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Abstract: Recent advancements in indoor positioning systems are based on infrastructure-free
solutions, aimed at improving the location accuracy in complex indoor environments without the
use of specialized resources. A popular infrastructure-free solution for indoor positioning is a
calibration-based positioning, commonly known as fingerprinting. Fingerprinting solutions require
extensive and error-free surveys of environments to build radio-map databases, which play a key
role in position estimation. Fingerprinting also requires random updates of the database, when
there are significant changes in the environment or a decrease in the accuracy. The calibration of the
fingerprinting database is a time-consuming and laborious effort that prevents the extensive adoption
of this technique. In this paper, we present a systematic LOCALIzation approach, “LOCALI”,
for indoor positioning, which does not require a calibration database and extensive updates.
The LOCALI exploits the floor plan/wall map of the environment to estimate the target position
by generating radio maps by integrating path-losses over certain trajectories in complex indoor
environments, where triangulation using time information or the received signal strength level
is highly erroneous due to the fading effects caused by multi-path propagation or absorption by
environmental elements or varying antenna alignment. Experimental results demonstrate that by
using the map information and environmental parameters, a significant level of accuracy in indoor
positioning can be achieved. Moreover, this process requires considerably lesser effort compared to
the calibration-based techniques.
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1. Introduction

After the successful implementation and deployment of outdoor location based services (OLBS)
using global positioning systems (GPSs), indoor positioning systems (IPS) are now popular. GPS signals
from the satellites are prone to multi-path effects in indoor environments (the so-called GPS-denied
environments) and are unable to provide a certain level of accuracy in location estimation. This
drawback renders the GPS unsuccessful for indoor positioning. Indoor location-based services
(ILBS) are expected to play an important role in a diverse range of services. The ILBS enables a
user to track devices/users in an indoor environment. In recent years, several solutions have been
proposed for the ILBS, providing different levels of accuracy, commonly known as "application specific
accuracy levels". IPS solutions are categorized mainly into infrastructure-based and infrastructure-free.
Infrastructure-based solutions require the pre-installation of special-purpose hardware infrastructure
(e.g., Radio-frequency identification (RFID), Radio Sensors, Bluetooth, Ultra Wide Band(UWB),
etc.) [1–5] and some of them provide a high level of accuracy. However, these solutions are less
attractive due to deployment costs, whereas the infrastructure-free solutions are more attractive due
to low costs and ready-to-deploy characteristics. Infrastructure-less solutions commonly utilize

Sensors 2017, 17, 1213; doi:10.3390/s17061213 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors


Sensors 2017, 17, 1213 2 of 16

the existing Wi-Fi infrastructure [6] or Light-emitting diode (LED). lights [7] or imaging scene
structure [8,9] or other resources that are already available in the environment to estimate the target
position. As Wi-Fi infrastructures are commonly available in most public-service and private corporate
buildings, most of the proposed ILBS solutions exploit Wi-Fi signals for indoor positioning. We can
divide these solutions into two major approaches, i.e., calibration-based and calibration-free, also
known as database-based/map-free and database-free/map-based solutions, respectively. The indoor
environment is a hybrid owing to the co-existence of line-of-sight (LOS) and non-line-of-sight (NLOS)
cases. This complexity in the indoor environment restricts the use of trilateration or triangulation
techniques for positioning. The time of arrival (TOA) or time difference of arrival (TDOA) [10,11]
suffers from multi-path propagation error and also from other issues such as time synchronization
problems and short-range timing accuracies, respectively, whereas the angle of arrival (AOA) requires
complex hardware for angle calculation. The received signal strength indicator (RSSI) value is a solution
for avoiding the time synchronization but is affected by fading due to several reasons e.g., multi-path
propagation or absorption for example by humans or varying antenna alignment. The fingerprinting
technique offers a good balance between effort and accuracy for many use cases, currently available,
for such complex indoor environments, addressing the fading error issue for Wi-Fi-based IPS. It is a
calibration-based approach for enabling IPBS in GPS-denied environments; however, it also suffers
from the challenging issue of tedious and time-consuming random database calibrations, which restrict
its wide adoption. Several solutions have been suggested for reducing the construction and update
time of the database [12]. Updates are required, if there are significant changes in the environment.
In this work, we present a calibration-free positioning technique, which leverages the map information
and provides a robust and efficient method for estimating indoor positioning, without a calibration
database. We use the map information to estimate the propagation model for the LOS and NLOS,
and construct an RSSI map for each access point (AP), as shown in Figure 1. Using these RSSI heat
maps, we then estimate the target location using an overlap technique that employs a much simpler
algorithm than the other techniques for position estimation (e.g., trilateration, triangulation and
multilateration). Our approach is a step toward a simple and robust technique for calculating the
path loss (by absorption and reflection) of the Wi-Fi signals through complex indoor environments
for the construction of RSSI maps. Furthermore, it estimates the target location using the RSSI list
received at the target location, as a system input, without trilateration or triangulation techniques.
In this work, we briefly describe the advantages of our approach, which promotes adaptable, easy,
and ready-to-be-deployed indoor location-bases services. Most of the proposed solutions estimate the
location by iteration through all of the possible locations, whereas the LOCALI estimates the location
directly using the map overlap technique. We use the words sender, transmitter, and AP alternatively
in this manuscript.

