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Simple Summary: The human immune system is robustly equipped to keep unnatural cell growth
in check in the body to suppress cancer progression. However, the cells and molecules of the immune
system responsible for preventing cancer growth are often severely compromised in patients harboring
this disease. Therefore, to elicit a functional immune response against cancer, scientists have developed
antibodies, known as checkpoint inhibitors (CPI), which unleash the compromised immune cells
and potentiate them with cancer killing ability. Although CPI revolutionized the treatment of certain
cancers, many patients do not respond to the CPI and the treatment outcome varies disproportionately
between cancer types. This review elaborates on how lifestyle, metabolic and sociological factors play
a role in determining the outcome of CPI treatment. We also discuss potential ways to enhance CPI
efficacy by mitigating the effect of these confounding variables.

Abstract: Checkpoint blockade immunotherapy (CPI) is an effective treatment option for many types
of cancers. Irrespective of its wide clinical implications, the overall efficacy remains unpredictable and
even poor in certain pathologies such as breast cancer. Thus, it is imperative to understand the role of
factors affecting its responsiveness. In this review, we provide an overview on the involvement of
sociological factors, lifestyles and metabolic disorders in modulating the CPI response in patients
from multiple malignancies. Lifestyle habits including exercise, and diet promoted therapeutic
responsiveness while alcohol consumption mitigated the CPI effect by decreasing mutational burden
and hampering antigen presentation by dendritic cells. Metabolic disorder such as obesity was
recognized to enhance the PD-1 expression while diabetes and hypertension were consequences of
CPI therapy rather than causes. Among the sociologic factors, sex and race positively influenced
the CPI effectiveness on account of increased effector T cell activity and increased PD-1 expression
while ageing impaired CPI responsiveness by decreasing functional T cell and increased toxicity.
The combined effect of these factors was observed for obesity and gender, in which obese males had
the most significant effect of CPI. Therefore these variables should be carefully considered before
treating patients with CPI for optimal treatment outcome.

Keywords: immunotherapy; anti PD-L1; anti-CTLA; diet; obesity; diabetes; circadian rhythms

1. Introduction

T cells are the main effector cells for anti-tumor defense. T cell immune checkpoints are
the regulators of T cell functionality and play a crucial role in maintaining peripheral tolerance and
to prevent autoimmunity. T cell responsiveness is guided by the balance between co-stimulatory

Cancers 2020, 12, 2983; doi:10.3390/cancers12102983 www.mdpi.com/journal/cancers

http://www.mdpi.com/journal/cancers
http://www.mdpi.com
https://orcid.org/0000-0001-5184-8624
http://www.mdpi.com/2072-6694/12/10/2983?type=check_update&version=1
http://dx.doi.org/10.3390/cancers12102983
http://www.mdpi.com/journal/cancers


Cancers 2020, 12, 2983 2 of 28

and co-inhibitory pathways. Immune checkpoints are co-employed by the tumor cells to escape
the immune surveillance. Checkpoint blockade drugs work by unleashing the T cells to recognize
and kill tumors. At present the most well studied checkpoint factors include Programmed cell death
protein 1 (PD-1), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), Lymphocyte-activation gene 3
(LAG-3), T-cell immunoglobulin and mucin domain-3 (TIM-3) and T cell immunoreceptor with Ig and
ITIM domains (TIGIT) [1,2].

Interactions between molecules expressed by immune- and tumor cells are involved during
the mounting of the inhibitory response. Binding of PD-L1, expressed by cancer cells, to its cognate
receptor PD-1 on T cells is one of such interaction known to deliver an inhibitory signal to T-cells
leading to their dysfunction and exhaustion. Targeting the PD-1/PD-L1 checkpoint, one modality
of checkpoint blockade immunotherapy (CPI), has been an established treatment for many cancers
and has impacted the life expectancy and clinical outcome of many patients. Another CPI in clinical
use targets the binding of CTLA4 to its ligands, expressed by antigen presenting cells. CTLA4 is
expressed by the T cells and is a homologue of the co-stimulatory molecule, CD28. CD28 interacts
with its ligands CD80 and CD86, expressed by antigen presenting cells and promotes costimulatory
signaling. CTLA4 has a higher affinity for CD80 and CD86 than CD28, and its binding antagonizes
the natural interaction to mediate the negative regulation of T cell activation function. In addition to
CTLA, TIM3 and LAG3 are predominantly expressed by immune cells including CD8+, CD4+ and Treg
cells and negatively regulate their proliferation, thus dampening the immunological response [3,4]
(Table 1). Together, engagement of these inhibitory receptors leads to the downstream release of
cytokines, hampering the neutralization of cancer cells by the immune system [5]. Therefore, CPI
works to unleash the inhibition from functional immune cells to regain its anti-tumor activity.

Table 1. Key genes involved in checkpoint blockade immunotherapy (CPI) responsiveness.

Gene Expression Profile Modulators Role in CPI Responsiveness Predictive vs.
Prognostic Value Reference

PD-1 TIL PTEN, PI3K-Akt
pathway, STAT3 Inhibits T cell proliferation Predictive and

prognostic [6,7]

PD-L1
Tumor cells

Macrophage,
stroma cel

MAPK and PI3K or
Akt pathways

On interaction with PD-1
inhibits T cell proliferation

Predictive and
prognostic [8,9]

TIM3
CD4, CD8 memory

T cells, DC, NK
cells, monocytes

IL-2, TNF-α, IFN-γ

Promotes T cell
dysfunction/exhaustion,

Tim3+ Tregs correlated with
metastasis disease

Prognostic [10,11]

LAG-3 CD4, CD8 T cells,
NK cells, Treg cells IL-10 and TGF-β1

Promotes Treg mediated
suppression Inhibits effector T

cell proliferation
Prognostic [12,13]

TIGIT Tregs, TILs (CD8),
DCs IFN-γ and IL-17

Suppresses anti-tumor
immunity by dampening CD8

T cell function via Tregs
Prognostic [14,15]

CTLA Tregs, CD4 T cells IL-2, PI3K pathway,
Bcl-XL

Mediates immunosuppressive
signaling by blocking co

stimulatory CD28 receptor,
inhibits T cell activation

Predictive and
prognostic [16,17]

