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Abstract: Knowing the number of pigs on a large-scale pig farm is an important issue for efficient
farm management. However, counting the number of pigs accurately is difficult for humans because
pigs do not obediently stop or slow down for counting. In this study, we propose a camera-based
automatic method to count the number of pigs passing through a counting zone. That is, using a
camera in a hallway, our deep-learning-based video object detection and tracking method analyzes
video streams and counts the number of pigs passing through the counting zone. Furthermore, to
execute the counting method in real time on a low-cost embedded board, we consider the tradeoff
between accuracy and execution time, which has not yet been reported for pig counting. Our
experimental results on an NVIDIA Jetson Nano embedded board show that this “light-weight”
method is effective for counting the passing-through pigs, in terms of both accuracy (i.e., 99.44%) and
execution time (i.e., real-time execution), even when some pigs pass through the counting zone back
and forth.

Keywords: agriculture IT; computer vision; pig counting; video object detection and tracking;
convolutional neural network

1. Introduction

Pork is one of the most consumed meats in the world, and the average consumption
of pork annually is approximately 1.05 million tons globally. Moreover, 1.08 million tons
of pork was delivered to customers in 2020, and the pork meat market size is projected
to reach 17% from 2021 to 2029 (OECD 2021) [1]. With the increase in pork meat demand,
piggery farms also need to expand to meet these needs. This leads to an increase in the
number of pigs that each pig farmer must take care of on the farms. If the number of pigs
that one worker manages increases, piggery farms may face countless human errors. In
other words, farms possibly lose track of pigs and frequently become unmanageable. Pig
tracking and counting on pig farms is an essential part of pig management, and accurate
pig counting automatically promotes efficient management and reduces manpower input
for inspection.

Over the last few years, some monitoring techniques have been extensively applied to
livestock farming [2–6], and several studies have utilized surveillance systems to monitor
pigs automatically [7–10]. The aim of this study is to analyze video-based pig monitoring,
using non-attached (i.e., non-invasive) sensors [11–38]. Moreover, we adopt a top-view
camera [18–23] to resolve general issues, such as occlusion, overlapping, illumination
changes, and rapid movements during pig monitoring. Recently, end-to-end deep learning
techniques have been widely used for computer vision applications (i.e., object recognition,
object classification, and object detection), but these deep learning techniques require
large numbers of parameters and, thus, high computational costs. To apply deep learning
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techniques to video-based pig counting, we must process each video frame in real time
from a video stream, without any delay.

In this study, we focus on real-time pig counting, using an embedded board for low-
cost monitoring. For a large-scale pig farm, practical issues, such as monitoring costs,
should be considered. For example, owing to the severe ammonia gas in a pig room, any
PCB board will be corroded faster than normal monitoring environments; thus, a low-cost
solution is required for the practical monitoring of a pig room. However, executing typical
deep learning techniques on an embedded board cannot satisfy the real-time requirements
for video monitoring. Therefore, we focused on developing a method for meeting both
accuracy and real-time requirements, with a low-cost embedded board. The contributions
of the proposed method are summarized as follows.

1. For intelligent pig monitoring applications with low-cost embedded boards, such as
the NVIDIA Jetson Nano [39], light-weight object detection and tracking algorithms
are proposed. By reducing the computational cost in TinyYOLOv4 [40] and Deep-
SORT [41], we can detect and track pigs in real time on an embedded board, without
losing accuracy.

2. An accurate and real-time pig-counting algorithm is proposed. Although the accu-
racies of light-weight object detection and tracking algorithms are not perfect, we
can obtain a counting accuracy of 99.44%, even when some pigs pass through the
counting zone back and forth. Furthermore, all counting steps can be executed at
30 frames per second (FPS) on an embedded board. To the best of our knowledge,
the trade-off between execution time and accuracy in pig counting on an embedded
board has not been reported.

The remainder of this paper is organized as follows: Section 2 summarizes previous
methods for pig detection and/or counting. Section 3 describes the proposed method for
detecting, tracking, and counting pigs. Section 4 presents the experimental results, and
Section 5 concludes the paper.