(b)(a)
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Closed Area 

Figure 1. Site wall-map and the corresponding estimated radio-map, clearly showing the change in
received signal strength indicator(RSSI) with respect to line-of-sight and non-line-of-sight cases; (a) site
wall-map and (b) RSSI radio-map of an Access Point.
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In Section 2, we discuss some of the problems and challenges in the existing technologies.
In Section 3, the proposed approach is discussed; Section 4 discusses the experimental details and
results. Section 5 concludes the study.

2. Existing Systems

In most of the proposed indoor positioning techniques, target localization is based on the signal
propagation time or the received signal strength (RSS) information from multiple transmitters, i.e.,
Wi-Fi APs. Trilateration and triangulation, which use the propagation time information, undergo
an unacceptable accuracy limitation due to certain constraints; the TOA requires a high level of
precision in the time synchronization, at both the sender and receiver sides. This becomes more
critical, when synchronization is done for the very short ranges of an indoor environment. Specialized
directional antennas are required to accurately assess the AOA of the RF signals. The TDOA is used
to avoid the time synchronization problem, but it has multi-path propagation delay errors inside the
building due to walls or obstructions. Instead of using the vulnerable time information, most studies
use the RSSI, a metric that is most commonly used in IPS as a substitute for the time information,
with respect to the distance between the sender and receiver. However, the RSSI also suffers from
fading due to multi-path, absorption by soft objects and varying antenna alignment in a multi-modal
environment [13], and it is almost impossible for the RSSI level to be circular with respect to the
distance from the transmitter to the receiver. Hence, we cannot use trilateration directly to estimate
the position of the target. Fingerprinting is a calibration-based solution for such trilateration and
triangulation problems. In this study, we place emphasis on the fingerprinting technique using the
RSSI of the Wi-Fi network [14,15], whereas fingerprinting can also be carried out using other kinds of
signal or field strength (e.g., geo-magnetism) [16]. Fingerprinting has two phases: the pre-deployment
offline survey training phase and the online location estimation phase. It requires a comprehensive
survey of the environment to construct an RSSI database at a certain degree of spatial granularity.
This training point granularity is significant with respect to the level of accuracy required from the
fingerprinting technique. It is time-consuming to record the RSSI level at each grid point of the
environment; it becomes more challenging, when the device orientation, the types of devices used
in the survey, and the averaging of the RSSI level due to the time varying characteristics of the RSSI
are to be considered. Of late, extensive research efforts have been made to reduce this laboriously
time-consuming fingerprinting training phase and several solutions have been proposed [12].

2.1. Interpolation-Based Systems

Some of the solutions attempt to reduce the survey time using interpolation techniques with
a modified path-loss model at sparse reference points. In [17], the author combines the fingerprint
prediction model with a calibration procedure and proposed a new hybrid model that provides
a comparable location accuracy using a few RSSI samples to that of the traditional fingerprinting
approach. Triangular interpolation and extrapolation (TIX) [18] uses only online Wi-Fi RSS values
measured at each AP to obtain a linear mapping between RSS decay and distance, which further helps
in estimating client location using the TIX algorithm. Similarly, a signal-distance map (SDM) [19]
works on the same principle, whereas the mapping of distance between APs and RSS measurements is
obtained by singular value decomposition (SVD).

