerative disease, focusing on Parkinson’s disease, including proposed pathogenic
mechanisms and current knowledge on the effects of treatment.
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1. Introduction

Obstructive sleep apnea (OSA) is a treatable sleep respiratory disorder characterized by recurrent
partial (hypopnea) or complete (apnea) upper airway obstruction during sleep, resulting in intermittent
hypoxia and sleep fragmentation. It is a common disease, especially in the aging population,
with a prevalence of nearly 60% and 40% of men and women over 60 years old, respectively [1].
OSA is associated with excessive daytime sleepiness and various neurocognitive and psychological
manifestations, such as depression [2]. Over the past few years, there has been growing interest in the
impact of OSA on brain structure and function, especially in the elderly population and in patients with
neurodegenerative diseases. One systematic review reported that patients over 40 years old suffering
from OSA were 26% more likely to develop signs of cognitive decline or dementia [3]. Furthermore,
another cohort study found that individuals with sleep disordered breathing developed mild cognitive
impairment or Alzheimer’s disease (AD) related dementia at a younger age [4].

Neurodegenerative diseases such as AD and Parkinson’s disease (PD) are increasingly prevalent
with advancing age. PD, which is characterized by its hallmark motor features of tremor, bradykinesia,
rigidity, and postural instability, together with important non-motor symptoms including cognitive
dysfunction, is the second most frequent and the fastest growing neurodegenerative disease [5,6].
Sleep disturbances are frequently found in PD, where the prevalence is estimated to be as high as
60% to 90% [7,8]. These include alterations of sleep architecture, insomnia, hypersomnia, restless legs
syndrome, rapid-eye movement sleep behaviour disorder (RBD), which can precede the appearance
of motor symptoms, and sleep-related breathing disorders [9–12]. It is estimated that 20% to 60%
of PD patients have concomitant OSA [13]. Whether PD increases OSA prevalence is still largely
debated. Nevertheless, there is biologic plausibility for PD to be involved in the pathogenesis of OSA.
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Conversely, OSA appears to have a detrimental impact on brain structure and function. Thus, when
already affected by a neurodegenerative process, the brain could be more vulnerable to the additional
effects of OSA.

In this article, we review the interactions between OSA and neurodegenerative diseases, with a
particular focus on PD. We explore proposed pathophysiological mechanisms and the possible impact
of treatment on the clinical evolution.

2. The Consequences of OSA on the Vulnerable Brain

2.1. OSA and Cognitive Function in the General Population

In the general population and the elderly, OSA appears to be associated with impaired
cognition and psychomotor performance [14]. Numerous studies have specifically sought to assess
the effects of OSA on global cognition and specific neurocognitive domains. Systematic reviews and
meta-analyses have reported relatively consistent deficits in attention, vigilance and executive functions,
occasional impairment of some subdomains of memory, and relative sparing of visuospatial abilities,
language abilities, psychomotor function, short-term memory, and global cognition [3,15,16]. However,
the evidence is sometimes contradictory since OSA has not been universally found to lead to cognitive
dysfunction and no clear relation has been found between OSA severity and the propensity for
cognitive impairment. Indeed, one systematic review found that, apart from attention and vigilance,
more severe OSA did not produce a greater impact on other cognitive domains as compared with
milder OSA [17]. These discrepancies could, in part, be due to methodological factors such as often low
sample sizes and incomplete accounting by studies and reviews of potential confounders, such as level
of education or ethnicity, and variable outcome measures [15]. Studies use a wide and inconsistent
array of tests to assess each cognitive domain and there is considerable overlap between domains
within each test. Another possible explanation is one of cognitive reserve where individuals with
greater premorbid cognitive functioning are less vulnerable to sustained or repetitive brain injury,
and thus less likely to develop cognitive dysfunction than their cognitively vulnerable counterparts
given the same insults [18]. The effect of sleep disturbances appears to be modified by cognitive
reserve for at least some cognitive domains [19]. Furthermore, due to the chronicity of OSA, adaptive
cerebrovascular mechanisms resulting from repetitive exposure to intermittent hypoxemia, such as
development of vascular collaterals or changes in the regulation of cerebral blood flow, could lessen the
adverse impacts of OSA and further mitigate the development of cognitive dysfunction [20]. Moreover,
effects of OSA on the brain can differ depending on age, gender, comorbidities, and variable definition
of OSA [21,22].