2. Background

The final goal of this study is to track and count pigs that walk in a hallway with
embedded boards in a cost-effective manner. Accurate results from detection models
are required for reliable pig tracking and counting. Most previous studies detected pigs
using image [11–26] and video [27–33] object detection techniques. The majorities of
recent methods utilize end-to-end deep learning techniques for object detection problems,
and convolutional neural networks (CNNs) are the most frequently used solutions to
provide stable and accurate results for object detection. CNNs for object detection can
be categorized into two groups: two-stage and one-stage detectors. Two-stage detectors,
such as R-CNN [42], fast R-CNN [43], and faster R-CNN [44], use two networks to process
regional proposal and classification. By contrast, you only look once (YOLO) [45] and
single shot multibox detector (SSD) [46] are one-stage detectors that use one network to
handle regional proposal and classification simultaneously. Typically, two-stage detectors
show more accurate localization than one-stage detectors. However, two-stage detectors
incur high computational costs because they contain numerous parameters. In summary,
faster R-CNN is slightly more accurate than YOLO, but YOLO is much faster than faster
R-CNN. Thus, we will modify TinyYOLOv4 [40], which is a tiny version of YOLOv4 [40],
to deploy it on embedded boards.

Accurate pig tracking is also required for pig counting. Because pigs do not take
a pose for counting, pig counting with videos rather than images is required. In addi-
tion, video has been used for more accurate pig detection. Previous studies reported
pig tracking [27,28,32,34,38], using index tracking, Kanade–Lucas–Tomasi (KLT) [47], and
simple online real-time tracking (SORT) [48] algorithms. The index tracking algorithm
calculates the Euclidean distance between consecutive frames to measure the similarity
between the two coordinates of a designated object. KLT is a local search that uses gradi-
ents, weighted by an approximation of the second derivative of the image. SORT [48] is a
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practical approach to multiple object tracking, based on rudimentary data relations and
state estimation techniques. DeepSORT [41], an extension of SORT, provides simple online
and real-time tracking with a deep association metric. In other words, it extends the SORT
algorithm to integrate image information based on a deep appearance descriptor. However,
utilizing deep learning features in the application particularly slows down the execution
speed on embedded boards, which have limited GPU computing power. Therefore, we
modified DeepSORT to apply it to embedded boards.

Table 1 summarizes some of the previous methods used for pig detection and/or
counting [11–38]. Detecting individual pigs from a video stream is an essential part of
automatically tracking and counting pigs in a hallway. Moreover, it is crucial to meet
the real-time requirement to analyze successive video frames without delay, but many
previous studies neither report the execution time nor satisfy the real-time requirement.
Furthermore, the proposed method should be executed on embedded boards for low-cost
monitoring. However, none of them mentioned finding the best trade-off model between
accuracy and execution speed on embedded boards. Satisfying both counting accuracy and
real-time requirements on embedded boards is very challenging.

Table 1. Some of the pig detection and/or counting results (published during 2012–2021).

Application Data Type Algorithm
No. of Pigs

in Each
Image/Video

Execution
Time per

Image (ms)

Target
Platform Reference

Pig Detection

Image

Image Processing 9 Not Specified PC [11]
Image Processing 7~13 Not Specified PC [12]
Image Processing 1 Not Specified PC [13]
Image Processing Not Specified 500 PC [14]
Image Processing Not Specified Not Specified PC [15]
Image Processing 13 2 PC [16]
Image Processing Not Specified 1000 PC [17]

Deep Learning 1 Not Specified PC [18]
Deep Learning Not Specified 500 PC [19]
Deep Learning ∼32 142 PC [20]

Image Processing 4 921 PC [21]
Deep Learning 6 500 PC [22]

Image Processing
+ Deep Learning 9 29 Embedded Board [23]

Deep Learning ~79 Not Specified PC [24]
Deep Learning 13 41~2000 PC [25]

Image Processing
+ Deep Learning 9 ~190 Embedded Board [26]

Video

Image Processing 22 Not Specified PC [27]
Image Processing 1 Not Specified PC [28]
Image Processing 22 Not Specified PC [29]
Image Processing 17~20 Not Specified PC [30]

Deep Learning 1 50 PC [31]
Deep Learning 4 Not Specified PC [32]
Deep Learning 20 250 PC [33]

Pig Counting

Image
Image Processing 8 Not Specified Not Specified [34]
Image Processing 9 Not Specified Not Specified [35]

Deep Learning ~40 42 PC [36]

Video
Deep Learning ~250 313 Embedded Board [37]
Deep Learning ~18 Not Specified Not Specified [38]
Deep Learning ~34 32 Embedded Board Proposed
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3. Proposed Method