2.2. Crowdsourcing-Based Systems

Systems employ active user inputs or crowdsourcing [20–26] to build a radio-map database online
instead of using the conventional time-consuming task of building a training database through a
survey. The Organic indoor Localization OIL [22] incorporates the active user input after training
phase to extend the converge and accuracy of fingerprinting based localization at particular areas
called varonoi regions. EZ [23] does not require prior map and transmitter location information and
resolves the environment, devices and distance parameters by running a genetic algorithm on RSS
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information reported by a background service running on user mobiles. Walkie-Markie [24] also
relaxes the prior information of indoor RF infrastructure and tries to generate maps of the environment
using crowd-sourcing. The Wifi-mark estimation in the Walkie-Markie requires a sufficient number of
users reporting the trajectory information on at least two sides of an AP, which is nearly impractical
from the user’s point of view and the building architecture, with corners and long continuous hallways
in which traversal to the other side is not usually possible.

2.3. Sensors-Based Systems

Recent research developments in ILBS technology use data from a wide range of sensors, i.e.,
inertial sensors, accelerometers, gyroscopes, magnetic sensors, etc. to improve indoor positioning and
mapping [27] using data fusion techniques [28–31]. WILL (Wireless Indoor Localization) and unLoc
trace user movements with an inertial sensor to generate a map of the environment [32,33].

2.4. Model-Based Systems

A model-based indoor positioning algorithm is presented in [34] to address the absorption effects
of crowded scenarios on Wi-Fi signals through an indoor canyon environment and crowed sensing is
achieved by using a mobile camera with the assistance of deep Convolutional Neural Network (CNN).
A similar approach of location estimation using the merging of multiple heat-maps is discussed in
the Probability Maps Technique [35]. The probability map technique uses RF packet transmission to
asses RSSI Value of a transmitter mobile node at multiple receivers. This technique differs from our
proposed technique in such a manner that it uses probability distribution for distance calculation and
uses a triangular density function and geometric correction technique in the localization procedure.
An online path-loss parameter estimation approach is discussed in [36] and a variant of particle filter
(RBPF-AGB) is used for position estimation of target node. In [37], the author has proposed handling
LOS and NLOS cases separately using the corresponding path loss model to enhance indoor WiFi
positioning accuracy.

Although most of the proposed systems avoid a pre-offline survey process, the crowd-sourcing
activity requires considerable time for active or inactive user participation; additional sensors are
needed to construct the database, or the environment map adds more complexity in calibration steps.
As per our knowledge, the map and AP information are inevitable for location accuracy because the
indoor architecture shapes radio propagation; therefore, to achieve a simple IPS and a certain level
of accuracy, the map information should be considered. Triangular interpolation and extrapolation
(TIX) [18] provides a 4–5 m accuracy without map information, whereas the signal-distance map
(SDM) [19] working on the same principle improves the accuracy and is dependent on the location
and number of APs in the environment.

