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Abstract: Fetal aneuploidies are among the most common causes of miscarriages, perinatal mortality
and neurodevelopmental impairment. During the last 70 years, many efforts have been made in
order to improve prenatal diagnosis and prenatal screening of these conditions. Recently, the use of
cell-free fetal DNA (cff-DNA) testing has been increasingly used in different countries, representing
an opportunity for non-invasive prenatal screening of pregnant women. The aim of this narrative
review is to describe the state of the art and the main strengths and limitations of this test for prenatal
screening of fetal aneuploidies.

Keywords: non-invasive prenatal testing; prenatal screening; fetal aneuploidies; cell-free fetal DNA;
fetal fraction

1. Introduction

The purpose of prenatal diagnosis is to reduce both the incidence and prevalence of
inherited conditions, which have a strong impact on both the psychological and economic
aspects of people’s lives, whether the ill ones or their parents, as well as being an economic
burden for national health systems. Chromosome abnormalities have been thoroughly
investigated since Down syndrome was characterized as a trisomy. Technical innovations
through the decades have then made it possible to detect smaller genetic anomalies, up to
many single gene disorders. The non-invasive prenatal test (NIPT) is the last innovation in
the field of prenatal diagnosis aimed at helping both practitioners, in the management of
pregnancy and its counselling, and future parents in developing conscious and informed
choices regarding their unborn child. Indeed, the aim of this narrative review is to describe
the history of prenatal investigations, the technical aspects of NIPT, with its strengths and
limitations, and to discuss the future directions towards which it should progress.

2. Evolution of Non-Invasive Prenatal Screening for Fetal Aneuploidies

Prenatal diagnoses have made enormous progress since the discovery that fetal cells
could be obtained during pregnancy and analyzed to screen for genetic disorders. In the
1960s, many studies addressed the possible role of amniotic fluid cytology for determina-
tion of fetal sex and karyotyping [1,2]. Only during the 1980s chorionic villi have been
sampled to perform fetal karyotyping, shifting the prenatal diagnosis from the second to
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first trimester [3,4]. From that moment, the use of amniocentesis and chorionic villous
sampling (CVS) for prenatal diagnoses of genetic disorders has been increasingly utilized.
Historically, the main limitation of these techniques was related to their invasiveness and
possible procedure-related pregnancy loss [5]. Even though it is very difficult to quantify
the increase in the risk of pregnancy loss after these procedures, recent meta-analyses
reported that the procedure-related risk is less than 1%, but it still exists [6,7]. Therefore,
the scientific community spent the last 50 years trying to identify non-invasive screening
tests to select women at increased risk of fetal aneuploidies in order to limit the use of
invasive tests. In the 1960s, the main indication for an invasive procedure was advanced
maternal age; however, the use of maternal age as an index by itself has a very low sensi-
tivity (around 30%) and a very high false-positive rate (FPR) (15%) [8]. Moreover, although
it is true that increasing maternal age raises the risk for trisomy 21, 13 and 18 (T21, T13
and T18), it does not represent a risk factor for other aneuploidies, like sex chromosome
aneuploidies or triploidy. Subsequently, identification of biochemical markers of fetal aneu-
ploidies [9–13] gave birth to two different screening tests: the triple test and the quadruple
test, with a detection rate (DR) of around 60% and 65%, respectively, and an FPR of 5% [8].
The real revolution in the field of prenatal screening was represented by the introduction
of nuchal translucency (NT) and the combined screening test in the 1990s [14,15]. A first
trimester combined screening test for trisomies 21, 18 and 13 is performed combining
maternal age, nuchal translucency (NT), fetal heart rate (FHR) and the multiples of median
(MoMs) of circulating free β-hCG and PAPP-A [14,15]. Additional markers, such as the
ductus venosus pulsatility index (PI), nasal bone and tricuspid regurgitation can be added,
in order to ameliorate the performance of the test [16–18]. A recent study by Santorum et al.,
revising more than 108,000 combined screening tests, stated that at an FPR of 4% has a DR
of 90%, 97% and 92% for T21, T18 and T13, respectively [19]. Roughly 50 years ago, it was
demonstrated how, despite the presence of the blood–placental barrier, it was possible to
detect fetal nucleated cells in maternal circulation [20]. In 1997, Lo et al. [21] were the first
to find cell-free fetal DNA (cff-DNA) in maternal plasma and serum. They demonstrated
that its concentration in maternal blood increases with gestational age and it is suitable for
pregnancy tests due to the fast clearance after the end of the pregnancy [22]. Among the
various applications of such a discovery in the field, the most successful one has been
the introduction of prenatal screening for aneuploidy [23,24]. In 2008, Fan et al. [25] and
Chiu et al. [26] demonstrated how it was possible to screen for T21 by sequencing cff-DNA
in maternal plasma with a very low FPR. Cff-DNA can be analyzed with a simple blood
sampling from the pregnant woman [27]. Therefore, this has been called the non-invasive
prenatal test (NIPT). Since its introduction in 2011, more than 2 million NIPTs have already
been performed [28]. Nowadays, alongside the evolution of genetic testing, there is a
growing need for the reassurance of the health of progeny, both if coming from natural
conception and in vitro fertilization techniques [29–31]. Genetic tests have been developed
also with the aim to discover the carrier status among couples, in order to reduce the chance
of incurring recessive conditions in the pre-conception period [32,33]. Another option is an
analysis of the blastocyst DNA before the implantation of the embryo [29,34–37]. However,
pre-conceptional tests are not designed to exclude pregnancy tests in the antenatal period,
such as the NIPT [38].