In this paper, we propose a pig-counting system that automatically calculates the
number of pigs that walk through the hallway and are captured by a surveillance camera
installed on the wall, allowing the farm workers to check the calculation results. In addition,
all tests were performed using a low-cost embedded board, the Jetson Nano, allowing
it to be directly applied to pig farms. For counting pigs, we detected individual objects
and keep the region of interest (RoI) for detection, exclusive non-RoI. The YOLOv4 and
TinyYOLOv4 [40] models are widely used for many object detection applications. In this
study, LightYOLOv4, which is a variant and a light-weight version of TinyYOLOv4, is
proposed to perform object detection on embedded boards. In addition, a multi-object
tracking algorithm was performed based on the detection results to track individual objects.
Although the DeepSORT [41] algorithm is widely used in multi-object tracking, in this study,
we propose the LightSORT algorithm, which simplifies feature extraction that requires the
most computing resources in the DeepSORT algorithm. Finally, the pig-counting system
counts individual pigs based on their movement direction in the hallway. The overall
system structure of EmbeddedPigCount proposed in this study is shown in Figure 1.
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3.1. Pig Detection Module

For pig counting, the detection of individual objects should be performed first. In this
study, LightYOLOv4, which is lighter than TinyYOLOv4 [40], is proposed for real-time
object detection on the Jetson Nano board [39]. Moreover, we apply the TensorRT [49]
framework to create GPU-optimized models. We use TensorRT, an inference framework
provided by NVIDIA, that reduces execution time by providing optimized model structure
for a specific NVIDIA GPU (i.e., an optimized model, which is created by TensorRT, only
works on the same GPU model). TensorRT originally works in 32-bit precision, but can also
execute models using 16-bit floating point. In this process, we adopt 16-bit floating point
which enables faster computation and less memory consumption.

First, the filter clustering (denoted as FC) technique proposed in [23] is applied to
shorten the 3 × 3 convolution time, which requires the most computing resources in
TinyYOLOv4. The FC method is a pruning technique [50] that reduces the 3 × 3 filter of
the convolution layer of the CNN, and multiple filters extracting a similar feature can be
grouped into the same cluster. For this clustering, we first prepare 511 features, which can
be created with a 3 × 3 binary pattern. Then, each filter in a 3 × 3 convolutional layer is
convolved with 511 features and grouped into a cluster with the maximum convolution
value. At the end of clustering, some clusters may contain multiple filters. We simply select
the filter with the maximum convolution value in each cluster containing multiple filters.
The LightYOLOv4 network structure in which the FC method is applied to TinyYOLOv4
is shown in Table 2. Then, we apply TensorRT to obtain a model that performs real-time
object detection on the Jetson Nano board.
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Table 2. LightYOLOv4 network architecture.

# Layer Filters Size/Stride Input Output

0 Convolutional 27 3 × 3/2 320 × 320 × 1 160 × 160 × 27
1 Convolutional 49 3 × 3/2 160 × 160 × 27 80 × 80 × 49
2 Convolutional 45 3 × 3/1 80 × 80 × 49 80 × 80 × 45
3 Route 2
4 Convolutional 31 3 × 3/1 80 × 80 × 22 80 × 80 × 31
5 Convolutional 28 3 × 3/1 80 × 80 × 31 80 × 80 × 28
6 Route 4, 5
7 Convolutional 64 1 × 1/1 80 × 80 × 59 80 × 80 × 64
8 Route 2, 7
9 Maxpool 2 × 2/2 80 × 80 × 109 40 × 40 × 109

10 Convolutional 86 3 × 3/1 40 × 40 × 109 40 × 40 × 86
11 Route 10
12 Convolutional 56 3 × 3/1 40 × 40 × 43 40 × 40 × 56
13 Convolutional 47 3 × 3/1 40 × 40 × 56 40 × 40 × 47
14 Route 12, 13
15 Convolutional 128 1 × 1/1 40 × 40 × 128 40 × 40 × 128
16 Route 10, 15
17 Maxpool 2 × 2/2 40 × 40 × 214 20 × 20 × 214
18 Convolutional 164 3 × 3/1 20 × 20 × 214 20 × 20 × 164
19 Route 18
20 Convolutional 83 3 × 3/1 20 × 20 × 82 20 × 20 × 83
21 Convolutional 83 3 × 3/1 20 × 20 × 83 20 × 20 × 83
22 Route 20, 21
23 Convolutional 256 1 × 1/1 20 × 20 × 166 20 × 20 × 256
24 Route 18, 23
25 Maxpool 2 × 2/2 20 × 20 × 420 10 × 10 × 420
26 Convolutional 189 3 × 3/1 10 × 10 × 420 10 × 10 × 189
27 Convolutional 256 1 × 1/1 10 × 10 × 189 10 × 10 × 256
28 Convolutional 174 3 × 3/1 10 × 10 × 256 10 × 10 × 174
29 Convolutional 18 1 × 1/1 10 × 10 × 174 10 × 10 × 18
30 YOLO output
31 Route 27
32 Convolutional 128 1 × 1/1 10 × 10 × 256 10 × 10 × 128
33 Upsample /2 10 × 10 × 128 20 × 20 × 128
34 Route 23, 33
35 Convolutional 120 3 × 3/1 20 × 20 × 384 20 × 20 × 120
36 Convolutional 18 1 × 1/1 20 × 20 × 256 20 × 20 × 18
37 YOLO output