3. Proposed Approach

As the indoor architecture of the environment shapes the RSSI heat map, the map information
cannot be ignored. Maps are easily available in legally approved buildings. The map used in our
approach is simple and can be constructed using a measuring tape and a simple bitmap drawing
application such as “Microsoft Paint” (Microsoft Inc., Redmond, WA, USA). The other options
include the use of automated maps generated from the 2D simultaneous localization and mapping
(SLAM) [38] . Our approach consists of the following tasks: generation of a pixel map from the
floor plan of the target site, where indoor positioning is required, the generation of an RSSI map
from the pixel map using LOS and NLOS models for each AP, and finally, the estimation of the
user location by applying the Overlap technique on generated RSSI maps of APs listed in RSSI
vectors received at the target location. To complete the entire estimation task, we require three
types of information: the bitmap (M × N pixels) of building floor plane (at reasonable resolution,
i.e., not very high to avoid image processing computation and not very low to preserve that
environment architecture, e.g., 10 pixels/m), i.e., Equation (1); the list of “k” Wi-Fi APs installed,
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location on the map, and the Media Access Control(MAC) address. VAP = {AP1, AP2, ...APn..., APk},
where APn = 〈MACn, xn, yn〉 , n = 1, 2, 3...k, x = 1, 2, ..., M and y = 1, 2, ..., N; the received RSSI
list SRSSI == {S1, S2, ......, Sn, }, where Si = 〈MACi, l〉 and n = 1, 2, 3... at the target location which
includes the Mac address “MACi” and the RSSI level “l” of each AP in the range. For convenience, we
have considered only x and y coordinates to address common average floor height buildings where the
z-axis has no significant impact on RSSI calculation; however, in the case of high roof buildings, e.g.,
shopping malls, airports, etc., and the floor plan remains the same from floor to ceiling, the mounting
height (z coordinate) of AP must be considered in RSSI estimation, as RSSI estimation depends on
Euclidean distance from source to receiver. Otherwise, the proposed approach requires a 3D model of
the environment, which is not commonly available, although it can be built easily using 3D modeling
tools. We have described each task as follows.

3.1. Pixel Map Tracing

As mentioned earlier, the key component of our approach is the pixel map. In our experiment,
we have created pixel maps from the floor plans of the subject buildings. This task includes the tracing
of a picture and can be easily done using any image drawing tool. First, we resize the floor plan image
to a resolution of 10 pixel/m. Then, we trace each concrete wall with white colored (RGB 255,255,255)
lines and the wooden partitions with gray colored (RGB 128,128,128) lines on a black background
(RGB 0, 0, 0). For simplicity, we consider only two types of walls; the color value is an adjustment
factor for the wall attenuation factor (WAF) [13]. The adjustment factor must be carefully selected with
respect to the thickness and material of the walls or obstructions. Finally, we obtain a gray-scale image
map, Equation (1), with the information of the wall sizes, types, orientation, and location. Figure 2
shows the inputs and output of this pixel map generation task:

B(M, N) =


px(1, 1) px(1, 2) · · · px(1, N)

px(2, 1)
. . .

...
... px(i, j)

...
px(M, 1) · · · · · · px(M, N)

 (1)

where 0 ≤ px(i,j) ≤ 255, i = 1, 2, 3, ..., M and j = 1, 2, 3, ..., N.

(b)(a)

Access Points - APs

Concrete Wall

Wooden Partion

Figure 2. Input: (a) detailed floor plan of the Regional Innovation Center (RIC Building) and
(b) corresponding output: Wall-map obtained from the pixel map tracing process.

3.2. RSSI Map Generation

The second important task is to generate the RSSI Map of each selected AP for location
estimation. To build an RSSI radio-map, we first divide the map into a grid of equal square blocks
of 10 pixels/m. Next, we select a pixel vector from the center of a block (let (p,q)) to the AP (let
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(x,y)) using an improfile function that returns the intensity values of pixels along a straight line,
i.e., V((p, q), (x, y)) = impro f ile((p, q), (x, y)) = {px(p, q), px(p± 1, q± 1), ........, px(x, y)} , where
px(p, q) returns intensity values of pixels at location (p, q), p = δ, 2δ, 3δ, ..., M, q = δ, 2δ, 3δ, ...,N
and delta is the size of grid spacing, as shown in Figure 3a-(right). We call this pixel vector a profile
vector. This profile vector enables us to differentiate between the LOS and NLOS scenarios, in order to
determine the type and number of walls or obstructions in the path, and the length of the path as well.
If all of the pixels in the profile vector are black, it indicates an LOS case; otherwise, it is NLOS. The
white pixels in the profile vector indicate the number of walls in the path from the center of the block
to the AP. Equation (2) describes the calculation of the path loss weight (PLW) from the profile vector
by finding the peaks values in the pixel array of the profile vector using GetPeakValues() that return
local maxima and their count in given vectors. Next, the product of the PLW and WAF calculates the
effective path loss (EPL), Equation (3), for NLOS radio signal propagation, where PLW represents the
adjustment factor for walls in paths. The number of pixels in the profile vector is the absolute distance
between the center of the reference block and the AP; however, to avoid diagonal error, we measure
the Euclidean distance from the center of the block to the AP, as in Equation (4). Using this information
and the RSSI prediction model, Equation (5), we calculate the RSSI for a particular block of the LOS or
NLOS case.