2.2. OSA and Dementia

The aging brain is more prone to cognitive impairment. Alzheimer’s disease (AD) is the most
common form of dementia and its prevalence increases with age. Prospective studies have demonstrated
that older individuals with OSA at baseline were more likely to develop cognitive impairment and,
subsequently, evolve towards frank dementia at follow up [3,4,23–25]. Amongst elderly women,
the presence of OSA was associated with increased odds of developing subsequent mild cognitive
impairment (MCI) and dementia (OR: 1.85; 95% CI: 1.11 to 3.08) after adjustment for potential
confounders [23]. This is supported by a nationwide database study from Taiwan that found a two-fold
increase in risk of dementia in patients with OSA and that female, unlike male subjects, were more
likely than non-OSA controls to suffer from dementia [24]. A study of the Alzheimer’s Disease
Neuroimaging Initiative cohort found that patients with sleep disordered breathing developed MCI or
AD-related dementia about 10 years earlier than patients without OSA [4]. More recently, the ARIC
(Atherosclerosis Risk in Communities) cohort study also found that severe OSA was associated with
an increased risk of all-cause and AD-related dementia [26]. However, the association was reduced
when adjusted for cardiovascular risk factors. This is of importance, as neurodegeneration could
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also result from cerebrovascular effects of OSA. Indeed, OSA can induce sympathetic activation and
endothelial dysfunction and predispose to hypertension and cerebrovascular diseases, such as vascular
dementia [27]. Looking at individuals with an AD diagnosis, a meta-analysis of cross-sectional studies
found that AD patients had five times the odds of OSA as compared with healthy controls and it
was estimated that OSA occurred in nearly 50% of AD patients [28]. Although this does not imply
directionality or causality, it highlights the importance of the relationship between OSA and AD.

Recent epidemiological studies have provided evidence that OSA could act as a precursor to
other neurodegenerative diseases, such as PD. Indeed, four retrospective nationwide registry-based
cohort studies from Taiwan have evaluated incident PD in patients with OSA [29–32]. All four studies
found an increased incidence of PD as compared with non-apnoeic controls. The sex-related risk
varied between studies as two of these studies found the risk to be present in males only [29,30], one
in females only [32], and one in both males and females [31]. The results suggest that OSA could be
involved in the pathogenesis of neurodegenerative diseases, although it is also possible that OSA is
more likely to be diagnosed in preclinical PD given that both are associated with disrupted sleep.

2.3. OSA and Cognitive Function in PD

Non-motor symptoms (NMS) are prevalent in PD, even early in the disease course and have a
negative impact on health-related quality of life [33]. Among these, cognitive dysfunction is estimated
to be present in 205 to 40% of patients with early PD and up to 47% with normal baseline cognition
develop cognitive impairment at six years follow up [34,35]. A study conducted by our group found
that cognitive dysfunction, measured using the Montreal Cognitive Assessment (MoCA), was greater
in PD patients with concomitant OSA as compared with PD patients without OSA and that the
impairment increased with OSA severity [36]. Other groups that looked at global cognitive function
measures have found similar results [37–39]. Specific domain most often affected were attention and
vigilance, visuospatial abilities, and executive function [39]. However, other studies did not reach the
same conclusions [40,41]. In the first study, 92 PD patients were screened for OSA and submitted to a
complete neuropsychological assessment, including MoCA [40]. However, the number of patients
with PD and OSA was fairly small and represented only 21% of patients. In another study, 100 PD
patients (50 unselected and 50 sleepy patients) were evaluated to assess the frequency of OSA and
the impact of RBD on the severity of OSA [41]. There was no significant difference between groups
in terms of global cognition, as measured by the mini-mental state examination (MMSE). However,
the MoCA is thought to be more sensitive for cognitive dysfunction in PD. Moreover, the prevalence of
OSA was relatively low (27% of PD patients versus 40% of controls) in this study. Thus, discrepancy
could result from differences in patient populations, for example lower prevalence and severity of
OSA or of cognitive dysfunction, different target populations for study recruitment (e.g., focused
primarily on RBD), and differences in OSA definitions and scoring practices which can impact OSA
detection [42,43].

2.4. OSA and Motor Impairment in PD

Motor impairment is a prominent feature of PD and results from degeneration of dopaminergic
neurons in the substantia nigra and depletion of dopamine from the basal ganglia, areas of the brain
involved in motricity control. This manifests clinically by bradykinesia, rigidity, tremor, and postural
instability, as well as gait disturbances. In the general population, OSA has been found to be associated
with falls and disturbed gait, which improved with treatment of OSA [44–46]. Interestingly, although
gait has been considered an automatic motor function, a cognitive component is now believed to
be involved, particularly executive function [47]. The interaction of OSA and motor dysfunction in
PD has been less extensively studied. Motor dysfunction in PD is often clinically measured with
the MDS-UPDRS (Movement Disorder Society Unified Parkinson’s Disease Rating Scale), a four-part
questionnaire that assesses experiences of daily living, motor symptoms, non-motor symptoms,
and motor complications [48]. A higher score indicates greater impairment. The Timed Up-and-Go
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(TUG) is a test used to assess basic mobility, balance, and risk of falls in the elderly [49]. A prospective
cohort study conducted by our group showed that PD patients with OSA had significantly higher
baseline motor MDS-UPDRS [50]. This was consistent with other studies in which motor function
was worse in PD patients with OSA [41]. Furthermore, those with OSA treated with CPAP showed a
stabilization of their motor MDS-UPDRS scores over a 12-month follow-up period, whereas in PD
patients without OSA and those with untreated OSA, motor scores deteriorated. In this study, we used
a model where CPAP use (in hours per night of use) was treated as a continuous variable. We found
that progression of motor symptoms over time was slower with greater CPAP use, however this
association was not statistically significant. Additionally, TUG scores stabilized in PD patients with
treated OSA, whereas they deteriorated in the two other groups. This suggests that OSA can impact
not only cognitive function in PD but also motor outcomes. Whether OSA affects the underlying PD
neurodegenerative process remains to be determined.