3.2. Pig Tracking Module

In the pig tracking module, we implement object tracking based on the detected
objects. Object tracking is generally performed using a Kalman filter. Object tracking using
a Kalman filter is a recursive filter that tracks the state of a linear dynamic system, including
noise. Currently, the SORT [48] algorithm and the DeepSORT [41] algorithm, which are
based on the Kalman filter, are widely used. The SORT algorithm predicts the object
position in the next frame (t + 1) by predicting the speed, etc., through the Intersection
over Union (IOU) Distance [51] and Hungarian algorithm [52] based on the position of the
object appearing in the past (t − 1) and present (t) frames, and compares the predicted
result with the actual result to update the position of the object. The SORT algorithm has
a fast execution time. However, it produces low accuracy in object tracking. To address
this problem, in the DeepSORT algorithm, object tracking is performed using not only the
position of the object but also its image features. In this case, the Mahalanobis distance [53]
and the cosine distance [54] are used to calculate the similarity of the objects, and CNN is
particularly applied to extract the image features of the object. However, because object
feature extraction through CNN requires high computing power, it should be simplified to
be flawlessly executed on a device with low computing power, such as an embedded board.
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Therefore, in this paper, we propose the LightSORT algorithm that executes with
high execution speed on an embedded board with nearly no loss of accuracy. Rather
than extracting object features using CNN from the DeepSORT [41] algorithm, the size
of each object is changed to a size of 10 × 10 and used as an object feature in LightSORT.
The 10 × 10 object feature is vectorized to 100 × 1, in the same way as the size of the
object feature (128 × 1) in DeepSORT. Figure 2 shows the difference between the existing
DeepSORT and the object feature extraction technique of the proposed method, LightSORT.
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3.3. Pig-Counting Module

Finally, based on the object tracking generated by the LightSORT algorithm, we
propose an algorithm to count the number of pigs walking through the hallways of pig
farms. The proposed module is executed according to the following rules: (1) If the detected
object is a human, an exception is raised so as not to include the detected human in the
counting algorithm. (2) On the basis of the counting line (center of the hallway being
monitored) in the surveillance camera, the right side is defined as the entrance area, and
the left side is the exit area. (3) If the center coordinate of the detected pig’s bounding box
is in the entrance area, the state log value is stored as ‘0’. If the center coordinate of the
bounding box is in the exit area, the state log value is ‘1’. (4) Moreover, when a pig appears
and the given status log value and the current status log value are different, it changes
the counting result (CR) value of the entire system. That is, if the pig moved from the
entrance area to the exit area, the CR value increased by 1, and if the pig moved the other
way around, the CR value decreased by 1. Algorithm 1 shows the pseudo-code written
based on the above rules.
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Figure 3 shows an example of a pig-counting algorithm. The orange and green zones
represent the entrance and exit areas, respectively. If the pig is detected in the entrance area
and then disappears after walking through the exit area, the counting for the disappeared
pig is complete. Figure 3b depicts a pig moving from the entrance area to the exit area.
In this case, the pig was detected in the T-4 frame, and the position of the pig was in the
entrance area. The start status and end status are ‘0’. The pig moves to the exit area in the
T-1 frame and the end status becomes ‘1’, increasing the CR value by 1. Figure 3c depicts a
pig moving from the exit area to the entrance area. The pig was detected in the T-3 frame
and the position of the pig was in the exit area. The start and end status are ‘1’. In the T-2
frame, because the end status value is the same as the start value, the CR value does not
change. However, in the T-1 and T frames, the CR value decreases by 1 owing to changes
between the end status (‘0’) and start status (‘1’). Figure 3d depicts a pig moving back and
forth between the entrance area and exit area. First, the pig is detected in the T-5 frame,
and because it is in the entrance area, the start status and end status values are stored as ‘0’.
In the T-3 frame, the CR value increases by 1 because the end status value is ‘1’. The end
status value of the T-2 frame is the same as the start status value, and it does not affect the
CR value. Finally, because the end statuses of the T-1 and T frames are ‘1’, the CR value
increases by 1.
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Figure 3. Illustration of the hallway pig-counting algorithm. (a) An actual pig farm to which the
system proposed in this paper is applied. (b) An example video clip of a pig moving from an entrance
area to an exit area. (c) An example video clip of a pig moving from an exit area to an entrance area.
(d) An example video clip of a pig moving from an entrance area to an exit area, with an intermediate
back and forth.