In addition to T cells, other immune cells such as natural killer (NK) cells, macrophages and
neutrophils also express checkpoint inhibitor proteins. NK cells are cytotoxic innate immune cells
and they do not express antigen specific cell surface receptors [18]. Importantly, NK cells express
LAG-3, TIM-3, PD-1 and TIGIT immunomodulatory receptors [19]. In glioblastoma, blockade of
the TIGIT receptor, in combination with PD-1/PD-L1 inhibitors was shown to augment the anti-tumor
effect of CPI treatment [20]. Another study demonstrated that interaction between tumor PD-L1 with
PD-1 expressed by NK cells inhibits the antitumor responses of NK cells, leading to aggressive tumor
growth [21]. Tumor associated macrophages (TAM) are the most abundant immune cells and are
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known to differentially regulate tumor progression [22,23]. TAM also express both PD-1 and PD-L1
on their cell surface [24]. The tumor supportive “M2” macrophages express higher levels of PD-1 as
compared with tumor suppressive “M1” macrophages. The PD-1 positive macrophages were also
shown to express less MHC-II and have compromised phagocytosis [25]. In a colon cancer model, it was
demonstrated that in tumors treated with antibodies targeting PD-1 receptors, anti-PD-1 antibodies that
are bound to T-cells were acquired by PD-1 negative TAMs. This acquisition of anti-PD-1 antibodies
was dependent on the Fcγ-receptors (FcγRs) on macrophages that interacted with the Fc domain of
the anti-PD1 antibodies. Blockade of FcγRs enhanced the effect of immunotherapy by prolonging
the binding between PD-1 antibody and CD-8 T cells [26]. In addition, we have previously shown
that M2 microglia, macrophages of the brain, upregulated the PD-L1 expression and promoted breast
cancer brain metastasis by immune suppression [27]. Another immune cell that potentially effects
the checkpoint therapy response is the neutrophil. Neutrophils present in the tumor microenvironment
are known to express PD-L1 and suppress the T cell response. Furthermore, the cytotoxic effect of T cells
was shown to be decreased by PD-L1-expressing neutrophils [28]. Similarly, peritumoral neutrophils
are also reported to negatively regulate adaptive immunity through the PD-1/PD-L1 axis [29].

The clinical revolution of using CPI to treat cancer started with the approval of CTLA4 antibody,
ipilimumab, by the United States Food and Drugs Administration (FDA) to treat metastatic melanoma
patients [30,31]. Later, the monoclonal antibodies targeting the PD-1-PDL-1 pathway were also approved
to treat a range of malignancies, such as lung, renal cell, liver and bladder cancers [32]. Particularly,
ipilimumab—an antibody targeting the CTLA4 antigen, has been shown to significantly improve
the survival outcome in patients with metastatic melanoma [31]. Ipilimumab treatment was observed
to increase survival of melanoma patients by 20%, while the objective response rate in non-small cell
lung cancer (NSCLC) was noted to be 19.4% after pembrolizumab administration [31,33]. Similarly,
pembrolizumab and nivolumab, antibodies targeting PD1 are used as the first line therapy for
non-small cell lung cancer (NSCLC). Akin to this, the CPI treatment has also shown to be beneficial
for patients with other cancers types including head and neck squamous cell carcinoma (HNSCC),
breast cancer and Hodgkin lymphoma [34,35]. Despite these promising outcomes of CPI therapy,
not all cancer types respond equally to the treatment. For instance, although nivolumab showed
promising outcomes in NSCLC patients in the phase I/II clinical trials, the phase III trial did not establish
clinical efficacy of this treatment [36,37]. The overall response rate ranged from 5 to 30% for patients
with triple negative breast cancer (TNBC) [38], while up to 40–45% of NSCLC patients responded to
the treatment [33,39,40]. In addition, the metastatic form of castration-resistant prostate cancer and
pancreatic ductal adenocarcinoma are mostly resistant to CPI therapy [41]. Furthermore, the outcome
was also dependent upon the expression of PD-L1 by the tumor cells. One study in melanoma patients,
showed that the 72% of patients who expressed PD-L1 responded to pembrolizumab treatment, while
the response rate was lower (54%) in patients who did not express PD-L1 [40,42]. Similarly, two
other studies on NSCLC patients demonstrated that the objective response rate to pembrolizumab
treatment is higher (~45%) for PD-L1 positive patients [33,43]. These studies also indicate that
pembrolizumab treatment has manageable side effects, and prior monitoring of the NSCLC patients for
PD-L1 expression can be a judicious approach in deciding the use of the PD1/PD-L1 blocking antibody.
On the other hand, Brahmer et al., reported that nivolumab treatment is devoid of cytotoxic effects and
its efficacy was evident in squamous cell carcinoma patients with or without PD-L1 expression [44].

There is scope for treating patients with a combination of antibodies targeting multiple checkpoints.
Concurrent combination of nivolumab targeting PD-1 and ipilimumab targeting CTLA-4 was reported
to regress advanced melanoma by 80%. Other ongoing clinical trials using the combination of PD-1
or PDL-1 and CTLA-4 blockade have also shown significant improvements in outcome, highlighting
combination treatment as a clinically efficacious approach [6,45–47]. The choice to use a particular
mono- or combination therapy should be largely guided by examining the expression of biomarkers,
such as PD-L1, that are indicative of better responses to CPI or by identifying factors that influence
the efficacy of the CPI dose. Emerging evidence supports the contribution of cofounding factors both
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directly and indirectly affecting the immunotherapy outcomes. The aim of the present review is to
provide an overall picture on the role of sociological factors, lifestyle habits and preexisting metabolic
disorders (Figure 1) in modulating the CPI responsiveness. This in turn could help to understand
the involvement of these stratifying factors on the interface of tumor–T cell interactions to harvest
maximum therapeutic benefit in a clinical setting.
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2. Roles of Sociological Factors and Sex/Gender in CPI Efficacy

Social differences can serve as disease and treatment modifiers [48]. Many drug interactions are
previously acknowledged to be different in sociological variables [49]. In this section, we stratify
the role of sex/gender, race and ageing on the outcomes of CPI.