3. Pathogenesis of Cognitive Impairment in OSA

The pathophysiologic mechanisms involved in the effects of OSA on the brain remain poorly
characterized but are likely complex and multifactorial. Proposed mechanisms, further described below,
include intermittent hypoxemia, sleep fragmentation and changes in sleep architecture, hemodynamic
and vascular changes, blood–brain barrier disruption, and abnormal waste clearance, changes in
synaptic plasticity, which lead to structural and functional brain changes (Figure 1) [51].
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Figure 1. The relationship between obstructive sleep apnea, neurodegenerative disorders,
and Parkinson’s disease. OSA, obstructive sleep apnea, and PD, Parkinson’s disease.

OSA and dementia share certain risk factors such as age, sex, cardiovascular comorbidities,
and genetic background [52–56]. Nevertheless, OSA produces structural and functional brain
abnormalities that can be quite similar to neurodegenerative diseases, suggesting the potential for
synergistic effects [57]. OSA has been linked to decreased gray matter in the hippocampus, cingulate,
and cerebellum, as well as the temporal, frontal, and parietal lobes [14,58–62] and OSA treatment
with CPAP was shown to increase gray matter volume in the hippocampal, thalamic, and frontal
areas [58,63,64]. Conversely, some studies have found that hypoxemia in OSA is associated with gray
matter hypertrophy and thickening [65–68]. In one study, these changes were also associated with
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measured respiratory disturbances and sleep fragmentation [65]. In the latter, the authors suggested
that gray matter hypertrophy could result from cerebral oedema and sign an early or “presymptomatic”
stage of neurodegeneration in OSA that could evolve and progress to atrophy if left untreated. Indeed,
oxidative stress and fluctuations in cerebral blood flow induced by intermittent hypoxemia, sleep
fragmentation, and respiratory disturbances are known to induce cerebral edema [69–71]. Gray matter
hypertrophy and thickening were found to respond to CPAP therapy [72]. Furthermore, with the
emergence of functional neuroimaging, it has been revealed that OSA decreases brain activation in
cingulate, frontal, and parietal regions when performing memory and sustained vigilance tasks, as
well as decreased connectivity in similar regions [14,61,73–75].

Glucose homeostasis and insulin regulation is increasingly being recognized as a risk factor
for cognitive impairment [76]. In the general population, higher fasting blood glucose and reduced
glucose metabolism were associated with poor cognitive function and cerebral atrophy [77,78]. In a
study conducted on middle-aged individuals looking at biological correlates of cognitive impairment,
glucose metabolism was strongly and inversely associated with executive functions [79]. Similar work
on the proteomic signature of cognitive impairment in postmenopausal women with OSA also
identified insulin as one of the biomarkers involved in the development of cognitive impairment [80].
Insulin resistance and diabetes mellitus (type 2 diabetes) is prevalent in patients with OSA, where it is
estimated that 15% to 30% are affected [81]. In the non-diabetic, OSA itself is associated with increased
insulin resistance and treatment with CPAP in the prediabetic improved glucose metabolism [82,83].
Thus, effects on glucose metabolism could represent a mechanism whereby OSA contributes to cognitive
dysfunction [84].

OSA is associated with chronic changes in sleep architecture such as sleep fragmentation, decreased
slow-wave sleep (SWS), and rapid-eye movement (REM) sleep, as well as possible changes in sleep
spindles and K-complexes [85–87]. Studies show that these constituents of normal sleep play specific
roles in neurocognitive function such as memory consolidation and vigilance by promoting neurogenesis
and synaptic plasticity [88–92]. Furthermore, sleep fragmentation appears to be closely related to
cognitive outcomes and to predicting episodic memory deficits [25,93]. One study also found that the
arousal index and percentage of respiratory arousals negatively correlated with cortical thickness of
certain areas in the prefrontal and parietal cortices in male patients with severe OSA [62]. Moreover,
reduced neuronal excitability in the locus coeruleus was observed in animal models in response to sleep
fragmentation and data suggests that OSA could reduce its noradrenergic neuronal population [94,95].
The locus coeruleus is an area of the brain engaged in synaptic plasticity, motor control, and other
functions that have been linked with cognitive decline in the elderly [96]. Studies show that lower
neuronal density and decreased connectivity in the locus coeruleus is associated with lower baseline
level of cognition, MCI, and faster cognitive decline [97,98]. The locus coeruleus also appears to be
implicated in PD pathophysiology, especially with regards to cognitive dysfunction and its involvement
seems to precede that of the substantia nigra [96,99].