Figure 4 shows the frame at time T, the log values for individual objects, and the
resulting values. The status value is ‘0’, when Pig1 and Pig2 are first detected (start), and
current status value is ‘1’ (end). Therefore, the CR value increased by 1. In the case of Pig3,
the start status value is ‘1’ and the end status value is ‘0’, thus, the CR value is decreased by
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1. However, in the case of Pig4, the start status value and the end status value are the same,
therefore, it does not affect the CR value.

Algorithm 1. EmbeddedPigCount

Input: Video stream from a surveillance camera
Output: Pig counting result
Detect individual pig using LightYOLOv4
for (all detected objects):

if object class = person:
continue

if new object:
Add new track to track_list
Save start.status and end.status according to location of the pig

else:
Find a track with prediction results in track_list and connect
Save end.status based on location
Update new location and visualization feature

counting_result = 0
for (all existing tracks):

if start.status = exit area and end.status = entrance area:
counting_result − = 1

if start.status = entrance area and end.status = exit area:
counting_result + = 1

return counting_result
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and End status shows the value corresponding to the current (T). (c) The result values affecting the
CR corresponding to individual objects.

4. Experimental Results
4.1. Experimental Environment and Dataset

In this study, the pig-counting model was trained on a PC with an Intel® Core™
i7-9700K CPU @ 3.60GHz, GeForce RTX 2070 GPU, and 32 GB of RAM. To verify that
the proposed light-weight counting system can be processed on an embedded board, test
experiments were conducted on the Jetson Nano board [39], provided by NVIDIA. The
Jetson Nano B01, equipped with a 128-core NVIDIA Maxwell™ GPU, quad-core ARM®

A57 CPU, and 4 GB of 64-bit LPDDR4, was used. Hallway images were collected using
a Hanwha QNO-6012R [55] surveillance camera, which captured 1920 × 1080 images at
30 frames per second (FPS).

As shown in Figure 5, for object detection in the proposed system, a camera was
installed on the wall of a commercial pig farm in Hadong, Gyeongnam, Republic of Korea,
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and training and test data, which were used in the object detection module, were directly
collected from this farm. That is, all the image data were obtained from the pig-moving
scenarios scheduled by the commercial pig farm, not from any artificial scenario for this
study. Figure 5a shows the actual appearance of the hallway, in which pigs move under
the camera surveillance, and Figure 5b shows the captured image that is collected by the
camera installed on the wall in the hallway. The surveillance camera recorded the hallway
of the pig farm in grayscale (1980 × 1080 resolution) and saved the captured image of
objects (pigs, humans) moving in the hallway for training and testing. In addition, to
improve object detection accuracy and prevent overfitting, two types of data were added
to the training. Figure 5c: a top-down view captured image, showing only pigs, was taken
at a pig pen located in Chungbuk, Republic of Korea. Figure 5d: to distinguish people
passing by in the hallway from pigs, human data from an open dataset [56] were added
to the training. In the cases of Figure 5b,c, the bounding boxes were manually annotated
for training. As a result, for the detection module, a total of 2675 images (1702 images of
the hallway, 873 images of the pig pen, and 100 images of humans) were used. The pig
pen and open dataset were all used as training data, and 1396 images of the hallway were
assigned for training, and the remainder of the hallway data (306 images) was used as test
data (see Table 3).
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Table 3. Datasets used for training and testing.