PLW =
∑ GetPeakValues(V((p, q), (x, y)))

255
, (2)

EPL = PLW ×WAF, (3)

d((p,q),(x,y)) =

√
(p− x)2 + (q− y)2, (4)

f (p, q) = p0 + 10× r× log
(d((p,q),(x,y))

10

)
+ EPL, (5)

where WAF = 3.5, p0 = −30 dB and r =

{
1, PLW = 0,

1.6, PLW > 0,

M(APk) =


f (δ, δ) f (δ, 2δ) · · · f (δ, n)

f (2δ, δ)
. . .

...
...

f (m, δ) · · · · · · f (m, n)

 (6)

where m = M/δ, n = N/δ. To generate the RSSI path loss map, we repeat this process for all
blocks and we get a M(m, n) matrix Equation (6) of the RSSI map of current AP. Algorithm 1 shows
implementation details of Map Generation task.

Similarly, we generate an RSSI Map for each AP and store them in a list, i.e.,
EM =

{
MS1 , MS2 , MS3 , ..., MSi , ..., MSk

}
, where i = 1, 2, 3...k, and each MSi is a tuple of

〈maci, Mi, loci〉 = 〈Mac Address, Estimated radio map, Location o f AP on bitmap〉. The RSSI map
of each AP is tagged with its MAC address for later reference in position estimation procedure. A mesh
plot of an estimated RSSI Map is shown in Figure 1.
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Figure 3. Details of 2nd the task: Generation of the path loss radio-map for an AP and corrections
made to improve the estimation of RSSI at particular point on the map. (a) Left: IT Building’s traced
wall-map; Right: Vector from each grid point to an AP (for clarity, we used a 20 pixel/m resolution)
(b) Left: Two types of profile vectors from an LOS Point and an NLOS point; Right: Flower-shaped
radio map obtained without any correction; (c) Left: Pixel overlap of the profile vector with the wall;
Right: Radio-map after the 1st correction (d) Left: Two rectangular paths, one direct from AP to the
estimation point; Right: Radio-map after the 2nd correction and; (e) Left: Reference points to measure
the actual RSSI map; Right: Real RSSI map of the environment obtained after linear interpolation.



Sensors 2017, 17, 1213 8 of 16

RSSI Estimation Model

The location accuracy of our approach is completely dependent on the correctness of the RSSI
map, whereas the correctness of the RSSI map depends on the accuracy of the RSSI prediction model
selected for each point on the map. We have analyzed multiple RSSI path loss models and their
accuracy with the respect to LOS and NLOS cases and selected soft partition and the concrete wall
attenuation factor model [13,39]. Figure 4 depicts the estimated and the real RSSI levels received, with
respect to the distance, for the selected models. During the assessment of the RSSI path loss using the
wall-map approach, we found that a couple of corrections were required in the estimation, as described
in the following sections.

AP NLOS Case

AP LOS Case 

Distance (Meter)

R
SSI Le

ve
l(d

B
)

(a)

(b)

Figure 4. (a) reference points to measure actual RSSI level received by a handheld device inside an
office environment (IT Building) and (b) real and estimated RSSI with respect to distance for both LOS
AP and NLOS AP cases.

Correction I

Pixel line errors occur when the inclination angle of the profile vector with any wall in the map
is very small, i.e., multiple pixels overlap over the wall, as shown in Figure 3c-(left). As the pixels
in the profile vector indicate free space and the thickness of the obstruction, due to this overlap,
an error is caused and the RSSI map appears more like a petal shape around the walls, as displayed in
Figure 3b-(right). To mitigate the affect of the pixel line error, we count the peaks’ values in the path
vector. The output of correction I is shown in Figure 3c-(right).