Intermittent hypoxemia has also been implicated in cognitive dysfunction, with animal as
well as human studies linking hypoxemia to reduced cognition, especially in domains such as
attention, vigilance, and executive function [100–103]. Possibly, mechanisms include oxidative
stress and neuroinflammation in a similar fashion to ischemia and reperfusion injury [104,105].
Intermittent hypoxemia elicits a proinflammatory response through increased expression of mediators
such as NADPH oxidase, iNOS, and production of the proinflammatory transcription factor,
NF-κB [106–108]. Markers of systemic inflammation, such as TNF-α, interleukins-6 and -8, and C
reactive protein, are elevated in OSA. This raises the possibility that OSA-induced systemic inflammation
could contribute to neuroinflammation [109,110]. OSA-related intermittent hypoxemia has also
been shown to increase numerous products of oxidation, notably reactive oxygen and nitrogen
species [105]. Injury resulting from oxidative stress has been implicated in the pathogenesis of cognitive
decline in the elderly, as well as in neurodegenerative diseases [111]. In animal models, exposure
to intermittent hypoxia resulted in increased astrocyte and neuronal apoptosis in the frontal cortex
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and hippocampal regions, reduction in striatal norepinephrine concentration, and injury to specific
catecholaminergic neurons in the periaqueductal grey matter and locus coeruleus [95,112]. In humans,
OSA with hypoxemia has been associated with delayed peripheral nerve conduction, which is partially
reversible with OSA treatment [113,114]. Interestingly, intermittent hypoxemia has also been linked to
dysfunction of the blood–brain barrier, an important element in maintaining brain homeostasis. This is
possibly due to alteration in microvascular permeability resulting from oxidative stress and systemic
inflammation [115].

The exact role of intermittent hypoxemia in neurodegenerative diseases remains uncertain.
In certain preclinical studies, on the one hand, hypoxemia seems to exert a neuroprotective effect
possibly due to an effect of ischemic preconditioning [116,117]. On the other hand, one study conducted
on elderly women with OSA found that risk of mild cognitive impairment and cognitive decline
was associated with a higher oxygen desaturation index [23], although another study did not reach
the same conclusion, possibly because it included mostly mild to moderate OSA [25]. One possible
explanation for the discrepant findings concerning the impact of hypoxemia on brain function could
relate to different patterns of chronic intermittent versus more sustained hypoxemia, as well as the
severity of hypoxemia [104,118,119].

Another emerging concept in the pathogenesis of brain dysfunction due to OSA is one of abnormal
waste clearance. The glymphatic system is a recently described waste clearance system involved in the
transport of cerebrospinal fluid along the brain parenchyma and perivascular spaces to reach the cervical
lymphatic system [120]. This system is mainly activated during sleep [121]. Because glymphatics
participate in waste clearance through exchanges with the interstitial and cerebrospinal fluid, this system
can deal differently with extracellular (B-amyloid and tau protein) and intracellular (alpha-synuclein)
proteins [122,123]. Thus, sleep fragmentation due to OSA could alter this homeostatic system and
predispose it to protein accumulation and neurodegenerative changes. Furthermore, abnormalities in
water and solute fluxes throughout the brain due to intermittent hypoxia and hemodynamic changes
related to OSA could also potentially contribute to glymphatic dysfunction. Abnormal glymphatic
function has been suggested to contribute to the accumulation of abnormal proteins (β-amyloid,
α-synuclein, etc.) implicated in the progression of neurodegenerative disease [124,125]. Moreover,
there is some suggestion that alpha-synuclein and other associated proteins could be expressed in a
rhythmic, or circadian, fashion [126,127]. Sleep fragmentation could, therefore, possibly potentiate
protein aggregation by disruption of these regulating mechanisms, although this has not been studied.

4. OSA Pathogenesis in PD

OSA is estimated to occur in 20% to 60% of PD patients [13]. Its prevalence in PD varies
substantially between studies with some having found a higher prevalence [128,129] and others a
lower prevalence of OSA in PD patients as compared with healthy controls [41,129–131]. The latter is
possibly due to limitations such as small sample size, possible selection or participation bias, and more
importantly, variable definitions of hypopneas. Previous publications have demonstrated that the
definition of sleep-related breathing events, notably hypopneas, can profoundly influence the estimated
prevalence of OSA [132,133]. Studies from our laboratory and others indicate that OSA in PD patients
manifests principally as hypopneas associated with arousals rather than oxygen desaturation. OSA in
PD is associated with a lower desaturation index, higher mean and nadir oxygen saturation, and less
time spent with an oxygen saturation below 90% throughout the night as compared with patients
with OSA without PD [134,135]. This is likely due to the OSA pathophysiology in this population
discussed above, and in part to a lower body mass index (BMI), especially in advanced PD [129,135].
Thus, studies in which the scoring of hypopneas was based only on oxygen desaturation could have
missed non-desaturating obstructive events associated with microarousal [10]. Moreover, there can be
different patterns of OSA according to the timing of presentation. In some cases, OSA can antedate
the development of PD as it is frequent in the general population. It is conceivable that with weight
loss, there could be an improvement in such cases. However, as discussed above, OSA can develop in



J. Clin. Med. 2020, 9, 297 7 of 24

the course of PD, possibly depending on PD subtype or pattern (e.g., tremor-dominant vs. postural
instability and gait difficulties) and can worsen as PD progresses [136]. Therefore, estimates of OSA
prevalence in PD could vary considerably depending on the patient population studied.