Annotation Dataset Class Train Set
(Images)

Test Set
(Images)

Manually annotated Hallway Pig + Human 1396 306
Pig pen Pig 873 -

Open dataset people in top view [57] Human 100 -

To measure the tracking and counting accuracy of the proposed system, video clips
were collected from the same camera, as shown in Figure 5a,b. The video clips contained
at least one action of the pig and the person moving in the hallway (left, right, right, or
left). The bounding box, class, and track ID information were manually added to the
3035 objects to test the tracking accuracy. In addition, 130 video clips, ranging from 10 s (s)
to 300 s, were collected to test the counting accuracy, with a minimum of one pig and a
maximum of 34 pigs appearing in the collected video clips. In the final collected video clips,
unnecessary parts, other than the hallway, were removed through image preprocessing,
thereby constructing a dataset that could focus only on moving objects in the hallway. In
this application, through Real-Time Streaming Protocol (RTSP) [57] streaming audio/video
data from an IP camera server, the Jetson Nano embedded board receives the video in real
time. A video sample is shown in Figure 6.
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4.2. Results with Pig Detection Module

First, we examined the accuracy of object detection in the hallway, using LightYOLOv4.
The hallway image was input with a size of 320 × 320, the learning rate was 0.001, the
optimizer was SGD, the momentum was 0.949, and 200 epochs of training were conducted.
Table 4 shows the accuracy of the object detection in the hallway. When only hallway data
were used, the mAP was 94.95%; however, the experimental result with the addition of the
pig pen data and the open dataset was 96.95%, which confirms the increase in accuracy by
2%. Then, we measured the execution time of LightYOLOv4. We obtained 38.8 FPS for
detection and, thus, the whole counting system can satisfy the real-time processing speed
on the Jetson Nano board.

Table 4. Accuracy comparison of LightYOLOv4 with various data configurations.

Only Hallway Data Hallway + Pig Pen + Open

Person (AP) 94.96% 98.50%
Pig (AP) 94.94% 95.39%

mAP 94.95% 96.95%

The detection accuracy and execution time of this experiment are important factors
that can significantly affect the pig-tracking and counting results. Despite the use of
LightYOLOv4, which is a light-weight model with fast processing speed, but relatively low
accuracy, it shows a reasonable detection accuracy of this experimental result, indicating
that LightYOLOv4 can be applied to pig counting on the Jetson Nano board.
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4.3. Results with Pig Tracking Module

As described in Section 3.2, in the proposed system, the DeepSORT [41] algorithm
is not used as is, but the image feature extraction is modified using LightSORT for faster
speed and smooth GPU allocation. DeepSORT and LightSORT were written by Python.
Moreover, libraries, such as NumPy, sklearn-learn, OpenCV, VidGear, were used, and
detailed parameters, such as init, maximum age, and max distance were set to 3, 20, and
0.9, respectively, to conduct this experiment. Both pig-tracking modules were tested with
Ubuntu 18.04 on an NVIDIA Jetson Nano embedded board.

Table 5 compares the tracking accuracy of the DeepSORT [41] and LightSORT al-
gorithms. Multiple Object Tracking Accuracy (MOTA) [58], which measures the overall
accuracy of both tracker and detection, is often used in multi-objective object tracking
(MOT). Therefore, MOTA and ID switch (IDsw), which measures the number of times that
the ID assigned to an object changes, are used as measuring indicators. The experiment
was conducted with 3000 frames of video images to measure the tracking accuracy. In
the case of MOTA, DeepSORT performed more accurately than LightSORT; however, the
difference was insignificant at 0.03%. By contrast, the IDsw result shows a smaller number
of ID switches in LightSORT than in DeepSORT. In summary, this implies that there is
little difference in accuracy between DeepSORT and LightSORT. This indicates that the
image feature used in DeepSORT is helpful in distinguishing objects with different appear-
ances; however, in this experimental environment, the visual difference between pigs is
not notable, thus, the image feature from DeepSORT is not beneficial for the pig-counting
system. Therefore, the results of this experiment show that the LightSORT method, which
extracts light-weight image features, rather than DeepSORT, which extracts precise image
visual features, is a suitable tracking algorithm for this system, in terms of execution time
and accuracy.

Table 5. Accuracy comparison between DeepSORT [41] and LightSORT.

MOTA↑ IDsw↓
DeepSORT [41] 89.88% 25

LightSORT 89.85% 22

For a video-based real-time system, the execution speed of the entire system must
exceed 30 FPS to process the video received at 30 FPS through the surveillance camera
in real time, without delay. This means that the execution speed of the entire counting
system, including modules, such as detection and counting, in addition to tracking, must
exceed 30 FPS. Figure 7 shows the difference in execution time between DeepSORT and
LightSORT, according to the number of objects (pigs + humans) appearing in one frame
on the Jetson Nano board. When one object appears in DeepSORT, the execution speed is
22.62 ms, which is equivalent to 44.2 FPS (the value shown in red color is FPS); however, the
execution time increases significantly as the number of objects increases. For example, when
10 objects appear in one frame, it drastically drops to 5.4 FPS, which is much below the
real-time standard. Considering that 10 or more objects frequently appear in one frame in
the actual hallway of pig farms, DeepSORT is not practically suitable for counting systems
on the Jetson Nano board. By contrast, LightSORT shows a fast execution speed of 0.12 ms
(8623 FPS) for one object and 0.46 ms (2152 FPS) for 10 objects. Even if other additional
algorithms of the counting system are executed simultaneously, a stable execution speed
is guaranteed on LightSORT. These results demonstrate the suitability of the proposed
LightSORT over DeepSORT for this system, in terms of performance speed.