Correction II

To improve the RSSI map generation accuracy using the procedure described above, we compare
our map with a real RSSI heat map, calculated manually by site survey, while recording the RSSI
information at each crossing point, 1 m in the horizontal and vertical direction of the grid, as depicted
in Figure 3d-(left). We found that the original heat map shows a corner diversion due to the dominant
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path [40], whereas in our RSSI map estimation, only the direct path was used. To incorporate such
effects and to retain a low calculation complexity, we add two triangular paths to avoid the direct path
error to a certain extent, as shown in Figure 3d-(right). Finally, we select a path with a minimum path
loss, calculated by following each of the three paths. This correction is more useful if the building
walking paths are rectangular and aligned with the map’s x- and y-axis.

Algorithm 1 Generate RSSI Map

1: procedure GENRSSIMAP
2: INPUT:
3: Map← Path of Map file.bmp
4: APLoc← Location of AP on Map (x,y)
5: Delta← Grid Block width δ
6: OUTPUT:
7: RSSIMap← RSSI Map of AP at locationAPLoc
8: BODY:
9: Height← Height of Map

10: Width←Width of Map
11: GPoint← Get_Grid_Points(Delta, Width, Height)
12: loop: Estimate RSSI for each point ’px’ in ’GPoint’
13: Vp0← GetProfileVector(map,[pxx, APLocx], [pxy, APLocy])
14: if lengthof(Vp0) = Delta then
15: PeakValuesVp0 ← f indpeaks(Vp0)
16: if Vp0 is not starting at wall then
17: x1← [pxx, pxx, APLocx]
18: y1← [pxx, APLocy, APLocy]
19: Vp1← GetPro f ileVector(map, x1, y1)
20: PeakValuesVp1 = f indpeaks(Vp1)
21: x2← [pxy, APLocx, APLocx]
22: y2← [pxy, pxy, APLocy]
23: Vp2← GetPro f ileVector(map, x2, y2)
24: PeakValuesVp2 ← f indpeaks(Vp2)
25: PLW ← min(∑(PeakValuesVp0), ∑(PeakValuesVp1), ∑(PeakValuesVp3)
26: else Calculate direct path
27: PLW ← ∑(PeakValuesVp0)
28: else
29: PLW ← 0
30: p0← −30
31: EPL← 0
32: WAF ← 3.5
33: r ← 1;
34: if PLW > 0 then
35: r ← 1.6;
36: EPL← PLW/255×WAF;
37: di←

√
((pxx −APLocx)2 + (pxy −APLocy)2)

38: estRSSI ← (p0− 10× r× log(di/10)− EPL)
39: RSSIMap(pxx, pxy)← estRSSI
40: goto loop.

3.3. User Location Estimation

The LOCALI location estimation is also an easy and interesting process. As an indoor environment
is nonlinear, we cannot estimate the location using trilateration. This nonlinearity causes non-circular
RSSI regions around the transmitter, and it is not possible to obtain an accurate estimation using the
time or RSSI information directly. To estimate the user location, we propose a four-step procedure that
includes selection, thresholding, intersection, and centroid finding.
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• Selection of APs for location estimation; for simplicity, we select the top three APs in the list with
the strongest RSSI level.

• For each AP, we generate a binary map by applying the threshold value of the RSSI level received
from a particular AP on the corresponding RSSI Map. Let us assume that we have received a list
Z = (−56, macA), (−70, macB), (−65, macC). Each RSSI Map is an m× n matrix of RSSI levels and
we mark a value of “1”, if the block has a 3 dB-difference value with the RSSI level received at the
target, else it is “0”. This process gives us a binary map, as in Figure 5c. The same process applies
for the remaining two selected APs, for the assessment of the RSSI map.

Centroid of 

Common 

Region

(a)

(b)

(c)

(d)

Ground 

Truth

Estimated

Figure 5. Details of the 3rd task for target location estimation: (a) location of the selected APs with the
strongest RSSI received by the target/user, on the map; (b) radio-map of each selected AP; (c) binary
map obtained after applying the threshold value, depicting the expected region around an AP, where
the target is located; and (d) intersection of the binary maps and location, considering the centroid of
the common region.