3. Available Techniques for Analysis

The methodology used for NIPT, in order to analyze chromosomal abnormalities, copy-
number variants (CNVs) and microdeletion, was developed for the entire genome, specific
regions or single nucleotide polymorphisms (SNPs) analysis (Figure 1) [39]. The majority
of clinical trials are conducted performing massively parallel shotgun sequencing (MPSS)
and chromosome selective sequencing (CSS) [40,41]. MPSS analyzes the whole genome,
sequencing millions of cf-DNA fragments, both fetal and maternal. Each fragment is
assigned to the original chromosome and those from each chromosome are quantified.
The amounts of fragments in a trisomic fetus will be higher than the one expected in
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euploid fetuses [40]. CSS restricts the sequencing to specific regions of chromosomes 21,
18, 13, X and Y. Its advantage is related to lower costs, but the limitation can be the higher
(around 2%) failure rate compared to MPSS [41]. SNP analysis is based on the chance to
find a difference in a single base of nucleic acid in a DNA sequence [42]. SNP analysis
by a multiplex PCR allows the differentiation between maternal and fetal fragments [43].
They are used to quantify the fetal fraction (FF) in CSS or as a technique itself, showing
a performance similar to MPSS and CSS, with a slightly increased failure rate (around
4%) [44]. Recently, microarray quantification has been proposed as an alternative approach;
it seems to be cheaper and faster than CSS [45]. Moreover, the use of this technique removes
the risk for PCR contamination and reduces the assay variability. Another technique that
has been proposed is digital PCR, initially validated on trisomy 21. If compared to NGS, it
seems rapid and cost-effective, but it needs adequate levels of cff-DNA [46]. The digital
PCR is based on the single molecule counting strategy to detect cf-DNA. In fact, the digital
PCR uses a single probe set, limiting the application in large-scale analysis and cannot
detect low-grade mosaicism or chromosomal structural abnormalities such as balanced
translocation. Because of these limitations, NGS is still more commonly chosen. In addition,
recent data show the feasibility of the detection of micro-deletions/duplications, at a
resolution comparable to microarray analysis [47]. In relation to microdeletions, there are
data on Di George syndrome, Prader-Willi/Angelman syndrome, Cri-du-chat syndrome
and del1p36 syndrome, but microdeletions shorter than 3 megabases are not included [48].
Furthermore, routine implementation for such indications is hampered by its requirements
for significantly deeper sequencing, which is costly [49]. Whenever a patient would ask, for
specific reasons, for an enlarged panel of chromosomal or genetic anomalies, it is important
to clarify that neither the combined test nor the cff-DNA test are currently useful for it, and,
accordingly, the patient should opt for an invasive test with microarray analysis.

Figure 1. Non-invasive prenatal test (NIPT) analysis. CNVs: copy number variations, SNPs: single
nucleotide polymorphisms.