Upper airway obstruction in sleep, the defining element of OSA, results from sleep-related
reductions in upper airway dilator muscle tone. In contrast to OSA patients from the general population,
upper airway dysfunction has been reported during wakefulness in PD, with two major subtypes
described (Figure 2). The first consists of oscillations of glottic and supra-glottic structures, often at
a frequency similar to PD tremor, which can manifest as a “saw-tooth” pattern on spirometry [137].
The other subtype exhibits a more obstructive pattern on spirometry due to upper airway muscle
instability [138]. Upper airway obstruction during wakefulness can respond to levodopa [139–143].
PD-related upper airway dysfunction can contribute to a sleep-associated decrease in upper airway
dilator activity and stability, further predisposing to OSA. Supporting that hypothesis, our group
recently reported that night-time treatment with long acting levodopa was associated with reduced
OSA severity in PD patients [144]. Additionally, as a disease progresses, motor disability and rigidity
become more prominent and significantly impair mobility. Studies have shown that, with time, PD
patients have decreased changes in body position at night and more supine sleep than matched controls,
which could further predispose to worsening of OSA [145,146].
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Figure 2. Patterns of upper airway obstruction in Parkinson’s disease. (A) Obstructive hypopneas
associated with microarousals and oxygen desaturation in a patient with Parkinson’s disease and
obstructive sleep apnea. (B) Upper airway instability in a patient with Parkinson’s disease resulting
in obstructive breathing. PTAF, pressure transducer airflow and Therm, thermistance. Chest and
abdomen refer to the respective position of the bands used to detect respiratory efforts and SUM
correspond to the sum of the chest and abdominal bands’ signal.
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Impaired ventilatory control, either central or peripheral, has been suggested in PD [147]. The Braak
hypothesis for PD progression proposes an early involvement of the brainstem, where respiratory
centers and central chemoreceptors lie [148]. Although it is difficult to directly visualize respiratory
centers, a study using diffusion tensor imaging has shown initial brainstem and subcortical impairment
in de novo PD, which, subsequently, progressed to involve more extensive cortical regions [149].
These imaging studies support findings of an abnormal ventilatory response to hypoxia and hypercapnia
in PD patients, despite normal pulmonary function [147,150,151]. Although hypoventilation is rare in PD,
abnormal chemoreceptor responses and signalling could contribute to respiratory instability [152,153].
This can be particularly important in non-REM sleep where breathing depends predominantly on
chemical drive. Autonomic dysfunction could also be involved in the abnormal feedback to the
respiratory centers, and thus predispose to sleep disruption and sleep-disordered breathing [154].
In familial dysautonomia, the ventilatory response to hypercapnia and hypoxemia is substantially
impaired [155,156]. This population exhibits a high prevalence of sleep-disordered breathing, with an
estimated 85% having some degree of OSA [157]. In PD, abnormal accumulation of alpha-synuclein in
the autonomic control pathways and loss of peripheral noradrenergic neurons leads to disruption of
the parasympathetic and sympathetic balance and ultimately to a decreased sympathetic tone [158].
Heart rate variability, a common noninvasive method used to evaluate the ANS, is reduced progressively
as PD disease severity evolves [159]. However, treatment with dopaminergic agonists also influences
sympathetic tone [160,161]. Conversely, dysregulation of the autonomic nervous system (ANS) is also
found in OSA, as well as in neurodegenerative diseases [162]. Increase in sympathetic tone associated
with baroreflex and chemoreflex changes has been observed in OSA and often persists beyond the
sleep period [163,164].

Sleep fragmentation itself can also predispose to respiratory disturbances. Transitions between
sleep stages, such as wakefulness to sleep, are associated with a modification in respiration pattern [165].
These changes are usually transient, although in patients with a low arousal threshold, a modest
fluctuation in breathing can trigger an arousal. Arousals from sleep following a respiratory event lead
to hyperpnea and hypocapnia, which in turn can trigger another respiratory pause upon return to
sleep, triggering a cycle of respiratory instability, further promulgating OSA. Sleep fragmentation and
dysfunction occur as part of PD and are thought to be multifactorial, due in part to dysfunctional sleep
circuits but also to medications and comorbidities. Thus, the intrinsic sleep fragmentation in PD could
also be factor in the propensity for OSA in this population.