• We now have three binary maps that depict the expected region around each AP, where a target
can be located. Next, we perform a simple intersection operation between the three binary maps
and obtain the common region for these maps; this gives us a region, where all the points have the
same values, for the three selected APs, from the received RSSI list “Z”, at the target location.

• Finally, the centroid of the common area gives us the estimated location of the target.
The step-by-step implementation details of this task are listed in Algorithm 2.
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Algorithm 2 Estimate Target Location

1: procedure GETTARGETLOC
2: INPUT:
3: RSSIMaps← List of Maps “EM”
4: SRSSI ← List of RSSI Values<(RSSI Level, MAC)> Received by Target
5: OUTPUT:
6: TargetLoc← (tx, ty) Location of Target
7: BODY:
8: APList← Get Top Three APs with Highest RSSI Level from SRSSI
9: ORMap← RSSIMaps[0]× 0

10: loop: Threshold RSSIMap for each AP in APList
11: map← GetRSSIMapO f (AP.MAC, RSSIMaps)
12: level ← AP.RSSILevel
13: thMap← (map− level)
14: binMap← (abs(thMap) < 3)
15: ORMap← ORMap | (binMap)
16: goto loop.
17: comRegion← GetRegion(ORMap,′ Centroid′)
18: TargetLoc← comRegion.Centroid

4. Experiment Setup

We have selected two types of environments for the experimentation and verification of our
proposed approach: a hallway environment of 2160 m2 and an atrium building 1215 m2, at the
Yeungnam University, the 2nd floor of an IT Building and the 1st floor of an RIC Building, respectively.
Figures 2a and 4a show the floor plans of both the sites, respectively. The setting up of the
LOCALI-based ILBS is a two-step process: the first is the creation of a map file server by calculating
the RSSI map of each Wi-Fi AP permanently installed at the site. Next is the location estimation, using
the overlap algorithm. The server is a simple Personal Computer (PC) with Intel Corei3 Processor
and 8-GB RAM, running MATLAB (16a, MathWorks, Inc., Natek, MA, USA). We performed all the
experiments in the hallway of an IT Building for calculating the parameters, “r” and “WAF”, and
used the RIC Building for testing. The IT Building contains 21 APs and only 12 are selected, whereas,
from the RIC Building, only seven are selected to participate in the position. To estimate the RSSI
map for each selected AP, we selected a grid with delta = 5 instead of delta = 10, for radio-maps with
slightly high resolution. To measure the positioning accuracy of the proposed technique, 54 reference
points 1 m apart from each other are selected in the IT Building and 98 reference points are selected
in a rectangular path around the opening between different floors of the RIC Building. Android and
Apple-based hand-held devices are used for the RSSI calculation and as the target devices at each
reference point marked on floor.

5. Results and Discussion

To estimate the position on each reference point on the map, instead of generating binary maps in
the thresholding process, we consider absolute values at each grid point of the map, after subtracting
the corresponding RSSI level received at the target for a particular AP. This gives us a mesh grid with a
circular valley showing the expected location of the target around each AP, as shown in Figure 6a–c.
Subsequently, we add all three of the maps and determine the deepest location in the combination
map, as depicted in Figure 6d,e. This deepest location indicates the estimated location of the target.
The difference between ground truth and estimated location are calculated by Euclidean distance
between corresponding points on the bitmap.
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(a) (b) (c)

(d) (e)

Deepest Area

Figure 6. Slightly different approach from the binary map for reducing the thresholding calculation: (a)
expected target location of the lowest valley with respect to AP, A; (b) expected target location of the
lowest valley with respect to AP, B; and (c) for AP, C; (d,e) combination of the RSSI valleys and deepest
region of the expected target location.