2.1. Race

Race refers to genetic and phenotypic differences of humans. Accumulating evidence has shown
that race differentially regulates the outcome of CPI therapy (Table 2). People of African origin are
reported to have high risk of certain malignancies as compared to Asian Americans and Caucasians [50].
The high risk in the African population was primarily attributed to obesity-induced inflammation [51].
In addition to tumor incidence, race is known to impact the overall mutation rates in genes that
play a pivotal role in CPI responsiveness. Particularly, the rates of EGFR and KRAS mutations are
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affected by the race of patients in NSCLC. EGFR mutations are more commonly found in Asian
populations (32–57%) than other races, while African populations show a greater genetic diversity [52].
In a recent study by Sugiyama et al., the tumor microenvironment (TME) of EGFR mutated LUADs
showed increased Treg infiltration, and a combination treatment of anti PD-1 with EGFR tyrosine
kinase inhibitor erlotinib showed better anti-tumor effects [53]. On the other hand, Kras mutations
in NSCLC are correlated with: increased PD-L1 expression in tumors, tumor mutational burden and
TIL infiltration, resulting in superior response to anti-PD-L1/PD-1 treatment [54]. One study reported
that African American (AA) patients with NSCLC respond better and display improved survival when
treated with Nivolumab, although it was performed in a limited number of patients. High mutation
burden in AA patients was attributed to the better responsiveness [55]. Another study by Nishino et
al. compared the effect of nivolumab or pembrolizumab monotherapy in NSCLC patients from three
racial-background - Asian, white and black [56]. They detected that 27 out of 143 white, zero out of
six Asian, and one out of eight black patients responded to nivolumab or pembrolizumab and there
was no significant difference in the pharmacokinetics of CPI therapeutic agents among the patients
of different race. Similarly, an independent study found that the overall response rate was higher
in Asiatic populations when compared with Caucasian patients [57,58]. Asiatic populations were
shown to suffer from adverse effects of the CPI therapy, such as pneumonitis or pulmonary toxicity and
hepatotoxicity [59]. On the basis of this evidence, surrogate mutations associated with racial differences
may tailor the TME, concomitantly affecting the CPI efficacy. Therefore, it is essential to study CPI
responsiveness in clinical trials specifically based on the race of patients to accurately determine its
effectiveness (Figure 1).

Table 2. Effect of sociological factors in modulating CPI response.

Factor
Influencing

Effect on Check
Point Inhibitor

Treatment

Mechanism
Involved Cancer Type HR(CI), p-Value of CPI

Response * Reference

Sex/gender

No correlation –

Advanced
Squamous-Cell

Non-Small-Cell Lung
Cancer

– [43]

For anti CTLA
treatment PFS

longer in males

Men have high
CD8 T cells
expression

NSCLC

HR Male: 0.77 (95% CI
0.63–0.94), p = 0.012

HR Female:0.89 (95% CI
0.76–1.05) p = 0.16

[60]

Longer survival
in females for anti
CTLA treatment

– Melanoma HR Female: 0.80 (95% CI
0.68–0.94) p = 0.006 [60]

No correlation –

Advanced gastric and
gastroesophageal

junction
adenocarcinoma

– [61]

Race
AA have high

response rate to
Nivolumab

AA have higher
mutational burden Lung cancer – [55]

Ageing

Adverse effects
in elders

in melanoma
Not clear Melanoma,

Metastatic melanoma – [62,63]

No correlation – NSCLC – [64]

Elders have less
toxicity of CPI

therapy
Not clear

Melanoma, non-small
cell lung cancer,

and renal cell
carcinoma

– [65,66]

* Hazard Ratio (HR) calculated by comparing CPI treated and untreated group. AA: African American; NSCLC:
non-small cell lung cancer

2.2. Ageing

Cancer occurrence is relatively higher in older individuals. Reports suggest that >40% of
the patients participating in the clinical trials are older than 65 years and this percentage is even higher
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for NSCLC patients (>60%) [67]. Older patients in the clinical trials are also underrepresented due
to the toxicity associated with the treatment and most trials exclude patients with relatively poor
responses [39,68–72]. Friedman et al. showed that patients over 80 years receiving CPI therapy showed
significant side effects. Asymptomatic secretion of lipase was observed in 50% of patients administered
with a combination of ipilimumab and nivolumab. Nausea, vomiting and diarrhea were most common
symptoms in the nivolumab monotherapy group while a combination of ipilimumab and nivolumab
prolonged survival, as compared with ipilimumab in this age group [63]. Similarly, Betof et al., have
reported that 43% of the melanoma patients were identified with immune mediated toxicities, 9.8%
of patients suffered colitis and 10% showed endocrine toxicity after the ipilimumab treatment [62].
The adverse effects were comparable in younger and older populations. Even though a few cases of
older patients were noted with hypophysitis and thyroiditis, this did not reach the statistical significance.
Overall survival in patients with >50 years of age in response to anti PD-1 immunotherapy was
22.9 months while it was 24.3 months for patients older than 75 years. Although there was a difference
in overall survival among age groups, a multivariate cox regression model indicated these observations
as statistically insignificant [62].

Many components of the immune system are misbalanced in older adults [73], and ageing
is associated with decline in immune functions. T cells in older population show an impaired
immunological signature, termed as immunosenescence, which contributes to a less efficacious
response to immunotherapy. Immunosenescence is marked by decreased proliferation, effector
functions, cytotoxicity of T cells and reduced capacity in responding to local antigen presenting cells by
T cells, and increased accumulation of Treg cells, which inhibits the immune response and effector T cell
activation [74]. Studies in older adults have shown that the CD8 T cell population declines partly due to
loss of lymphopoietic stem cells [74,75]. Additionally, ageing is marked by upregulation of checkpoint
marker proteins, such as Tim-3 and PD-1, and by a decrease in intracellular signaling through CD28
and IL-2 that are important for T cell activation [34]. Nishijima et al. reported that in the absence of
functional T cell signaling, the CPI therapy finds itself with blunt ends in older adults. Patients with age
>75 years did not demonstrate an improved survival rate when treated with the anti PD-1 antibody [76].
The failure of treatment is partly attributed to immunosenescence. Patients <75 years harnessed equal
benefits as young adults. It appears that there is a need to decide the functional status of immune
cells, such as CD8 T cells when treating the older patients with CPI [76]. At the functional level,
T cells are marked by the upregulation of inhibitory receptors including PD-1 and Tim3, and also by
the deficiency of the CD-28 co-stimulator and intracellular signaling necessary for T cell activation [77].
Ageing is also reported to diminish cytokine IL-2 production and its signaling, which plays a pivotal
role in T cell activation [34]. Similarly, the secretion of another cytokine, IL-12, by dendritic cells was
reduced in older adults which caused decreased INF-gamma secretion by T cells thereby impeding its
cytotoxic activity [78]. Although the number of Naïve T cells was decreased in older cohorts, possibly
due to reduction in the size of the thymus [79], the number of terminally differentiated CD8 T cell
populations was found to be increased in lung cancer patients [80]. The frequency of Treg cells was
also significantly increased in older people with HNSCC. As Treg cells induces an immunosuppressive
microenvironment, tumor-associated immune suppression was shown to be less pronounced in these
patients [81]. However, more studies are warranted in this line to precisely examine the metabolic
changes in the tumor microenvironment—influenced by age—which in turn could influence the CPI
efficacy (Figure 2).
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2.3. Sex/Gender