4. Role of Fetal Fraction and Failure Rate

The FF is the amount of cff-DNA divided by the amount of total circulating cf-
DNA [50]. The higher the FF in maternal blood, the more reliable is the result, because it is
less difficult to differentiate maternal than fetal cf-DNA. It has been seen that, at a 4% FF,
the DR is 62.1%, while above 9% it reaches 100% [51]. Based on this, many companies prefer
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to consider the test as failed in a case of FF lower than 4%, because of the low reliability in
such situations [52]. Since the main cause of the failed results is a low FF, factors affecting
it will affect also the failure rate. Other reasons for test failure, apart from a low FF, can be
mistakes during blood collection or transport of the samples, and laboratory failure [53].
Cff-DNA can be detected in maternal plasma as early as 5–7 weeks [54]. It increases during
gestation, from 0.1% per week between 10 and 21 weeks of gestation, to 1% per week
beyond 21 weeks of gestation [55]. In order to reach a sufficient FF, NIPT should not be
performed before 10 weeks [56]. Moreover, the FF seems directly related to the crown–rump
length (CRL), PAPP-A and free B-hCG MoMs, and is higher in East-Asian races (China,
Japan) and in smokers (mostly due to a decrease in maternal cf-DNA); on the other hand,
it decreases with increased maternal age and body mass index (BMI) (due to an increase
in maternal cf-DNA more than a decrease in cff-DNA), is lower in twin pregnancies, in
Afro-Caribbean and South-Asian women (India, Pakistan) and in IVF pregnancies, as well
as in women with a high PI of uterine arteries at the first trimester scan [57,58]. The FF
is lower in twins compared to singletons and in dichorionic compared to monochorionic
twins [58]; as a consequence, the failure rate is around three to four times higher in twins
than singletons [59]. A higher failure rate can be related to a limitation of the test itself.
A cff-DNA test is more complex in twin pregnancies, because if dizygotic, there could be
the chance that only one twin carries chromosomal abnormalities [58,60]. In addition, the
contribution to the FF could be different between the twins (up to 2 times difference) [61].
For example, a negative result could appear in case an affected twin contributes with an FF
less than 4%, but the total FF would be more than 8%, because of the higher contribution of
the healthy twin [58,62]. To avoid this risk, it has been proposed to consider the lower FF
between the two fetuses, more than the total FF [62]. Moreover, the higher failure rate also
can be explained by the higher incidence of IVF among twin pregnancies [58]. Interestingly,
the International Society for Prenatal Diagnosis reviewed how various professional societies
addressed the issue of cff-DNA screening in twins, showing that only few of them (United
States, Canada, Australia-New Zealand, and Germany–Austria–Switzerland) recognized
its usefulness and applicability in clinical settings, although with caution, while the major-
ity still await further evidence [63]. In addition, it has been seen that the FF is the same or
sometimes higher in T21 than in euploid cases, whereas it is usually lower in T18, T13 and
triploidies [27,64–66]. Some studies indicate that, in the proportion of failure due to a low
FF, there is a moderate rate of aneuploidies [64–66]. This seems valid especially for T18 and
T13, where these are associated with a low PAPP-A, reflecting a smaller placental mass, and
consequently reduced source of cff-DNA [27]. Due to these findings, the American College
of Obstetricians and Gynecologists (ACOG) recommended a diagnostic test in such cases,
rather than a repetition of the test [67,68]. Recently, ACOG released a practice bulletin
on the screening for fetal chromosomal abnormalities, confirming that, when the NIPT
results are not reported or uninterpretable, patients should be informed of the possibility
of fetal aneuploidy, and a thorough ultrasound, genetic counselling and diagnostic test
should be offered [69]. However, since the possibility to get a result after repetition of
the test has been reported to be around 70% in singletons and 55% in twins, it seems to
be reasonable to offer it in case of non-evident ultrasonographic fetal anomalies [59,65].
Obviously, the decision about further testing after a failed result depends on the known
or supposed reasons for failure: Galeva et al. [59] showed how conception by assisted
reproduction is the most important contributor to test failure, followed by ethnic origin,
BMI (risk increases by 5% with each additional Kg in maternal weight), age and parity.
Therefore, the possible causes must be investigated before a redraw is offered. Furthermore,
when the FF is above the 95th centile, it has also been associated with complications in
pregnancy, such as the delivery of small for their gestational age babies [70]. Another recent
study found that, when the FF is below the 10th centile, it is associated with an increased
risk of preeclampsia or preterm birth and, when it is below the 5th centile, it is associated
with a low birth weight [71]. Lastly, a systematic review observed that circulating nucleic
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acids (including miRNA) seem to be promising predictors for late pregnancy complications,
but data are still too scant to make definitive conclusions [72].