Impact of REM Behavior Disorder on PD Manifestations and OSA

REM behavior disorder (RBD) occurs when there is loss of normal REM sleep-induced muscle
atonia resulting in complex motor behaviors during REM sleep [166]. Although RBD may be
idiopathic, it frequently evolves towards neurodegenerative diseases such as PD, where it has an
estimated prevalence of 30% to 50% [167–170]. A recent systematic review and meta-analysis of
longitudinal studies (nearly 3900 patients) estimated that 32% of patients with RBD would convert to
neurodegenerative diseases after a mean follow up of 4.75 (±2.73) years and that almost half (44%)
converted to PD with long-term follow up [171]. The risk of conversion was evaluated to be as
high as 90% at 14 years, consistent with another study in which 38% and 81% of patients developed
parkinsonism of dementia at 3.7 (±1.4) and 14 years of follow up, respectively [172,173].

Since upper airway muscle atonia is important in the pathogenesis of OSA, it has been hypothesized
that RBD can exert a protective effect and reduce OSA severity. However, evidence is discordant.
One study found that patients with the combination of PD, OSA, and RBD had a higher nadir oxygen
saturation throughout the whole night and during REM sleep [37]. This is supported by other
studies which have also observed a lower apnea-hypopnea index in patients with RBD [174,175].
However, another study reported an increased apnea-hypopnea index in PD patients with OSA and
polysomnographic features of RBD [41].
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The presence of RBD can influence the expression of motor and non-motor symptoms in PD [169].
Motor manifestations in PD with RBD seem to differ from PD without RBD, exhibiting a non-tremor
predominant phenotype and perhaps more postural instability and falls [168,176–180]. In most studies,
a combination of RBD and PD is associated with more excessive daytime sleepiness, worse performance
on neurocognitive screening tests (MMSE and MOCA), and impairments in specific neurocognitive
domains, especially attention and vigilance, executive functions, and memory impairments [37,181–184].
This is supported by one study showing that 63% of patients with PD and RBD had mild cognitive
impairment (MCI) as opposed to 33% with isolated PD and 33% with idiopathic RBD [183]. Furthermore,
studies suggest that RBD and OSA together can act synergistically to increase cognitive dysfunction in
PD [37,175]. Interestingly, our group found that OSA treatment with CPAP improved RBD symptoms
in a cohort of mostly early stage PD patients [185]. Conversely, in a large cohort study OSA was
not found to be a predictor of conversion from idiopathic RBD to parkinsonism or dementia [186].
This multicenter study did not have a harmonized protocol for OSA testing, which varied significantly
between centers, and information on OSA treatment was not provided.

Other lines of evidence, such as imaging studies, suggest that RBD and OSA could have an
additive impact on brain dysfunction in promoting deterioration of cognition. One recent study found
that RBD is associated with changes in brain morphology similar to those found with OSA, namely
cortical thinning in the frontal, temporal, and parietal cortices and the hippocampal region [187].
Earlier studies observed volume loss in the temporal lobes, cingulate, thalamus, and posterior regions
of patients with PD and RBD [188–191]. However, most of these studies lacked a robust diagnostic
method for RBD and comparisons with healthy controls. More recently, one study performed whole
brain mapping by combining multiple MRI techniques in PD patients with a PSG-proven diagnosis of
RBD and found cortical thinning in the frontal and temporal cortices, as well as subcortical structures.
However, it remains unknown whether these changes are secondary to RBD or are a marker of the
neurodegenerative process causing RBD. Nevertheless, although no clinical or preclinical studies have
specifically evaluated the combination of RBD and OSA on brain atrophy or function, it is theoretically
conceivable that the presence of RBD and OSA together could contribute in a synergistic fashion to the
development and hastened progression of PD.

5. Treatment of OSA in Neurodegenerative Diseases: Benefits and Pitfalls

In the general population with OSA, the effect of CPAP on neurocognitive function has been
variable and incomplete, with some neurocognitive domains unaltered by treatment whilst others
improve [192,193]. This is likely stems from variability in study designs including patients with different
degrees of cognitive deficit, different OSA severity, lack of statistical power, variations in duration
of treatment or poor compliance with treatment, and a lack of consistency in neurocognitive testing
procedures. Some have suggested that cognitive dysfunction related to excessive sleepiness is readily
reversible, whereas the persistent deficits could be due to irreversible brain damage induced, in part, by
chronic intermittent hypoxia [194]. However, both sleep fragmentation and intermittent hypoxemia can
cause excessive daytime sleepiness and it is methodologically challenging to dissociate the impact of
excessive daytime sleepiness on neurocognitive performance from other variables [195,196]. Moreover,
in animal studies, intermittent hypoxia has been found to lead to hypersomnolence due to damage
to wake-promoting brain regions [197]. In addition, chronic sleep fragmentation could also lead to
irreversible changes in brain structure or function [198].