Sex is a biological variable known to affect the innate and adaptive immune responses throughout
the life of individuals. The immunological responses are variably guided by the age, reproductive
status of individuals, secretion of sex hormones and gender [82]. Women, in general, respond more
adequately to infections and vaccinations, as their innate immune system component is more robust
than in males [82–84]. In the context of cancer, studies have shown that the mortality rates of men with
melanoma, bladder and lung cancers are two-fold higher than women [85]. Indeed, sex hormones
are known to regulate the expression of the PD-1 receptor on the surface of Treg cells. Polanczyk et
al. investigated the influence of endogenous estrogen on PD-1 expression by using estrogen receptor
knockout mice (ERKO). The PD-1 expression was mostly seen in the Tregs of wild type mice. However,
the PD-1 level in Tregs of ERKO mice was significantly reduced, thus postulating that estrogen receptor
signaling controls PD-1 expression. Accordingly, Treg functional activity was restored in PD-1 knockout
mice when they were provided externally with estrogen. This study further showed that extracellular
E2 enhanced estrogen receptor expression and promoted the expression of FOXP3, a prominent marker
defining Treg cells [86,87]. The estrogen receptor (ER) is also known to be expressed by cytotoxic T cells
but not by helper T cells [88]. On similar note, ER expression was observed to be cell-type dependent,
i.e., ER-α is present on monocytes while ER-β is predominant in macrophages [89]. ER is also known
to influence the development of dendritic cells (DC). ER-α and E2 are noted to be indispensable for
the Irf4 dependent type I INF production by plasmacytoid DC (pDC), a distinct lineage of conventional
DCs known to produce proinflammatory cytokines in abundance. pDCs from postmenopausal women
exhibit a reduced TLR-7 response which was in part rescued by external ER supplement [90]. However,
the effect of ER signaling in these immune cells and their role in CPI treatment response is yet to be
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studied. As hormone signaling is also known to affect other cancer types, such as prostate, endometrial,
ovarian and colon cancer, it is imperative to determine the hormone response profile of individual
tumor in the context of CPI therapy.

The existing literature draws conflicting conclusions on the selective benefit of sex
in immunotherapy (Table 2). Fabio et al. summarized the published clinical data from 20 clinical trial
consisting of 11,000 patients administered with anti-PD1 or anti-CTLA-4 therapy. They found that
male patients derived a greater benefit of these therapies as compared to female patients. This study
included 67% of males and 33% of females. The inclusion of more women in clinical trials was therefore
suggested to extend the conclusions to female counterparts [91]. On the contrary, Wallis CJD et al.
studied 23 randomized trials with 9322 men and 4399 female patients with advanced cancers of
melanoma, NSCLC, head and neck squamous cell carcinoma (HNSC) and small cell lung carcinoma
(SCLC) and concluded that both male and female patients derive equal benefit from the CPI therapy
and there was no bias on the basis of sex [91,92]. On account of the existing dimorphism in immune
responses on the basis of sexual differences, it is essential to conduct longitudinal mechanistic studies
to outline the significant impact of sex hormone signaling on the functional profile of immune cells
in TME and CPI efficacy (Figure 1).

Together, considering the fact that the difference in efficacy of the CPI response in young and aged
populations is influenced by the functional status of T cells, presence of immune cells, such as Treg
cells in the TME, and the toxicity profile, it is therefore necessary to carefully tailor the immunotherapy
treatment for aged patients to obtain maximum therapeutic benefit.

3. Influence of Lifestyle on Outcome of CPI

Health is influenced by lifestyle habits [93]. In this section, we have summarized how lifestyle
habits, such as smoking, alcohol consumption, diet and exercise modulate the human immune system
directly or indirectly and thus have an effect on CPI efficacy (Table 3).
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Table 3. Influence of lifestyle changes on CPI response.

Factor Influencing Effect on Check Point
Inhibitor Treatment Mechanism Involved Cancer Type HR(CI), p-Value of CPI

Response * Reference

Exercise
Improved response to

immunotherapy
Exercise lowers the expression of PD-1 on

T cells mobilizes more CD8 t cells Blood cancer – [94]

Low symptom burden Not clear Metastatic melanoma – [95]

Alcohol Consumption

Improved response to
immunotherapy

High intratumoral T cell infiltrate,
overexpression of PD-L1 in never drinkers Oral squamous cell carcinoma – [96]

No significant correlation
between alcohol consumption

and PD-L1 expression
– Oral squamous cell carcinoma HR 1.2 (95% CI 0.91–1.71)

p = 0.15 [97]

Diet
Enhanced immunotherapy

effect

Enhanced anti-tumor capacity of TAM Prostate and renal cell carcinoma – [98]

Gut microbiome modifies host immunity Melanoma – [99]

High LAG-3 induced by IL-17 Gastric cancer – [100]

Smoking

Controversial reports in HNSC
and LUSC

Increased mutation rate. Decreased
immune cell infiltration and poorer
survival in HNSC, reverse in LUSC

head and neck (HNSC) and lung
(LUSC) squamous cell carcinoma

LUSC: HR 1.02 (95% CI
0.71–1.46) p = 0.92 [101]

High responsiveness High mutation rate Lung adenocarcinoma, NSCLC

NSCLC: HR 0.86(p = 0.61) [58]

NSCLC: HR 0.81 (95% CI
0.27–2.43) p = 0.71 [102]

NSCLC: HR 0.45 (95% CI
0.22–0.92) p = 0.02 [103]

NSCLC: HR 0.71 (95% CI
0.63–0.82) p < 0.00001 [104]

NSCLC: HR 0.15 (95% CI:
0.06–0.39) p = 0.0001 [105]

Circadian rhythms No direct evidence Decreased Bimal-1 causes high PD-L1
expression Not reported in cancer condition – [106]

Psyco-emotional
changes No direct evidence Depression and stress decreases

proliferation, increases apoptosis in T cells Not reported in cancer condition – [107]

* Hazard ratio (HR) calculated by comparing the presence and absence of influencing factor.
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3.1. Smoking