4.4. Results with Pig-Counting Module

To evaluate the proposed counting system, 130 hallway video clips were collected and
used to verify its accuracy. The counting accuracy was measured based on the number of
pigs that moved from right to left in the image from the video clips. The right area of the
image corresponds to the entrance area, and the left area corresponds to the exit area in the
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proposed system. For example, if 10 pigs moved from right to left in a video clip and two of
those pigs moved back from left to right, the final count was eight (=10 − 2). The detailed
results for the 130 video clips are shown in Table 6. Each video clip contained a minimum
of one and a maximum of 34 pigs. Accuracy is calculated as the number of pigs correctly
detected (denoted as Nc) compared to the number of pigs in the video clips (denoted as
N), and the number of pigs correctly detected is calculated through the difference between
the ground truth and the actual counting result. Therefore, this system provides 99.44%
counting accuracy (711 pigs were correctly counted out of 715 pigs appearing in 130 video
clips). That is, it shows that the proposed system can count flawlessly, even in a complex
situation, in which 10 or more pigs appear.
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Figure 8 shows the qualitative results of the proposed system. Each image is a captured
image of the counting result video. A pig is annotated by a yellow box, and a person is
annotated by a red box. The number in white on the bottom left corner of each captured
image represents the counting result of the pig’s movement, from the start of the video
to the current time (the number of pigs passing through the counting line from right to
left). Counting ground truth (counting GT) is the correct answer for the videos. If the
number at the bottom left in the last frame matches the counting GT, it is the correct
answer. Otherwise, this is an incorrect answer. As a result, Figure 8a–c shows the correct
pig-counting results, whereas Figure 8d shows the incorrect pig-counting results in this
experiment (video clip ‘130’).

More specifically, Figure 8a shows a video of typical pig movement in the hallway,
and the results of the six pigs migrating from right to left are correctly counted. All pigs
were detected and tracked properly, and when a pig crossed the counting line, the counting
number was accurately updated. In the case of Figure 8b, it is the result of the pigs moving
from left to right instead of right to left. Two pigs moved from left to right, and as a result,
the counted number shows ‘−2’ correctly. Figure 8b shows that the proposed counting
system can count pigs moving not only from right to left, which is the purpose of this
system, but also in both directions, where users initialize it. This shows the flexibility of the
proposed counting system. Furthermore, Figure 8c shows the result of a situation in which
23 pigs appear in the video clip. This video contained the largest number of pigs, except
for the video clip ‘130’, which recorded an extreme condition. Despite the situation where
many pigs appeared, accurate counting was performed without difficulty. This outcome
shows that the proposed system can operate robustly, even in the case of overlapping
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problems in a dense environment, which may occur when pigs are moving. Figure 8d
depicts a situation in which pigs are moving through the overcrowded hallway. As shown
in the second image in Figure 8d, pig counting is executed properly, even in the dense state,
but in the third image, when a pig rides over another pig, several pigs lying underneath
are excluded from detection and tracking. In this process, an error occurs in counting and,
as a result, the pig count is incorrectly checked as ‘−3’ (the correct counting number is 0).
If the correct answer to pig counting is 0, pigs appear from the right side of the screen,
remain on the left side for some period, and then all the pigs move back to the right again.
As shown in Figure 8d, plenty of pigs were induced to move in the opposite direction of
the original movement direction and, thus, the pigs collided in the hallway, resulting in an
indistinguishable overlap between pigs. As a result, we identified a limit that could cause
a counting error for a severe overlapping situation. However, despite the occurrence of
various overlapping situations in many video clips, the achievement of high accuracy for
715 pigs shows the robustness of the proposed system.

Table 6. Counting results in detail for each clip.