5. Reliability of the Test

Cff-DNA appears to originate from the cytotrophoblasts of chorionic villi. Therefore,
a mosaicism confined to the placenta can be a possible cause of a false positive and this
represents one of the main reasons for discordant results between NIPT and invasive
tests [73–76]. Other main contributors to false-positive (FP) and false-negative (FN) results
are a low FF [52], maternal chromosomes’ aberrations [77], fetal mosaicism [50,75,78],
pathogenic copy-number variants (CNV) [52,78] and a vanishing twin [79,80]. The last
condition can be responsible also for fetal sex of Rhesus-D (RhD) status discordance [81].
A false positive can also result from unknown maternal cancer [82]. According to a recent
meta-analysis, the DR and FPR in singletons are 99.7% and 0.04% for T21, 97.9% and 0.04%
for T18 and 99.0% and 0.04% for T13, respectively [83]. In twin pregnancies, the DR and
FPR for T21 are comparable to singletons, while data are insufficient to affirm the same for
T18 and T13 [44,58]. An updated meta-analysis of seven studies assessing the performance
of a cff-DNA test in twins revealed that the DR and FPR for T21 were 98.2% and 0.05%,
respectively; for T18, the pooled weighted DR and FPR were 88.9% and 0.03%, respectively;
for T13, the DR was 66.7% and FPR was 0.19% [44]. Despite the high DR shown for these
chromosome abnormalities, the positive predictive value (PPV) is not always as high, given
that it also depends on the prevalence in the population, and it can vary according not
only to age but also among laboratories. In fact, as also described by ACOG, PPV oscillates
between 38–80% and 91–99% for T21, between 11–41% and 66–92% for T18, and between
5–13% and 45–71% for T13, respectively, at 20 and 40 years old [69].

Regarding sex chromosomes, the majority of reported evidence is related to monosomy
X. For this aneuploidy, the DR and FPR in singletons have been reported as 95.8% and
0.14%, respectively [83]. Sex chromosome aneuploidies, included monosomy X (Turner
syndrome), Klinefelter syndrome (47,XXY o 48,XXYY), triple X syndrome (47,XXX) and
47,XYY, taken together, have an overall prevalence of 1:500, and are therefore more common
than major trisomies [84]. Although many cases of sex chromosome aneuploidies are
characterized by a mild phenotype, without neurological or cognitive handicaps, others
show a typical phenotype with physical anomalies, intellectual delay and infertility [84].
It could be important, for some couples, to have a prenatal test for such conditions, to
give the opportunity for an informed choice regarding pregnancy and prognosis of the
offspring, allowing also to consider termination of pregnancy (TOP). Traditional methods
of screening for aneuploidies (maternal age, ultrasound markers, and biochemical factors)
are not effective in recognizing sex chromosome aneuploidies, except for Turner syndrome
cases, which show cystic hygroma [85]. Even though all cases with 47,XYY, 47,XXY e 47,XXX
have been identified, the total number of them is too small to draw definitive conclusion
on the performance of NIPT for such aneuploidies [84,85]. The decision about to screen or
not for such aneuploidies, given their usually mild phenotype or the possibility to reveal
unexpected maternal aneuploidies, not known until then, needs further considerations
on couples’ preferences and on the clinical usefulness of such diagnostic efforts [85].
Its “collateral” effect is the reduction in efficiency of NIPT screening for the likely rise in
FPR. The high incidence of mosaicisms, both maternal and/or fetal, for such aneuploidies,
represents a limitation. Various studies have shown that fetal mosaicisms can overcome
50% of sex chromosomes aneuploidies [85]. Moreover, it is worth remembering that the
results should be confirmed by amniocentesis (and not by CVS, due to the abovementioned
mosaicisms) [84]. On the other hand, in case of maternal mosaicism, previously known
or not at the moment of the test, the analysis could wrongly count fragments of the X
chromosome as fetal aneuploidy, whereas the fetus is euploid [84]. Prenatal screening tests
have never been directly structured and addressed to the recognition of sex chromosome
aneuploidies, with a coincidental revelation in pregnancies requiring invasive test to rule
out a trisomy 21. With time, the rise of prenatal screening testing DR has reduced the
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request for invasive procedures and, unavoidably, also the coincidental revelation of sex
chromosome aneuploidies alternative to Turner syndrome [84]. Of consequence, we could
argue that, for patients with a high NT in first trimester, or cystic hygroma or hydrops in the
second trimester, it is better to perform an invasive test rather than the cff-DNA analysis,
to include a more accurate evaluation of monosomy X syndrome [85]. Triploidies differ
depending on the origin of the extra chromosomes, if paternal (diandric) or maternal
(digynic) [46]. In the latter case, the placenta is very small and the fetus shows a very
severe early growth restriction, with usually a normal NT and very low free β-hCG and
PAPP-A (<0.1 MoM); instead, in diandric ones, the placenta appears bigger and partially
molar, free β-hCG is very high (around 10 times) and NT is larger. SNP assays can identify
diandric aneuploidies, and provide a suspicion of the digynic ones, given an extremely
low FF [60,80,84,86].