Smoking is chronicled as the most prevalent habit among adults in the USA and is a robust risk
factor for lung cancer development. Around 90% of lung cancer deaths are linked to previous smoking
history [108]. Tobacco smoking is also a known risk factor for 16 other cancer types [109]. Tobacco
smoking is conducive for tumor growth by inducing mutations in the tumor, modifying the tumor
microenvironment and promoting pro or anti-inflammatory signaling [110–112]. Similar to obesity,
several clinical findings in lung cancer have shown that patients with previous smoking history are
more responsive to CPI therapy (Table 3). This improvement in outcome is mainly attributed to
mutations in DNA, induced by carcinogens present in smoke, eliciting increased neoantigen burden
in tumors leading to immunological recognition of tumor [113]. Furthermore, the faulty DNA damage
repair pathway, which is frequently spotted in patients with smoking history, is associated with
a higher mutational burden and neoantigen presentation in tumor cells [105,113]. Thus, the genomic
landscape of a lung tumor is modified by tobacco smoking [36,105]. While the presence of neoantigens
attracts T cells to the tumor, it also elevates PDL-1 expression in tumor cells, yielding improved
responsiveness to CPI [36]. In addition to the increase in neoantigens, smoking alters the immune
microenvironment of tumors in anatomic site dependent manner. In head and neck squamous cell
carcinoma (HNSC), smoking creates an immunosuppressive microenvironment, as evidenced by
the cytolytic score, an enriched interferon-γ (IFN-γ) signaling signature calculated from the RNA
sequencing data [101,114]. In contrast, pro-inflammatory signaling is triggered by smoking in lung
cancer [101]. One interesting study by Desrichard A. et al., indicated that the mutational burden and
immune microenvironment of squamous cell carcinoma in smokers depends upon the anatomic site of
the tumor, and proposed studying a few additional factors, such as PD-L1 expression and the T cell
inflamed microenvironment, to treat patients with a smoking history [101]. These findings indicated
that smoking impacts the mutational landscape and immune environment to alter the response to CPI
treatment. Thus, smoking affects the CPI responsiveness by either changing the mutational burden or
by altering the immunomodulatory balance of the TME [101].

The immune microenvironment of the tumor is widely classified into three subtypes: immune
desert, inflamed and immune excluded types [115]. Immune desert tumors are marked by immunologic
ignorance arising from either the absence of antigens or defects in antigen presentation by the loss
of MHC I, B2 microglobulin or the loss of TAP-1 and TAP-2, which leads to death of functional
T cells in the tumor stroma [116,117]. In such a non-inflamed tumor microenvironment, for example
in melanoma and epithelial cancer with no functional CD8 T cells, tumors do not respond well to anti
PD-1/PD-L1 immunotherapy [117]. In an immune inflamed tumor microenvironment, the tumor cells
are in close proximity with the immune cells, such as monocytes, CD8/CD4 T cells and cells of myeloid
origin and proinflammatory and effector cytokines [117,118]. Tumor types that exhibit an immune
inflamed microenvironment include non-small cell lung, renal and rectal carcinoma. These tumors are
infiltrated by antitumor T cells leading to increase in efficacy of anti PD-1/PD-L-1 therapy [118,119].
On the other hand, in immune excluded tumors, the immune cells do not reach the tumor as they
are trapped in the stroma region. CPI administration can activate the CD8 T cells but the clinical
response is uncommon as T cells are unable to infiltrate to the tumor [115,120]. It is to be noted,
that smoking status differentially modulates the response of patients to CPI treatment. In a phase
III randomized control trial with 1981 NSCLC patients, PD-1 inhibitors worked more efficaciously
in patients with a smoking history while nonsmoking patients showed no survival benefit [121].
A similar meta-analysis in NSCLC, urothelial cancer and HNSCC showed that smokers benefited from
anti PD-1/PD-L1 mono or combination therapy while nonsmokers benefitted from a combination of
chemo- and immunotherapy [122]. One possible mechanism behind the increase in response to CPI
treatment in smokers is related to an increase in PD-L1 expression by dendritic cells. Kerdidani D.
et al., have shown that dendritic cells in the tumor environment of emphysema upregulated PD-L1
expression in smokers [123]. This increase in PD-L1 was mediated by oxidative stress created by
smoking in the tumor microenvironment [123]. Other such evidence indicates that aryl hydrocarbon
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receptor (AhR) signaling, promoted by cigarette smoke, induced PD-L1 expression in lung epithelial
cells [124]. Eighty one percent of patients with high AhR signaling responded well to anti PD-1
antibody pembrolizumab, while 75% patients with progressive disease exhibited low AhR in tumor
tissues [124]. Similarly, immunomodulatory components of cigarette smoke can influence the tumor
microenvironment and indirectly affect the CPI efficacy [101]. Nicotine is reported to induce MAP
kinase channeled Cox2 expression which can lead to an inflammatory TME, thus indirectly affecting
the functional status of immune cells and ultimately the efficacy of CPI [125]. On the other hand,
crosstalk between smoking and HPV infection yielded a favorable outcome in HNSCC patients who
received the anti PD-1/PD-L1 monotherapy. Smokers were found to be have HPV positive HNSCC,
while tumors in nonsmokers were HPV negative [126]. Nicotine exposure is detected to decrease body
weight by suppressing appetite, although the underlying mechanisms are not clear [127]. A study
in mice has revealed that on exposure to cigarette smoke for 4 weeks, animals displayed reduced leptin
levels, food intake, body fat and mass [128]. Leptin levels were previously observed to induce PD-1
expression and improve CPI efficacy [129]. Therefore, one can speculate that nicotine exposure in obese
patients may yield better responsiveness. However, the pathophysiological mechanisms still remain
unknown. Obviously, it is necessary to further dissect the effect of cigarette smoking on immune cells
in the TME, leading to the alteration of CPI efficacy (Figure 1).

3.2. Alcohol Consumption

Approximately, 7% of patients with head and neck squamous cell carcinoma have a history
of alcohol consumption and the adverse effect of alcohol is dependent on the age of the patient.
In head and neck squamous cell carcinoma, the immune microenvironment of never smokers, never
drinkers was found to be enriched with the PD-L1 and CD8 T cell infiltrate [96]. On the other
hand, a low mutational burden was reported in head and neck cancer in patients with smoking and
drinking history and the CPI treatment was functional in tumors with low PD-L1 expression [130,131].
Alcohol consumption is known to impact the innate and adaptive arms of the immune response.
Primarily, alcohol causes a breach of the tight junctions in the gastrointestinal tract causing a leak
in bacterial components, such as lipopolysaccharides into the blood stream [132]. Once in circulation,
it activates endothelial cells setting off chronic inflammatory reactions [133,134]. Alcohol suppresses
the recruitment of cells of the innate immune response, such as leukocytes [132], granulocytes [135],
leading to aggravated bacterial infections. Alcohol abuse also causes a reduction in the phagocytosis
activity of macrophages by altering the surface receptors required for adherence and production of
reactive oxygen species necessary for pathogen killing [136]. Thus, consumption of alcohol is connected
to the intricate functions multiple immune cells and molecules involved in CPI therapy (Table 3).