In 2013, a systematic review and meta-analysis of 35 studies (nearly 1000 patients), evaluated
patients with varying degrees of OSA before and after CPAP treatment regarding five domains of
executive functions (shifting, updating working memory, inhibition, generating new information,
and fluid reasoning). Moderate to severe impairment across all five domains was present at baseline
and improved with treatment [193]. However, this study did not include the APPLES trial, a large
multicenter RCT evaluating CPAP versus sham CPAP on three domains of cognitive function in OSA
(attention and psychomotor function, learning and memory, executive and frontal lobe function) [199].
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In this study, there was a difference in executive function favoring the CPAP group at two months, but
no significant benefits on cognition were apparent at six months, despite significant improvement in
subjective and objective sleepiness (especially in the severe OSA subgroup). Part of the explanation
could be that patients with a MMSE score ≤ 26 (normal cut-off in healthy adults) were excluded,
therefore leaving little room for further improvement. However, a study in older patients with near
normal cognition has observed significant improvement in cognitive function with therapy [200].
The relatively young age (mean 52.2 and 50.8 years old in the active and sham PAP therapy groups,
respectively) and recruitment through advertisements, and not from a clinical OSA population, could
have resulted in a participant group with greater “cognitive reserve” [18] less prone to effects of OSA
in the APPLES study.

As the detrimental effects of OSA on cognition could be more apparent in individuals with
reduced baseline cognitive function or who are at risk of cognitive impairment, for example due to age
or neurocognitive diseases, response to treatment could be greater in those populations. A randomized
study in patients over 65 years old showed that treatment with CPAP and conservative care improved
episodic and short-term memory, executive functions, mental flexibility, and demonstrated improved
connectivity and less cortical thinning on neuroimaging studies as compared with conservative care
alone [201]. However, the PREDICT trial, a multicenter RCT conducted in patients 65 years or older
with incident OSA, did not share these conclusions [202]. Indeed, despite improvement in sleepiness,
patients treated with CPAP did not show improvement in cognitive function as compared with best
supportive care. However, the adherence to CPAP could have been insufficient (mean use < 2 h/night).
A smaller scale study emphasized the importance of longer CPAP usage on cognitive function in
patients over 55 years of age with normal cognition (MMSE > 25) [200]. They observed greater
improvement of memory, learning, and psychomotor speed in compliant CPAP users (mean 8.5 h per
night) as compared with noncompliant users (mean 3.9 h per night). Finally, treatment duration can
be a key factor. Indeed, most studies which found improvement in cognition with CPAP treatment
were conducted for more than one to three months [192,203]. Interestingly, one study conducted in
treatment naïve patients with OSA observed not only an improvement in neurocognitive testing after
three months of treatment but also an improvement in white matter integrity on diffusion tensor
imaging at three months [203] which was more appreciable at 12 months. Overall, improvements on
neurocognitive testing were correlated with improvements in white matter integrity. Another long-term
study (mean 18.2 ± 44 months) observed that longer treatment with CPAP yielded broader increments
in regional cortical volume [64]. Consistent with these results, a more recent adherence study also
found that one year of CPAP improved cognition and could slow cognitive decline in patients with
OSA and mild cognitive impairment [204]. These findings further support the benefits of adequate
treatment duration and also emphasize the importance of ageing in the susceptibility to OSA effects on
cognitive dysfunction and response to treatment.

Positive pressure therapy has also shown benefits in patients with neurodegenerative diseases
(Figure 3). One study evaluated 39 community-dwelling patients with AD and OSA treated with six
weeks of CPAP versus three weeks of sham CPAP followed by three weeks of CPAP. They found a
significant reduction in sleepiness after three and six weeks of active therapy as opposed to no change
with sham CPAP [205]. Another three-week sham-controlled CPAP trial conducted in patients with
mild-moderate AD found no improvement in MMSE and no change in neurocognitive functioning,
assessed by a composite neuropsychological score, between groups after three weeks of treatment versus
sham, possibly due to insufficient statistical power [206]. However, the composite neuropsychological
score improved from baseline in combined therapeutic periods from both groups (sham group
subsequently also treated with active CPAP for three weeks). Patients with sustained CPAP use in
an open-label follow up (mean 13.3 months, range = six to 21 months) showed less deterioration
of their global cognition, especially regarding executive functions, as compared with the untreated
group, and less deterioration or even improvement in depressive symptoms, daytime sleepiness,
and subjective sleep quality [207]. Treatment with CPAP also improved caregivers’ satisfaction as they
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reported improvement in their sleep quality and mood. Notwithstanding the encouraging results,
CPAP therapy is a challenge in AD patients. In the trial above, recruitment was arduous and 25%
(seven/27 patients, six at three weeks and one at six weeks) and 20% (five/25 patients, two at three
weeks and three at six weeks) of the therapeutic and placebo CPAP groups, respectively, discontinued
treatment [206].