In Table 1, we have compared our approach with some other similar or slightly similar
model-based approaches. As the table shows, our approach is more practical and adoptable in nature,
as it does not requires any active user input and special purpose hardware resources. The automatic
assessment of LOS and NLOS and obstacle count (walls) is special to our approach, whereas some
techniques employ a single model for LOS/NLOS cases. In addition, our technique does not use
interpolation and gives more precise changes between LOS and NOLS cases. Active user input
in [34] and hardware requirements of [35] make them less practical techniques due to limited mobile
resources and user point of view. Moreover, Table 2 presents statistics regarding the time and memory
consumption in our setup. The results demonstrate that our proposed technique sets up the IPS
without a time-consuming effort and is ready to use within a few minutes. No significant resources
in terms of the memory are required. The results in Figure 7 show the percentage of 2 m position
accuracy achieved by the system, without the application of any optimization technique.
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Table 1. Comparison with related techniques.

Props.
Techniques Proposed CBIPA [34] Probability Online PPLM [37]

Technique Maps [35] PLPE [36]
LOS/NLOS Assessment Automatic No No No Manual
Obstacle count Yes No No No No
Coverage Both Both LOS LOS Case Level
(LOS/NLOS) (LOS or NLOS)
Positioning Map Turbo RSSI Map Particle Trilateration
Algorithm Overlapping model Overlapping Filter
Active User Input No Yes No No Yes
Interpolation No No No Yes No
Special H/W Requirement No Yes(Camera) Yes No No

Camera-Based Indoor Positioning Algorithm (CBIPA), Practical Path Loss Model (PPLM), Path Loss Parameter
Estimation (PLPE), Line-of-sight (LOS), Non-line-of-sight (NLOS), Received Signal Strength Indicator (RSSI).

Table 2. Statistics of the change in the time and memory required on the disk for map generation with
respect to the area and number of Access Points.

Building Type Area (m2) AP Count delta (δ) Time (s) Maps File Size (Kb)

Hallway 20 × 54 21 5 1001 630
10 267 172

Artium 27 × 45 07 5 360 240
10 103 60

(a) (b)outliers

Empty Regions

(d)(c)

Figure 7. (a) ground truth reference points of the RSSI received from user “circles” from one end of the
corridor to the other and localization points of the user “Xs” estimated by the system, along a straight
path of the IT Building; and (b) actual reference points of the user and estimated localized points
around the open area of the RIC Building hallway; (c,d) median accuracy in meters and percentage
less than 2 m accuracy with respect to number of scans taken at a reference point for the IT and RIC
Buildings, respectively.
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In the proposed technique, there are several aspects for improving the accuracy of the RSSI
map estimation that are critical and need further exploration; e.g., the selection of the AP for position
estimation, the location estimation procedure, and the optimization methods for enhancing the location
accuracy. In this work, for simplicity, we selected three APs with the strongest RSSI levels as the target
locations. The architecture of the environment around an AP also affects the RSSI levels because it is
observed that the Wi-Fi signals add up to a stronger RSSI at the closed-end of the hallway. This effect
causes certain nonlinear behavior in the real-time RSSI value for the LOS environment, compared to
the estimated RSSI value and results as an error in position estimation at the close ends. Furthermore,
the APs closer to the wall show stronger signals on opposite sides due to reflection of rays towards free
space and cause free-space outliers, as highlighted in Figure 7. These effects are observed in closed-end
corridors and atrium buildings, respectively. As our approach currently does not cover the reflection
effect, this limitation can be overcome by placement of the APs at the center of rooms and closer to
the ceiling. Moreover, it is observed that the user direction causes an almost 10-dB difference in the
measurement at close proximity about three to six meters from transmitters in indoor environments,
which is an error of almost 2 m.

6. Conclusions

In this study, we have presented a simple and effortless indoor positioning system that does not
require any time-consuming calibration survey of the environment. The proposed technique exploits
the floor plan information of the environment to build RSSI based path loss maps of a transmitting
source more accurately, and these maps further help in estimating position of the targets in the
environment by employing a map overlap technique. Results show that the proposed technique has
achieved a reasonable accuracy without using any complex procedures and optimization techniques.
Moreover, our next focus is to study how to incorporate dynamic changes in RSSI due to changes in
environment over time, which will help in calculating more accurate path loss maps. In addition, fusion
of inertial sensing data is planned to add more reliable tracking capabilities to the system. Increasing
the accuracy of model-based path loss maps will minimize the outliers count, and, ultimately, a high
accuracy in position estimation will be achieved while retaining a simple and affordable approach.
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