Alcohol also impairs dendritic cell number by interfering with their differentiation and ability to
stimulate T cells [137]. In addition, alcohol suppresses the ability of antigen presentation of dendritic
cells by reducing the expression of CD80 and CD86 cell surface receptors that are essential for antigen
presentation to T cells [138]. Alcohol also decreases stimulation of naïve CD4 T cells to INF gamma
producing Th1 T cells by reducing IL-12 production by dendritic cells [134]. Chronic alcohol intake also
enhances the production of TNF alpha, a well-studied proinflammatory cytokine [139], while acute
alcohol exposure is found to promote opposite effects, i.e., suppresses the cytokine and chemokine
response [140]. CD8 T cells in patients with alcoholic hepatitis were found to have reduced cytotoxic
functions and reduced activation [141]. Mechanistically, CD8 T cells in patients with alcoholic liver
cirrhosis were found to have decreased function due to the absence of CD28 co-stimulatory molecule
and decreased responsiveness to exogenous IL-2 due to impairment of IL-2 binding receptor [142].
Although there is a scarcity of reports showing the direct impact of alcohol consumption on CPI
efficacy, T cells in patients with acute alcoholic hepatitis were shown to have higher expression of PD-1,
PD-L1, Tim-3 and galaction-9 levels as compared with T cells from non-alcoholic individuals [143].
This may help in a way to extrapolate the possible effects of alcohol consumption in the efficacy of
the CPI response. In light of the existing evidence, more studies are needed to establish the impact of
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alcohol consumption on the expression of immune checkpoint proteins such as PD-L1, which to a large
extent dictate the CPI efficacy (Figure 1).

3.3. Diet

Appropriate macronutrients, micronutrients, fibers and energy sources are essential to build
a healthy immune system [144]. Poor or inadequate nutrition often results in compromised immune
responses which results in a predisposition to infections [145]. Consumption of fruit juices and hyper
caloric breakfast is reported to result in a decrease in inflammatory cytokine IL-17 [146]. Further, IL-10
levels were found to be increased in a group of children who followed the Mediterranean diet while
IL-17 was increased in saliva of children who had junk food. IL-10 cytokine is predominantly produced
by FOX P and Tregs [147,148]. Baseline levels of IL-17 are reported to predict toxicity in melanoma
patients treated with ipilimumab and develop colitis/diarrhea during the course of treatment. The same
study also reported that high baseline IL-10 levels were correlated with tumor relapse [149]. Yamazaki
N et al. noted that in melanoma patients treated with anti PD-1 (nivolumab), serum IL-10 levels were
higher in patients with an objective response rate [150]. TIGIT has been shown to inhibit the T cell
responses by inhibiting dendritic cell maturation and inducing the release of immunosuppressive
cytokine IL-10 [14,15]. IL-10 has been shown to restrict T cell proliferation by reducing the INF gamma
and IL-2 synthesis, thereby inhibiting proliferative and cytokine responses in T cells [151]. IL-17 is
reported to be secreted by the LAG-3 positive T cells [152] and IL-17 mRNA expression is positively
correlated with LAG-3 T cells in gastric cancer [100]. Thus, patients with IL-17 overexpression may
benefited more from the treatment of LAG-3 inhibitors. One study showed that dietary methionine
restriction plays an important role in reprogramming the tumor-associated macrophage towards
the M1 functional phenotype, through the mTOR pathway, making them more tumoricidal. It leads
to enhancing the effect of the anti PD-1 immunotherapy response in prostate cancer [98]. At present,
there is a scarcity of literature linking the role of dietary intake with CPI response. However, certain
dietary components such as flavonols [153], stilbenes [154] are reported to reduce inflammation by
suppressing the NFkB activity. Isoflavones as genistein is known to function as an antioxidant and
suppress the NFKB activity when supplemented with arachidonic acid in the diet [155]. Inflammation
is regarded as an important player in modulating the TME and ultimately affecting the CPI efficacy
(Table 3), therefore, it would be worth investigating to extrapolate the presence of inflammatory
component to the efficacy of CPI therapy.

The human gut microbiome is composed of various microorganisms and reported to play
an important role in human health and disease [156]. Gut microbes are reported to affect the immune
cell profile of the local mucosal and peripheral immune system [157]. Germ free (GF) mice are found
to have smaller mesenteric lymph nodes (MLN), decreased number of plasma cells, CD4 T cells and
lowered IgG production, which collectively impairs the intestinal barrier function [158]. In addition,
commensal bacteria are known to impact CD4 T cells and the maintenance of the Treg/Th17 balance.
GF mice are also characterized with increased Treg cells [159]. Additionally, bacterial metabolites are
reported to stimulate dendritic cell phagocytosis in bone marrow [160]. Multiple studies document
that the gut microbiome profoundly impacts the immunotherapy response in a range of malignancies,
such as melanoma, hematologic cancer NSCLC, renal cell carcinoma [161]. Experimental data
in a mouse sarcoma model suggest that B. fragilis (Bf) enhances the anti-CTLA-4 efficacy by promoting
cross reactivity of T cells between bacterial and tumor antigens [99]. Fecal microbial transfer from
the human melanoma responder undergoing anti-CTLA treatment to germ free mouse enriched Bf
and its abundance was negatively correlated with tumor size in response to anti-CTLA treatment [99].
In melanoma, Bifidobacterium supplement was reported to enhance tumor infiltration and INF-γ
production by CD8 T cells [162]. It was further noted to enhance anti-PD1 efficacy by activating
intratumoral DC cells [162]. Studies in NSCLC and renal cell carcinoma show that the bacterial
species, Akkermansia muciniphila, was enriched in stool samples of patients receiving anti PD-1
immunotherapy treatment [163]. Oral supplementation of Akkermansia muciniphila was noted to
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restore the anti PD-1 efficacy by enhancing IL-2 secretion and CCR9+CXCR3+CD4+ T lymphocytes
in mouse tumors [163]. Apart from the role in enhancing CPI therapy by influencing the activity of
immune cells, gut bacteria have also been shown to mitigate the immunotherapy treatment associated
toxicity. For instance, the presence of bacteria from the Bacteroidetes phylum in stool samples of
melanoma patients receiving anti-CTLA4 CPI, were less prone to treatment induced colitis [164].
Further, the impact of bacteria on the efficacy of the CPI regime is complicated by the mechanistic
elements associated with bacterial species diversity and interaction with host and functional attributes
should be weighed with caution. For instance, there could be variation at the strain level in bacteria of
the same species, thus yielding divergence in the immunological impact on host [165]. In addition,
there is a need to study the variation in the composition of bacterial diversity over the course of
treatment and pathologic state of cancer progression to draw a meaningful inference for personalized
cancer therapy (Figure 3).
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3.4. Exercise

Exercise is the supportive care provided for the cancer patients to maintain their wellbeing.
Such adjuvant approaches are noted to reduce the side effects of CPI treatment and help in fatigue
management [35,166,167]. Exercise is conducive to maintain good health in cancer patients by enhancing
the self-efficacy and wellbeing [168]. Simpson et al. have reported that exercise promotes expansion
of tumor targeting T and NK cells in healthy donors and the T cells isolated from exercise-primed
individuals were better suited for ex vivo expansion [94] (Figure 1). Additionally, exercise was induced
to enrich the hematopoietic stem cells (HSC) in the blood [94]. This evidence shows the impact of
exercise on the expansion and activity of immune cells, which may have a crucial impact on CPI
effectiveness. However, more direct mechanistic evidences are required to justify the role of exercise
in enhancing the CPI responsiveness (Table 3).