6. Implementation of NIPT into Clinical Practice

There are two options to introduce NIPT into clinical practice, both for twin and
singleton pregnancies: first is to perform the test to everyone at 10 weeks, followed by
a first trimester ultrasound and combined test at 12 weeks [53]. So, in patients with a
high-risk score, the invasive test and selective feticide (in twins) can be planned still during
the first trimester. If the test fails or the results are negative, the following management
can be oriented by ultrasound and combined test results. This configures the universal
screening with NIPT. The alternative is the contingent test, taking into account the results
of the first trimester ultrasound and combined test [53]. This approach seems to keep the
main advantages of NIPT, enhancing DR and decreasing FPR, at lower costs compared to
universal screening at 10 weeks [87]. The related disadvantage is the possible shift in the
diagnosis, in case of failure of the NIPT, from the first to the second trimester. In such cases,
immediate access to invasive testing could be proposed when the risk comes high, or the
option of NIPT when the risk is intermediate [88]. The contingent test would take also the
advantage of a careful ultrasound, useful for various reasons, as correct dating, exclusion
of major abnormalities, being markers of aneuploidy (megacystis, holoprosencephaly,
gastroschisis and omphalocele) or not (spina bifida), and early prediction of pregnancy
complications, such as preterm birth or pre-eclampsia [87]. If the NIPT fails, the options
are to repeat the sampling, to opt for an invasive test or no more tests (with following
management based on combined test results) [65]; if the first trimester scan poses doubts of
structural abnormalities, a confirmation must follow through invasive testing; oppositely, if
such abnormalities are not seen at ultrasound, a second NIPT sample can be the following
option [27,89]. If it fails again at the second attempt, options are, again, the invasive test
or no more test. Therefore, if there are no suspicious ultrasound features in the occasion
of the combined test, even after a second failure, considering the low the risk for T18 and
T13 (given the very high prevalence of fetal anomalies in such trisomies), one can wait for
an anomaly scan if the a priori risk for T21 is low; if, oppositely, the a priori risk for T21 is
high, an invasive test is advisable (amniocentesis) [65]. There are three main limitations to
the introduction of a cff-DNA test into clinical practice: the first one is the cost, which is
still higher when compared to other screening tests and more or less similar to invasive
tests with karyotype analysis [88]. An overall diffusion would reduce the costs but the
speed and the amount of such a process of abatement are still uncertain. The second
limit comes from failed results, which can cause a challenge in the management of these
cases [90]. As described by Gratacos and Nicolaides in 2014 [91], when the NIPT started to
be offered in clinical settings, another limit was the time to wait for the results, which was
quite long, since not many laboratories were performing such an analysis, and therefore
it could have led to a slide of the diagnosis from the first to the second trimester, losing
the advantages obtained from the prenatal screening history in the last 30 years. However,
it must be acknowledged that, now, at least for the three main chromosomal abnormalities,
the waiting time is one week maximum on average.
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7. The Challenge of a Non-Invasive Prenatal Diagnosis for Monogenic Disease