In PD, a short-term randomized crossover trial reported improvement of objective daytime
sleepiness, sleep quality, AHI, and oxygen saturation with CPAP treatment of OSA [208]. PD patients
were able to use their device despite motor dysfunction and exhibited good adherence to treatment
(88% of the night with a mean nightly use of 5.2 h) [208]. OSA was associated with significantly
lower MoCA and MMSE at baseline, but no significant improvement was found after three or six
weeks of CPAP. Absence of benefits could be related to smaller sample size, lower severity of OSA,
and the short duration of study. However, a more recent cohort study by our group evaluating
CPAP treatment over 12 months found improvement in non-motor symptoms overall, subjective sleep
quality, anxiety, and cognitive function [209]. Cognitive improvement was found without a significant
change in subjective daytime sleepiness, suggesting independent pathways can mediate these effects
of OSA. Furthermore, improvements were noted despite modest nightly CPAP use (3.5 mean hours
per night). Hence, it is possible that a longer duration of treatment is necessary for modification of
specific symptoms, particularly cognitive function. Moreover, to date, there have been no long-term
randomized controlled trials assessing whether OSA treatment impacts the course or rate of progression
of PD.

Treatment with CPAP in the PD population poses challenges beyond those in the general
population and the elderly. Cognitive deficits and motor disability can render device handling difficult.
Nocturia, anxiety, and RBD are additional potential challenges. One study found that only 51% of
patients diagnosed with OSA agreed to a CPAP titration, and in those who tried CPAP, the attrition
rate was 75% with most patients abandoning within the first three to five weeks of treatment initiation
due to intolerance [210]. This was a fairly elderly group with a low education level on average, who
received little support at treatment initiation, factors that could have accounted for the high rate of
CPAP abandonment. In our cohort, 39 of 46 (85%) patients with PD and OSA agreed to try CPAP,
and at 12 months, 21 (54%) were still regular users [209]. Numerous factors predicting adherence, or
non-adherence, to CPAP have been identified [211]. In addition to addressing side effects, factors that
could help improve adherence include active education of the patients, inclusion of the caregiver in
the education and adherence process, early and repetitive follow-up of CPAP usage by a competent
healthcare provider after treatment initiation, available resources for troubleshooting, and clinical
follow up with the sleep team [211–213]. Other barriers to CPAP use, including psychological or social
factors, should be sought and addressed as some patients could benefit from more intensive behavioural
therapy interventions or additional support from providers [214,215]. Studies evaluating specific
interventions to help with CPAP use in neurodegenerative disease and development of therapies that
are effective, as well as easy to use, are needed in order to better tailor therapy to the specific challenges
this population faces.

Alternatives to PAP therapy have been less well studied in PD. However, in one recent pilot
study 10 PD patients who refused or were intolerant of PAP therapy were treated with mandibular
advancement devices (MAD) [216]. MAD therapy was associated with improved sleep complaints,
and reduced apnea-hypopnea and oxygen desaturation indices. Patients also demonstrated better
compliance with MAD than PAP therapy and did not experience more adverse events as compared
with matched patients on CPAP. Some side effects of MAD, such as hypersalivation or xerostomia
and discomfort, could be of relevance and limit its use in PD patients. Larger randomized studies are
needed to confirm these results and assess feasibility and safety of MAD in this population.
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Figure 3. Changes in sleep architecture following treatment with automatic positive airway pressure in a patient with Parkinson’s disease and severe obstructive sleep
apnea. The graphs represent (from top to bottom): sleep stages, microarousals, respiratory events, and oxygen saturation. (A) Polysomnography before treatment that
shows reduction in sleep efficiency (SE), substantial sleep fragmentation with many arousals, increased wake after sleep onset (WASO), reduced slow wave sleep,
and prolonged REM latency with only one REM period occurring at the end of the night. (B) Polysomnography performed on automatic positive airway pressure.
It shows improvement of SE, WASO, arousals, and overall sleep architecture with increased proportion of slow wave and REM sleep and normal REM latency (60 min).
AHI, apnea-hypopnea index; LM, leg movement; RDI, respiratory disturbance index; and ODI, oxygen desaturation index as defined by a drop in pulse oxygen
saturation of 3 % or greater.
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Upper airway obstruction can also respond to levodopa [139–143]. Supporting this hypothesis,
our group found that night-time treatment with long acting levodopa was associated with reduced
OSA severity in PD patients, suggesting it could be a potential alternative to PAP therapy [144].
Prospective studies to better understand the effect and the role of long-acting levodopa in OSA
treatment are needed. Conversely, dopaminergic agonists can contribute to upper airway dysfunction
by inducing dyskinesias [217]. Prospective studies are needed to better understand the efficacy of
long-acting levodopa in OSA treatment.

6. Conclusions

OSA is associated with functional and structural changes in the brain which can be particularly
detrimental to patients with neurodegenerative diseases, leading to exacerbation of non-motor and
motor dysfunction in this population. Further studies are needed to better characterize the impact
of treatment on patient-centered outcomes, especially in the context of a difficult-to-treat population.
Strategies to improve adherence to CPAP are needed, focusing on the specific challenges in this patient
group, and alternate treatment options should be explored. Finally, disease modification trials are
required to determine whether OSA treatment, in addition to improving symptoms, can impact the
course of neurodegeneration over time.
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