Number of Pigs (N)
Counting Results

GroundTruth EmbeddedPigCount Number of Pigs
Correctly Counted (Nc)

Clip01~06 1 −1 −1 1
Clip07~08 1 0 0 1
Clip09~15 1 1 1 1

Clip16 2 −2 −2 2
Clip17 2 0 0 2

Clip18~25 2 2 2 2
Clip26 3 2 2 3

Clip27~37 3 3 3 3
Clip38 4 3 3 4

Clip39~59 4 4 4 4
Clip60 5 −5 −5 5
Clip61 5 1 1 5
Clip62 5 3 3 5
Clip63 5 4 4 5

Clip64~84 5 5 5 5
Clip85~86 6 −2 −2 6

Clip87 6 0 0 6
Clip88~91 6 5 5 6

Clip92~110 6 6 6 6
Clip111~114 7 7 7 7

Clip115 8 5 5 8
Clip116 8 6 6 8

Clip117~118 8 8 8 8
Clip119 9 −8 −8 9
Clip120 9 −1 −1 9
Clip121 9 7 7 9
Clip122 10 −1 −1 10
Clip123 12 0 0 12
Clip124 14 4 4 14

Clip125~126 21 0 0 21
Clip127 23 0 1 22
Clip128
Clip129

23
30

0
0

0
0

23
30

Clip130
Total

34
715

0
-

−3
-

31
711
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Table 7 indicates the accuracy for 130 video clips and shows a counting accuracy
(99.44%). Note that the counting accuracy is higher than that of detection and tracking. It
shows that the efficient counting algorithm of this system, which focuses detection and
tracking results near the counting line, provides robust pig counting that is not highly
dependent on detection and tracking accuracy. This result shows that it is possible to
perform pig counting that is robust, even in the hallways of actual pig farms, where many
variables can occur. In addition, the overall FPS of the pig-counting system proposed in
this study was measured in the Jetson Nano board environment, and the average FPS of
130 video clips is presented. The measurement result shows a processing speed of 30.6 FPS,
which means that hallway images can be handled in real time, with 99.44% counting
accuracy on the Jetson Nano board.

Table 7. Accuracy and FPS of the proposed counting system.

Accuracy FPS (Avg.)

Proposed
EmbeddedPigCount 99.44% 30.6

Furthermore, the actual execution time for each module is shown in Table 8. It shows
that the execution time of the detection and tracking module occupies more than 90%
(78.9% + 12.5% respectively) of the total execution time, despite the weight reduction. It
implies that the weight reduction of the detection and tracking module in this study can be
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an effective contribution for building an embedded system (in the case of the execution
time of the tracking module, additional time more than the result of Section 4.3 is required
due to the process of storing, deleting, and uploading the complex tracking information of
multiple objects for a certain period of time). The experiments consequentially verified that
the proposed system can count pigs in the actual hallways of pig farms, and the counting
system can be applied and operated flawlessly, using the embedded board without financial
burden on the pig farms.

Table 8. Execution time of each module of the proposed counting system.

Execution Time
(Milliseconds)

Proportion
(%)

Detection module
Tracking module

25.8
4.1

78.9
12.5

Etc. 2.7 8.3

Total 32.7 100

5. Conclusions

Real-time pig counting is particularly important for facilitating efficient management
in large-scale pig farms. However, applying pig counting on embedded boards poses
challenges, such as satisfying both accuracy and real-time requirements simultaneously.

In this study, a light-weight method was proposed for pig counting, using a low-cost
embedded board. First, we reduced the computational cost of the TinyYOLOv4 object
detector, without losing detection accuracy, by applying the filter clustering technique.
Then, we modified the DeepSORT object tracker to reduce the computational cost of feature
extraction without losing tracking accuracy. A combination of these light-weight detection
and tracking methods, with an accurate counting algorithm, can achieve high accuracy
with real-time speed, even with some pigs passing through the counting zone back and
forth. Based on the experiment with 130 video clips obtained from a pig farm, our light-
weight deep-learning-based method, EmbeddedPigCount, can achieve acceptable counting
accuracy, with real-time speed on a USD 100 NVIDIA Jetson Nano embedded board; thus,
efficient farm management is possible in a cost-effective manner.

In addition, for more real-world video monitoring setups, specialized for livestock
farms, we plan to attach a camera module to an embedded board and check whether
semi-supervised learning (at nighttime), as well as testing (at daytime), on the embedded
board is possible in harsh livestock monitoring environments as our future study. If such
continual learning and testing on an embedded board are feasible in a stand-alone form
for low monetary cost (i.e., the total estimated cost is less than USD 500), we believe that it
will be a practical solution to the problem of unseen data in large-scale farms, as well as in
others, such as cow and poultry farms.
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