3.5. Circadian Rhythms

The circadian clock or rhythm is an internal timing system used by organisms [169]. In mammals,
the superchiasmatic nucleus (SCN) in the hypothalamus works as a pacemaker regulating the peripheral
clocks in cells [170,171]. It is well established that intrinsic timings dictated by circadian rhythms
regulate the functional aspects of the innate and adaptive immune system cells [172]. This temporal
gating modulates a range of immunological functions such as autoimmune diseases induced by T cells
and lymphocyte trafficking in lymph nodes [173]. Wenjun Deng et al., has demonstrated that circadian
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rhythms control the immune checkpoint pathway in septic shock induced by infections. They also
showed that deficiency of Bimal1, which is a core circadian gene, increased lactate production and PKM2
expression which was required to upregulate PD-L1 in a STAT-1 dependent manner. The increased
PD-L1 suppressed apoptosis in T cells promoting exhaustion and immunosuppression [106]. Chloé
C. Nobis et al., have shown that the circadian clock affected the functional response of CD8 T cells
to antigen presentation by dendritic cells, which is a core aspect of the immune response against
pathogens and cancer cells. This early T cell response was shown to impact T cell receptor signaling
such as activation, proliferation and effector functions [174]. Thus, the influence of circadian rhythms
on the functional aspects of T cell development, response to antigens, and trafficking effector functions
is well appreciated in the existing literature [174–176]. Although there is no direct evidence eloquently
describing the mechanistic interplay between circadian rhythms and the immunotherapy response,
based on the existing reports featuring its involvement in modulating the innate and adaptive arms of
immune system, it would be worth deciphering the link in the clinical setting.

3.6. Psycho-Emotional Disturbances

Although there is no direct evidence reporting the impact of immunotherapy on mood, anxiety and
cognitive impairment [177], studies have indicated the role of innate and adaptive immune dysfunction
in the development of depression [178]. Peripheral blood of patients with major depression was
shown to have a significant increase in inflammatory cytokines, such as tumor necrosis factor
(TNF)-alpha, interleukin (IL)-1, IL-6 and other acute phase proteins related to inflammation [107,179].
In addition, depression and stress were shown to decrease proliferation, and promote apoptosis
in T cells. Treg stimulation, by low dose IL-2, is postulated to help a subset of patients with depressive
disorders [107]. Thus, so far there is no convincing direct evidence on the impact of depression and
stress on immunotherapy responsiveness. Further study is warranted to consolidate the involvement
of psychological stress on the outcomes of the immunotherapy response.

4. Effect of Metabolic Disorders on CPI Treatment

Immune reactions and cellular metabolic changes are closely linked. Alternation in cellular
metabolism is evidenced to impact the magnitude of immune responses [180]. In this section, we have
evaluated the direct impact of metabolic diseases such as obesity on the efficacy of the CPI response.
We also discuss the consequences of the CPI response in terms of metabolic changes (Table 4).

Table 4. Effect of metabolic diseases on CPI response.

Factor
Influencing

Effect on Check Point
Inhibitor Treatment Mechanism Involved Cancer Type Reference

Obesity

Improved survival Not clear Melanoma [181]

High response rate
Leptin in obesity cases

promoted PD-1
expression on T cells

Melanoma, colorectal
cancer [13,129]

Acute limiting toxicity
(ALT)

Low distribution of drug,
high exposure Melanoma [182]

Worst Survival Lower creatinine levels
in obese females Melanoma [183]

Diabetes Diabetes is secondary to
immunotherapy

Endocrine toxicity, beta
cell destruction

NSCLC
Melanoma [184–187]

Hypertension Secondary to
immunotherapy

Inhibition of blood
vessel formation

Colorectal cancer,
Melanoma,

Endometrial cancer
[188–191]
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4.1. Obesity

Obesity is one of the most prominent health issues in the United States, and it is globally ranked
as the sixth risk factor for disease predisposition [192]. Body mass index (BMI) is the routinely
used to measure the burden of obesity. According to WHO specification, a BMI ≥ 30 is defined
as being obese [193] and can lead to other comorbidities such as hypertension, heart disease and
cancer [193–195]. Obese patients remain in a chronic inflammatory state as adipose tissues secrete high
levels of adipokines as leptins, TNF-α, IL-6, and IL-8 [196]. This inflammatory state is known to change
the immune landscape by several mechanisms, including a decrease in thymic function, polarization of
macrophage to M2 macrophage and prolonged stimulation from toll like receptors (TLRs) expressed by
antigen presenting cells. Inevitably, obesity also modulates the tumor response to CPI treatment [197].

Several lines of evidence have reported obesity to play a profound role in the response to CPI
treatment. Studies in metastatic melanoma and renal cell carcinoma have shown obese patients survive
significantly longer when treated with CPI [181,198,199]. Similarly, Naik G.S. claimed that obese
patients are at lower risk of disease progression or mortality when treated with anti PD-1 monotherapy
or a combination therapy of anti PD-1 and anti-CTLA-4 [183]. Because BMI does not efficiently indicate
the lean mass or adiposity, this study used serum creatinine as a surrogate marker of muscle mass to
study the response to CPI treatment. Interestingly, they found that the outcome of CPI treatment was
evident only in males, while females with lower creatinine levels did not benefit from CPI treatment,
suggesting a gender based discrepancy to CPI treatment [183]. In contrast, Xu et al. performed
a retrospective meta-analysis of approximately 4200 patients and found that obesity is associated
with better outcome to CPI in both males and females [200]. Another study of melanoma patients
administered with a combination of pembrolizumab and nivolumab, showed lowered distribution of
CPI antibodies in the body circulation of obese individuals resulting in overexposure and excessive
toxicity without any difference in tumor response [201]. The overall, objective response rate was 50%
among the patients with toxicity, which is in agreement with the existing literature [10]. However,
the mechanistic underpinnings associated with this differential response were not demonstrated. One
study has shown that obesity leads to tumor progression by increasing T cell ageing, a phenomenon
in which the cytotoxic function of T-cell is compromised [202]. The T cell dysfunction in obese patients
was driven by PD-1 overexpression [105]. As STAT3 is known to promote PD-1 expression in T-cells,
the increased level of leptin in obese patients elevated PD-1 expression via STAT3 activation. Lack of
leptin signaling was observed to rescue the T cells from exhaustion in diet induced obesity animal
model [203]. Furthermore, this study also showed that high BMI was associated with a better survival
outcome in lung, melanoma and ovarian cancer patients [129]. Moreover, it has been addressed that
pro-inflammatory cytokines increase expression of neoepitopes and activate the T cell response to
tumors [204], suggesting that the CPI response of tumors in obese patients may involve multiple
other factors.