Despite the NIPT for aneuploidy still being considered a screening test, the possibility
to make a diagnosis for several monogenic diseases is actually a realistic opportunity.
The most common clinical applications for a non-invasive prenatal diagnosis include the
fetal RhD status determination in case of RhD-negative mothers, sex determination in case
of risk for sex-linked disorders and pregnancy at risk of de novo, dominant or recessive
conditions. The main indications are essentially a case of known family history or abnormal
sonographic findings. Techniques of exome sequencing allowed to reveal the presence
of monogenic diseases after an invasive prenatal diagnosis showed a normal karyotype
in fetuses with abnormalities at ultrasound [92,93]. In such situations, a comprehensive
genetic counseling of the couple is demanding to define the strategy. The use of disruptive
technology, such as NGS, technically allows to overcome the challenge for early diagnosis
of monogenic disease (non-invasive prenatal sequencing for multiple mendelian mono-
genic disorders, using circulating cell-free fetal DNA). Since the sequencing of the cf-DNA
includes fetal DNA, the most reliable results are based on indirect analysis [94]. The proof
of concept is to use the haplotyping strategy as already used for other diagnoses, such as
preimplantation genetic diagnoses [95–97]. The two mainly studied analytical approaches
are the relative mutation dosage (RMD) and relative haplotype dosage (RHDO). The RMD
requires parental genotyping and design of mutation assay. The RHDO requires informa-
tion of the parental haplotype and, more specifically, the determination of the informative
heterozygous SNPs linked to the mutation site. It is possible to obtain this information
using an affected proband within the family as the reference or using a direct analysis of
the parental haplotype by linked-read sequencing [95]. About the analysis, in RMD the
comparison is made between counts at the specific mutation site; in RHDO, haplotypes are
compared in the maternal plasma using multiple SNPs, thereby increasing the accuracy
and reproducibility [95]. Indeed, studying the parental haplotypes as references through
polymorphic regions, it is possible to make the diagnosis of a paternally inherited fetal
allele that is not present in the maternal genome, as showed for cystic fibrosis, or variants in
the fetus that are not present in the mother [98]. In the UK, non-invasive prenatal diagnoses
is offered for several inherited disorders (autosomal dominant, autosomal recessive by
paternal allele exclusion and X-linked inheritance) without confirmation through invasive
tests [99]. In such a setting, the strength of the NGS is represented by the possibility to
analyze several variants in one panel. In addition, the ability of NGS to analyze a single mu-
tation site is less robust in comparison to the indirect analysis, taking into account the small
amount of cff-DNA in maternal plasma [100]. Finally, the presence of a fetal transcriptome
and methylome open the landscape of analysis on fetal and maternal health [101].

In case of microdeletion syndromes, it must be emphasized that the PPV of cff-DNA is
still quite low, with a large dataset showing only a 13% overall PPV for the most common
microdeletion syndromes, such as for Di George syndrome, Prader-Willi/Angelman syn-
drome, Cri-du-chat syndrome and del1p36 syndrome, depending also, as abovementioned,
on the very low prevalence of these conditions [102]. In addition, there is no association
with known risk factors (as age is for major trisomies), which could help in the application
of such a test to the population. Indeed, Wapner et al. [103] suggested a very high negative
predictive value (NPV) of NIPT for these syndromes, and, therefore, although the PPV is
low, a negative result could be considered reassuring. However, since data are scanty and
large-scale clinical validation studies of the general obstetric population are still needed,
professional societies do not yet recommend its clinical application.

8. Conclusions

The main indications for an NIPT, as well as for other screening test for aneuploi-
dies, remain an advanced maternal age, a previous child with chromosomal alterations,
the presence of fetal abnormalities on ultrasound examination and a history of a genetic
and/or physically inherited abnormality in a parent or family member. However, the enor-
mous innovations in the field of genetic diagnosis led to a different approach to prenatal
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screenings by the future parents, with the aim of being reassured that their fetus is healthy.
Because of technical issues, an NIPT remains a screening test rather than a diagnostic one.
However, the growing accuracy of the methodology of analysis is promising, also for the
wide diffusion of this test for the screening of monogenic diseases.
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