CPI responsiveness for patients with an obesity condition was further influenced by the gender.
Male patients benefited more than females in metastatic melanoma [181]. Estradiol concentration was
found to be higher in obese males than in women due to increased aromatase activity of the adipose
tissue. It was shown to positively influence the survival of patients [205]. Race is also discerned to impact
the BMI score [206]. With the same level of body fat, African Americans tend to have lower BMIs than
Caucasians, while the BMI of Chinese, Indonesians, and Ethiopians was lower than Caucasians [207].
Overall, although the obesity paradox, in the context of CPI response is well established, it is imperative
to obtain deeper mechanistic insights and study the tumor microenvironment under the CPI treatment
in obesity patients (Figure 1).

4.2. Diabetes

An intricate relationship exists between diabetes and cancer as patients with type 2 diabetes are at
higher risk of developing multiple malignancies including breast, endometrial, bladder, pancreatic and
colon cancer [208,209]. On the other hand, patients under insulin or insulin analogues treatment have
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increased risk of colorectal [210] and skin [211] cancer development. A study by Eikawa et al., used
syngeneic melanoma mice model to show that metformin, drug used for lowering the blood glucose
level in diabetic patients, increases T cell infiltration into tumors and exerts antitumor immunity by
directly enhancing T cell functionality and protecting them from exhaustion (154). This study also
found an improved antitumor effect when vaccine or cellular therapy was combined with metformin
treatment [212], raising the possibility that diabetic patients under a metformin regimen may benefit
from CPI therapy. Additionally, diabetes is associated with a higher BMI of the patients, and BMI
positively correlates with IFN-γ production by CD8 T cells [129]. Therefore, it can be speculated that
high BMI diabetic patients may have better outcomes under CPI treatment.

As the CPI treatment (CTLA-4, PD-1 and PD-L1 inhibitor) unleashes the T cell inhibition to destroy
the tumor cells, it is also reported to cause endocrine toxicities including, diabetes, hypothyroidism
or hyperthyroidism [44]. Diabetes onset was prominently noted after the initiation of the CPI
treatment. A study showed that patients who had normal blood glucose levels before treatment
showed insulin deficiency leading to diabetic ketoacidosis and progressing to type I diabetes after
CPI administration [213]. In addition, the median age of patients diagnosed with type I diabetes
under the CPI treatment was much higher than estimated, making the involvement of CPI more
possible [214,215]. It was also observed that knowing the family history of diabetes or autoimmunity
helps to a great extent in predicting the predisposition of the patients to CPI induced diabetes [186].
On a similar note, a few other studies have documented the similar incidences of rapid diabetes
progression [216]. HLA genes were previously shown to be responsible for type I diabetes [217].
Interestingly, Matsumura et al., demonstrated the importance of identifying the HLA genotype before
considering treatment of diabetic patients [218]. It is also imperative to check the status of autoreactive
T cell by clonotype analysis for excluding patients who are at high risk of developing auto inflammatory
toxicities from CPI treatment [218,219]. A close follow-up for the blood glucose history before and
during the treatment is important to predict the onset of diabetes as its progression is much faster while
under the CPI regime. Together, the awareness of physicians and effective management is necessary to
mitigate the unwanted secondary responses (Figure 4).
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4.3. Hypertension

Hypertension is specified as another secondary consequence of CPI therapy. Particularly,
angiogenesis inhibition treatment by bevacizumab, was found to promote hypertension in colorectal
cancer [220,221]. Nitiric oxide mediated contraction of blood vessels leads to excretion of sodium
ions, ultimately causing hypertension [222]. A study has noted that Pembrolizumab, when given
with Linvatinib, often causes hypertension in endometrial cancer [188]. It was further marked that
hypertension was mostly aggravated in grade three endometrial cancer patients as a secondary
consequence [188]. The mechanistic details of underlying signaling and the possible predictive markers
are not well documented in the existing literature. It is therefore necessary to complete a better
risk assessment for the possible prediction of secondary abnormalities such as hypertension before
the actual start of CPI (Figure 4).

5. Conclusions and Future Directions

Checkpoint blockade therapy (CPI) has impacted on extending the quality of life for cancer
patients. It primarily acts to unleash the barriers of the immune system to recognize and destroy
the cancer cells. Presently, the use of CPI is being accelerated in a wide range of cancers. However,
its overall effectiveness remains uneven. The deviations in the overall efficacy of CPI seems to be
determined by an array of factors such as mutational burden, anatomic site of tumor, composition of
the immediate microenvironment, pathways modulating the expression of the CPI ligand–receptor
pair, infiltration of cytotoxic T cells and other immune cells which augment or influence the killing
process. To achieve the optimum efficacy of CPI, it is crucial to review the factors directly or indirectly
impacting its effectiveness to boost its inclusive adequacy. As a step towards this goal, it is essential to
consider into practice the impact of environmental factors or the inherent metabolic diseases pervading
in the patients before prescribing the drug. In line with this idea, we also note secondary effects of
CPI most commonly seen among patients. The existing literature documents incidence of diabetes
and hypertension in the form of endocrine aberrations in response to CPI. The occurrence of these
side effects needs to be closely monitored to enhance the quality of life among patients. Further,
the physiology of patients, the inherent metabolic errors such as obesity and cultivated habits including
smoking, exercise and alcohol consumption impact the CPI effectiveness. In particular, we observe
factors with duel involvement in affecting the CPI response such as diabetes, smoking and ageing.
The context dependent role of these factors may be attributed to the biology of the individual patients,
the nature and anatomic location of the tumor and its unique cellular and metabolic fingerprint.
For metabolic diseases like diabetes, and obesity it remains pivotal to identify the biomarkers for better
responsiveness. At the same time, it is necessary to know the role of these variables in modulating
the TME, which ultimately affects the CPI efficacy. Similarly, markers for better tolerance of CPI
treatment needs to be identified for aged cohort. Furthermore, the individual state of immune system
is influenced by lifestyle habits such as smoking and alcohol consumption that has a role in guiding
the CPI responsiveness. We need more trials in establishing the role of these external agents to have
better conclusive evidence. Additionally, to minimize the inherent toxicity and unwarranted secondary
effects, it is needed to have longitudinal profiling of biomarkers for a better measure. Together, better
understanding of the factors responsible for proper conditioning of the individual immune system is of
paramount importance to harvest the maximum benefit and at the same time minimize the deleterious
effects of the CPI.
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